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We describe a parallel algorithm for testing a graph for planarity, and for finding an 
embedding of a planar graph. For a graph on n vertices, the algorithm runs in 0(log2 n) steps 
on n processors of a parallel RAM. The previous best parallel algorithm for planarity testing 
also ran in 0(log2 n) time (J. Ja’Ja’ and J. Simon, J Comput. 11, No. 2 (1982), 313-328), but 
used a reduction to solving linear systems, and hence required Q(M(n)/log2 n) processors, 
where M(n) is the sequential time for n x n matrix multiplication, whereas our processor 
bounds are within a polylog factor of optimal. The most significant aspect of our parallel 
algorithms is the use of a sophisticated data structure for representing sets of embeddings, the 
PQ-tree of K. Booth and G. Lueker, J. Compur. System Sci. 13, No. 3 (1976). 335-379). 
Previously no parallel algorithms for PQ-trees were known. We have efficient parallel 
algorithms for manipulating PQ-trees, which we use in our planarity algorithm. 0 1988 

Academic Press. Inc. 

1. INTRODUCTION 

The study of planar graphs dates back to Euler. A drawing of a graph on a plane 
in which no edges cross is called a planar embedding. A graph for which such an 
ambedding exists is called a planar graph. The search for an efficient algorithm to 
decide planarity and find a planar embedding culminated in Hopcroft and Tarjan’s 
linear-time algorithm [S]. 

Continuing in this tradition, we have developed an efficient parallel algorithm for 
this problem. Our new algorithm finds a planar embedding for an n-node graph (or 
reports that none exists) in 0(log2 n) time using only n processors of an exclusive- 
write, concurrent-read P-RAM [7].’ Thus it achieves near-optimal speedup. 

* Research supported by an ONR Graduate Fellowship. 
7 Research supported by 0%~ of Naval Research Contract NOOOl4-80-C-0647 and National Science 

Foundation Grant DCR-85-03251. 
An extended abstract of this paper appeared in the “Proceedings, 27th Annual IEEE Symposium on 

Foundations of Computer Science, 1986, pp. 465477. 
’ We assume this model through this paper. 
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In contrast, the previous best parallel algorithm for testing planarity, due to 
Ja’Ja’ and Simon [9], reduced the problem to solving linear systems, and hence 
required at least M(n) total operations (time x number of processors), where M(n) 
is the number of operations required to multiply two n x n matrices. Ja’Ja’ and 
Simon’s algorithm was important because it showed that planarity could be decided 
quickly in parallel. However, such a large processor bound makes their algorithm 
infeasible. Moreover, their algorithm found a planar embedding for triconnected 
graphs but not for arbitrary graphs. In [17], Miller and Reif showed how embed- 
dings found by Ja’Ja’ and Simon’s algorithm could be combined to find an 
embedding for an arbitrary graph. However, the processor bound for Miller and 
ReiPs algorithm was no better than that of Ja’Ja’ and Simon?. 

The inspiration for our parallel algorithm is an efficient sequential algorithm 
resulting from the combined work of Lempel, Even, and Cederbaum [13], Even 
and Tarjan [6], and Booth and Lueker [3]. One essential ingredient we use from 
the work of Lempel, Even, and Cederbaum is that in building an embedding for a 
graph, premature commitment to a particular embedding of a subgraph should be 
avoided. Instead, we use a data structure called a PQ-tree, due to Booth and 
Lueker, to represent all embeddings of each subgraph. We introduce some new 
operations for the parallel manipulation of PQ-trees and use the parallel tree con- 
traction technique of [ 173 to help implement these operations. 

Our parallel algorithm differs significantly from the sequential algorithm that 
inspired it. The sequential algorithm extended an embedding node by node. In con- 
trast, we use a divide-and-conquer strategy, computing embeddings for subgraphs 
and combining them to form embeddings of larger subgraphs. To handle the 
numerous complications that arise in carrying out this approach, we are forced to 
generalize the approach of Lempel, Even, and Cederbaum. 

Our parallel planarity algorithm is rare among parallel algorithms in that it uses 
a sophisticated data structure. We have parallelized the PQ-tree data structure, due 
to Booth and Lueker [3], giving efficient parallel algorithms for manipulating 
PQ-trees. No parallel algorithms for PQ-trees existed previously. We define three 
operations on PQ-trees, multiple-disjoint-reduction, join, and intersection, and give 
linear-processor parallel algorithms for these operations. We use PQ-trees for 
representing sets of graph embeddings. 

However, PQ-trees are generally useful for representing large sets of orderings 
subject to adjacency constraints. Booth and Lueker use PQ-trees in efficient sequen- 
tial algorithms for recognizing sparse (0, 1)-matrices with the consecutive one’s 
property, and in recognizing and testing isomorphism of interval graphs. Using our 
parallel algorithms for PQ-trees, one can recognize n x n (0, 1)-matrices with the 
consecutive one’s property in 0(log3 n) time using n* processors. 

In Section 2, we discuss the PQ-tree data structure. In Subsection 2.1, we give 
definitions of PQ-trees and the new operations on them: multiple disjoint reduction, 
intersection, and join. We show how these operations may be implemented in 
parallel in Subsections 2.2, 2.3, and 2.5. In Subsection 2.4, we prove some lemmas 
concerning the use of PQ-trees for representing sets of cycles. In Section 3, we 
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discuss the problem of planarity. In Subsection 3.1, we give some definitions 
and results concerning embeddings of graphs. In Subsection 3.2, we describe our 
parallel planarity algorithm. 

2. PARALLEL PQ-TREE ALGORITHMS 

2.1. PQ- Tree Definitions 

In our planarity algorithm, we will need to represent large sets of sequences of 
sets of edges. These sets are too large to represent explicitly, so we make use of an 
efficient data structure, the PQ-tree, due to Booth and Lueker [3]. In this section, 
we define the PQ-tree and some operations on it, and show how these operations 
may be carried out effciently in parallel. We freely adapt the terminology of [3] to 
suit our needs. 

A PQ-tree over the ground set S is a tree with two kinds of internal nodes, 
P-nodes and Q-nodes. Every internal node has at least two children, so the number 
of internal nodes is no more than the number of leaves. The children of each inter- 
nal node are ordered. The leaves are just the elements of S. For example, in Fig. 1 is 
depicted a PQ-tree T over the ground set {a, h, c, d, e,f}. Here, as henceforth, 
Q-nodes are depicted by rectangles and P-nodes are depicted by circles. 
Throughout this section, n will denote the cardinality of S. 

For concreteness, we will assume that a PQ-tree is represented by a pointer struc- 
ture as follows: each node has a pointer to its parent, its left sibling, its right sibling, 
its leftmost child, and its rightmost child (using null pointer where necessary). This 
representation permits constant time insertion and deletion of consecutive sequen- 
ces of children by a single processor, and also O(log n) time tree contraction [ 171 
on an exclusive-write P-RAM. 

A PQ-tree is used to represent certain classes of linear orderings of its ground set 
S. Let T be a PQ-tree over S. We will denote by L(T) the set of linear orders 
represented by T, and say that T generates L(T). One element of L(T) is obtained 
by reading off the leaves left to right in the order in which they appear in T. This is 
called the frontier of T, and written fr(T). (The frontier of the tree in Fig. 1 is 
bafdce.) The other elements are those linear orders obtained in the same way from 

LI f d 

FIG. 1. A PQ-tree over the ground set {u, h, c, d, t-f}. 
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all trees T’ equivalent to T. We say T’ is equivalent to T if T’ can be transformed 
into T by a sequence of transformations. The permissible equivalence transfor- 
mations are: 

(1) the order of children of a Q-node may be reversed (we say the Q-node is 
flipped), and 

(2) the children of a P-node may be arbitrarily reordered. 

It is useful to think of PQ-tree T as a representative of all the trees equivalent to it. 
We write T’ z T if T’ is equivalent to T. 

We shall occasionally speak of “flipping” all the nodes of a tree For this purpose, 
“flipping” a P-node means reversing the order of its children, which is certainly a 
permissable transformation. For a leaf, “flipping” has no effect. 

Consider once again the PQ-tree T in Fig. 1. There are 12 orderings in .I,( T), 
including bafdce, bdafce, ecafdb, ecfadb. The first is just the frontier of T. The 
second ordering, bdafce, is obtained by reordering the P-node’s children; the third 
ordering, ecafdb, is obtained by reversing the order of the Q-node’s children; the 
fourth ordering, ecfadb, is obtained by both reversing the order of the Q-node’s 
children and reordering the P-node’s children. 

Since there is no way a PQ-tree over a non-empty ground set can represent the 
empty set of orderings, we use a special null tree, denoted by TnU,,, to represent this 
empty set. 

DEFINITION 2.1. If u is any node of some PQ-tree T, the subtree rooted at u is 
itself a PQ-tree, whose ground set is the set leaves,(u) of leaves below u. The fron- 
tier of v (in T) is just the frontier of the subtree of T rooted at v, and is written 
fr,(v). We write leaves(v) for leaves,(u) and fr(v) for fr,(u) when the choice of T is 
clear. 

Note. Throughout this section, we use the terms descendent and ancestor to 
refer to non-proper descendents and ancestors, unless otherwise specified. That is, v 
is considered its own descendent and its own ancestor. We use the term proper 
descendent to refer to a descendent other than u. An endpoint of a linear ordering is 
either a leftmost (lirst) or a rightmost (last) element. The parent of u is denoted 
by p(v). 

DEFINITION 2.2. Let A be a subset of the ground set S. We say a linear ordering 
I=s, . . . s, of S satisfies the set A if all the elements of A are consecutive in 1; i.e., 
for some i and j, sisi+ i . . . sj are all the elements of A. For a PQ-tree T, let 
Y(T,A)=(1~L(T):JsatisliesA}. 

For example, if T is the PQ-tree in Fig.1, then vl( T, {a, c, f } ) = { bdafce, bdface, 
ecfadb, ecafdb}. Booth and Lueker prove ,that given any T and A c S, there is a 
PQ-tree f such that L(f) = !P( T, A), called the reduction of T with respect to A. In 
fact, they give an algorithm REDUCE(T, A) which modifies T to get F. Their 
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FIG. 2. Inserting the node u between v and children 2, 3,4. 

algorithm works in time proportional to the cardinality of A. Note that if no order- 
ing generated by T satisfies A, the reduction ri is just the null tree. 

For applications to parallel algorithms, it is useful to be able to reduce a PQ-tree 
with respect to many disjoint sets A,, . . . . Ak simultaneously. We let 
Vu(T, (A, . . . . A,}) = (A E L(T): 2 satisfies each Ai (i = 1, . . . . k)}. 

In Subsection 2.2, we give a parallel algorithm for “multiple” reduction, 
MREDUCE( T, (A,, . . . . Ak} which modifies T to obtain a PQ-tree p such that 
L(f) = !P(T, (A,, . . . . A,}) if the A{s are disjoint. (Any ordering automatically 
satisfies a singleton set.) 

THEOREM 2.1. MREDUCE can be computed in O(log n) time using n processors. 

Next we make some observations and introduce some terminology useful to the 
algorithms in this section. 

DEFINITION 2.3. Suppose that a node u of a PQ-tree has children u, . . . u, in 
order. To “insert” a node u between v and a consecutive subsequence up . . . o, of its 
children is to make u the pth child of u, and let the children of u be up . . . uy in order. 
Note that the operation of insertion does not change the frontier of any node of the 
PQ-tree. 

In Fig. 2, we show a P-node being inserted between a Q-node v and its children 
2, 3, 4. (In this figure and others to come, we use a triangle to represent a subtree; if 
the triangle’is numbered, we use the number to refer to the root of the subtree.) 

If each ordering 1* E L(T) satisfies A, the part of the tree “pertinent” to the set A is 
“contiguous,” in a sense described below.* 

DEFINITION 2.4. Let lea,(A) denote the least common ancestor of the leaves 
belonging to A. Suppose that u = lca.(A) has children v1 ... v, in order. We say A is 
contiguous in T if 

*In [3], Booth and Lueker referred to this part of the tree as the perrinent subtree of a 
PQ-tree. 
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l v is a Q-node, and for some consecutive subsequence up ... vy of the children 
of v, A = u,, iGy leaves(uJ, or 

l v is a P-node or a leaf, and A = leaves(v). 

For example, the sets’ {a, 6, d, f > and {a, d, f } are both continguous in the PQ-tree 
of Fig. 1. Note that if A is contiguous in T, then A is contiguous in any tree T 
equivalent to T. In [14a] is proved essentially the following: 

LEMMA 2.1. Suppose that A is a non-empty subset of the ground set of T. Then A 
is contiguous in T iff each ordering J. E L( T) satisfies A. 

Proof (=z-) Suppose A is contiguous in T. Clearly I, = frT(v) satisfies A, 
because I, = A, . . . ;1,, where li = fr,(v,), and lp ... 1, consists exactly of all the 
elements of A. But 1, is a consecutive subsequence of fr( T), so fr( T) also satisfies A. 
Using the fact that A is contiguous in every T’ z T, we conclude that every 1 E L(T) 
satisfies A. 

(c=) Assume every I E L(T) satisfies A. If only one child vi of v = Icar. satisfies 
the condition 

leaves(v,) n A # 0 (1) 

then lea(A) is a descendent of vi, contrary to choice of v. Thus u has more than one 
child ui satisfying condition (1). Let the leftmost such child of v be up and the 
rightmost u,. Suppose that for some child vi (p < i< q), we did not have leaves 
(vi) c A. Then either the frontier of T does not satisfy the subset A, or the frontier 
of the tree obtained from T by flipping vi does not satisfy A (or both). Hence we 
have leaves(vi) c A for each p < i < q. But then A = U; leaves(v,) because v was 
chosen to be an ancestor of every leaf ip A. If v is a Q-node, this completes the 
proof that A is contiguous in T. 

Suppose that v is a P-node, and u had some child ui such that leaves(u,) d A. By 
reordering the children of u so that vi is between up and u,, we obtain a tree whose 
frontier does not satisfy A. Thus for every child vi, we have leaves(vi) c A; i.e., 
leaves(u) = A. 1 

COROLLARY 2.1. Suppose the following non-empty sets are contiguous in T: A, B, 
C, A v B, B v C. Then A v B v C is contiguous in T. 

We next define a new operation on PQ-trees, not considered in [3]. A PQ-tree F 
is the intersection of two PQ-trees T and T’ over the same ground set if 
L(f) = L(T) n L( T’). In Subsection 2.3, we describe an algorithm INTER- 
SECT(T, T’) for computing the intersection of two PQ-trees using disjoint reduc- 
tion as a subroutine. 

THEOREM 2.2. INTERSECT can be computed in O(log* n) time using n 
processors. 

571/37/2-6 
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FIG. 3. Obtaining a cycle cyc(A) from a linear ordering i,. 

Note that, like reduction, intersection can “fail,” i.e., the result may be the null 
tree. 

Remark. As an illustration of the usefulness of INTERSECT for parallel 
algorithms, we can use it to obtain a parallel algorithm for reducing a PQ-tree with 
respect to a sequence A,, . . . . Ak of subsets that are not necessarily disjoint. The 
algorithm works in O(log’ n . log k) time using O(kn) processors.t Make k copies 
T I, ...> Tk of the PQ-tree T, and in parallel reduce each T, with respect to Ai. Pair 
up the T;‘s and intersect the pairs, obtaining [k/21 intersected trees. Iterate, pairing 
up the intersected trees and intersecting the pairs, until there remains only one tree. 
Each iteration reduces the number of trees by a constant factor, so there are 
@log k) iterations, each of which takes O(log’ n) time (to do the intersection). 

We can use this algorithm to determine whether a (0, I)-matrix has the con- 
secutive one’s property: after some reordering of rows, the l’s in each column are 
consecutive. For an n x m matrix M, let the ground set S be the set of rows of M. 
For i = 1, . . . . m, let Ai = the set of rows in which there is a 1 in the ith column. Let T 
be the trivial PQ-tree generating all orderings over S. Then the reduction of T with 
respect to A 1, . . . . A, generates those orderings of the rows making the l’s in each 
column consecutive. This is how Booth and Lueker recognized (0, 1)-matrices with 
the consecutive one’s property sequentially in time O(n + m +f), where f = Cy 1 Ai1 
is the number of l’s in M. Our parallel algorithm takes time 0(log2 n . log m) using 
nm processors. Note that this application is not required for our planarity 
algorithm. 

In our planarity algorithm, we will use PQ-trees to represent sets of cl&es, rather 
than sets of linear orderings. We next discuss this representation. 

DEFINITION 2.5. With each linear ordering A we associate the cycle cyc(i) 
obtained from 1 by letting the first element of 1 follow the last.3 For example, Fig. 3 
illustrates how a cycle cyc(A) = (wl . . . ws) is obtained from the linear ordering 
1= w1 w2 w3 w4 wg. The frontier fr( T) of a PQ-tree T represents a cycle cyc(fr( T)); 
for readability, we define cycfr(T) =cyc(fr(T)). Then the PQ-tree T represents the 
set of cycles CYC( T) = cyc(L( T)) = {cycfr( T’): T’ g T}. 

: Nore added in prooJ The first author has recently discovered an improved algorithm for this 
problem, one that works in O(logn. (log@ + I)) time using t processors, where f =xf (A,[. The 
algorithm will be described in the first author’s Ph.D. dissertation. 

’ Throughout this paper we use the term cycle to refer to an oriented cycle, analogous to a directed 
cycle in a directed graph. 



EFFICIENT ALGORITHM FOR PLANARITY 197 

Note that our representation of a cycle by a linear ordering ,I = w, . . . w, involves 
considerable redundancy, as the same cycle is also represented by 
wi~.~w,wl~~~wi-,, for i=2 ,..., n. We make use of this redundancy in obtaining the 
following lemma. 

LEMMA 2.2. Let T be a PQ-tree whose ground set is the disjoint union of non- 
empty sets A, B, C. Suppose that each of these sets is contiguous in T. Then T may be 
modified to be a PQ-tree T’ in which A v B and B v C are contiguous, and such that 
CYC( T’) = CYC( T). 

See Fig. 4 for an example of this modification. The modification of Lemma 2.2 
can be carried out easily (i.e., in O(log n) time using n processors, where n is the 
size of the ground set). We call this modification ROTATE(A, B, C); it is used in 
the planarity algorithm. The proof of Lemma 2.2 appears in Subsection 2.4. 

DEFINITION 2.6. In analogy to our terminology for linear orderings, we say a 
cycle g of S satisfies a subset A c S if the elements of A form a consecutive 
subsequence of G. 

An analog of Lemma 2.1 does not hold for PQ-trees used to represent sets of 
cycles: even if every ordering in CYC( T) satisfies a set D, it does not follow that D 
is contiguous in T. For example, consider the PQ-tree T’ of Lemma 2.2, as depicted 
in Fig. 4. While every ordering in CYC( T) satisfies A u C, in fact T’ is not (A u C)- 
contiguous. However, with the addition of an extra condition, an analog of 
Lemma 2.1 holds. 

LEMMA 2.3. Suppose A is a proper subset of the ground set of T, and is con- 
tiguous in T. Zf A, G A, then for each 1 E L(T), I satisfies A, iff cyc(1) satisfies A,. 

We can use Lemmas 2.2 and 2.3 in conjunction to “reduce” a PQ-tree used to 
represent a set of cycles. Suppose we have a PQ-tree T representing a set of cycles, 
and we want to obtain a PQ-tree f such that CYC( ?) = (CJ E CYC( T): r~ satisfies 

FIG. 4. Modifying a tree T in which A, B, and C are contiguous to get a tree T’ in which A v B and 
B u C are contiguous. 
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A 1, ..., A,}; i.e., we want to reduce T with respect to disjoint sets A,, . . . . A,. 
Sometimes (not always), we can apply Lemma 2.2 to modify T so that all the A,‘s 
are contained in a set A that is contiguous in T. Then by Lemma 2.3, we need only 
let p be the P&tree computed by MREDUCE. 

The proof of Lemma 2.3 appears in Subsection 2.4. 

DEFINITION 2.7. For a cycle o of S that satisfies a non-empty proper subset 
A c S, let 0.1 A denote the consecutive subsequence of r~ consisting of elements of A. 
Note that cr 1 A is a linear ordering. 

For example, if G is the cyclic ordering cyc( w, w2 w3 wq UJ~) depicted in Fig. 3, then 
0 I {w, wz, u’5) =w5w1wz. This notation extends elementwise to sets and ordered 
pairs; e.g., (6, a’) ( A is the same as (a ) A, CJ’ 1 A). Note that if the cycle (T of S 
satisfies A, it also satisfies S-A, so (T ( (S-A) is well-defined. 

We next define another new operation on PQ-trees that corresponds to combin- 
ing embeddings of subgraphs. For a linear ordering 2, let AR denote the reverse 
of II. 

In the following, let S,, and S, be ground sets whose intersection E is a non- 
empty proper subset of So and of S,, let g,, be a cycle of S,,, and let CJ, be a cycle of 
s,. 

DEFINITION 2.8. If oO and (T, satisfy E and co 1 E = (a, 1 E)R, we let oO join CJ, 
denote the cycle of S, u S, obtained from oO by substituting g1 1 (S, - E) for CJ~ 1 E. 

Figure 5 illustrates how the join operation works. As we shall see in Section 3.2, 
the join operation corresponds to the operation of contracting some edges between 
two nodes of an embedded graph, identifying the nodes. The operator join is left- 
associative. 

DEFINITION 2.9. Let TO and T, be PQ-trees over the ground sets So and S, , and 
suppose E = SO n S, is contiguous in T,, and in T,, and S, - E is also contiguous in 
T,. We say T, is the join of TO with T, if 

CYC(T+)= {a,joino ,:cT,ECYC(T,),~,ECYC(T,),~~~~,I E,=(o, 1 E,)R}. 

(2) 
Note that CYC(T+ ) may be empty, even if CYC( TO) and CYC(T,) are non- 

empty, because of the last clause in the definition. The PQ-tree join corresponds 
roughly to combining embeddings of a pair of nodes. 

In Subsection 2.5, we show how to compute the join T, , using PQ-tree intersec- 
tion as a subroutine. More specifically, we give two procedures, one for computing 
the “provisional” join, and the other for verifying the join. The provisional-join 
procedure constructs a PQ-tree T, such that T, satisfies (2) unless the right-hand 
side of (2) is empty (in which case T,ull is the join of TO with T,). The verification 

4 In their application of PQ-trees to planarity ([3]), Booth and Lueker carried out a tree-splicing 
operation that can be viewed as a special case of our new operation. They only needed a rudimentary 
version because in their algorithm an embedding was only extended one node at a time. 
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Wl -w5 
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I W, join wj 
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FIG. 5. Computing cyc(w, ... w5) join cyc(x,x,w,w,). First the cycle are matched up along the 
shared ground elements, then the shored elements are deleted and the remaining linear orders are spliced 
together. 

procedure uses PQ-intersection to determine if the right-hand side of (2) is empty. 
In the planarity algorithm, we use the provisional join so as to quickly proceed to 
the next stage of the algorithm, and verify all joins simultaneously once the final 
stage is complete. 

In fact, we can solve a slightly more general problem. It turns out that the 
algorithm for computing the join of To with T, only needs access to the part of the 
tree TO that is “pertinent” to E in the senqe of Lemma 2.1 (and in the sense of [3]). 
Hence it is possible to join T,, with many other trees simultaneously, as long as 
these other trees have disjoint ground sets. 

Let TO be a PQ-tree over the ground set S, as before, and let T,, . . . . Tk be trees 
over disjoint ground sets S1, . . . . Sk, where Ej = Sj n S,, is non-empty for j = 1, . . . . k. 
As before, assume Ej is contiguous in To and in Tj, and Sj - Ej is contiguous in Tj, 
for all j = 1, . . . . k. In this case, the join T, of TO with T,, . . . . Tk is defined to be the 
tree obtained by first taking the join of T,, with T,, then taking the join of the result 
with T2, and so on. 

THEOREM 2.3. The provisional join T, of TO with T,, ..,, Tk can be computed in 
O(log n) time using n processors, where n is the total number of ground elements. The 
join can be verified in O(log’m) time using m processors, where m is the number 
xi”=, 1 E,I of common elements. 

Remark 2.1. The elements of CYC( T, ) have the form co join 0, join . . . join ok, 
where oj is a cycle of Sj (Vj). An example appears in Fig. 6. Since S,, . . . . Sk are all 
disjoint, the cycle go join . . . join ok can be obtained directly from o,, by substituting 
oj 1 (Sj- Ej) for co 1 Ej. j= 1, . . . . k. Thus this cycle does not depend on the order of 
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*’ w8 *- 
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4 
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w2 t 

L 
w5 

w3 v w1 
/r 

join 

FIG. 6. Computing cyc(ws, w,)join cyc(w, M~~x,x~M’~) join cyc(w, > w.,y, y2y3) 

aly . . . . ak; e.g., a0 join ak join . ..join a, denotes the same cycle. It follows that the 
order of T,, . . . . T, is irrelevant to the final tree T, obtained. 

Remark 2.2. In the algorithms of this section, we assume n-processor, O(log n) 
time algorithms for two problems: 

l sorting n numbers, each consisting of O(log n) bits (called “small integer sor- 
ting”), and 

l finding the lowest common ancestors of n pairs of nodes in an n-node tree. 

Simple algorithms for these two problems appear in the Masters’ thesis of the first 
author [lo]. More sophisticated algorithms have appeared in the literature. For 
example, the second author has a randomized algorithm solving the first problem 
using only n/log n processors. Deterministic algorithms for the first problem follow 
from parallel comparison sorting algorithms; see [ 1, 12, 41. The second problem 
may be solved using techniques of [ 191. 

2.2. Reduction 

In this subsection, we describe the algorithm MREDUCE and prove its 
correctness, proving Theorem 2.1. 
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For notational convenience, we summarize the disjoint sets A,, . . . . Ak in a 
“coloring” 6(u) of the bound elements u E S, where the elements of each Ai receive 
a single color. We say an ordering A satisfies a color if all the elements of that 
color appearing in 1 occur consecutively. (Not all need appear.) We let 
Y( r, 6) = {A: 1 EL(T), 1 satisfies every color defined by S}. Note that since any 
ordering automatically satisfies a singleton set, we can assume ever element of S 
receives a color+ach element not appearing in any Ai receives its own unique 
color. 

There are essentially four conditions that necessitate changes to the structure of a 
PQ-tree during reduction. 

1. Condition: some (but not all) of the children of a P-node have descendents 
with the same color. In this case, a new P-node will be inserted between these 
selected children and their parent P-node, in order to ensure that these children 
remain consecutive under equivalence transformations. 

2. Condition: some (but not all) of the c-colored ground elements are descen- 
dents of a node. In this case, it must be ensured (by changes to the tree) that these 
c-colored elements occur as an initial or final subsequence of an ordering generated 
by the subtree rooted at the node. Otherwise, if they are allowed to be internal, 
there is no hope that they will meet up with the other c-colored elements to form a 
consecutive sequence. 

3. Condition: a P-node has children U, u, w, . . . . x (in some order) such that u 
and u have descendents with a common color, u and w have descendents with 
another common color, and so on. In this case, a Q-node must be inserted between 
this “chain” of children and their parent in order to ensure that the common colors 
are satisfied by any ordering generated. 

4. Condition: a Q-node’s leftmost child has descendents of some color c 
different from that of its rightmost child’s descendents, and the Q-node’s left sibling 
has descendents of the same color c. In this case, the Q-node must be prevented 
from flipping relative to its parent, in order to ensure that its c-colored descendents 
meet up with the c-colored descendents of its left sibling. 

The algorithm consists of the following phases: 

Pre-processing Phase. The coloring 6 of the ground elements is extended to a 
“coloring” A of all the nodes of the PQ-tree T. 

Phase A. P-nodes are processed and new nodes are inserted between each 
P-node and its children. The resulting PQ-tree is denoted by T,. 

Phase B. Q-nodes are processed: their children are assigned labels and then 
some are flipped in accordance with the labelling. The resulting PQ-tree is denoted 
by TLC 

Phase C. Certain sets of equivalence transformations are disallowed, by 
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changing some Q-nodes into special nodes called R-nodes, to be defined later. The 
resulting tree is T,. 

Post-processing Phase. Each of the R-nodes of the previous phase is 
eliminated and its children made children of its parent. 

Note that phases A and B may “fail,” in which case the reduced tree is just T,,“,,. 
The structure of the proof is as follows: We first prove that L(T) 2 L( T,) 2 

Y( T, 6). It follows that Y( T,, 6) = Y( T, 6). Since T, z T,, L( T,) = L( TA). Finally, 
we prove that L( T,) = Y( TB, 6) = !P( T, 6). Thus TC generates exactly the desired 
orderings. 

We first consider the pre-processing stage. This stage consists of extending the 
coloring 6 of the leaves to obtain a coloring A of the entire tree. The following 
terminology will be used throughout the proof. 

DEFINITION 2.10. For an internal node u of T, say a color is complete at u if all 
the leaves with that color are descendents of v. Say a color is incomplete at u if 
some, but not all, of the leaves of that color are descendents of u. Say that a color 
covers u if all the leaves below u are of that color, and that v is uncovered if no color 
covers 0. 

In general, the coloring of the ground elements imposes constraints on the order- 
ing of the children of each internal node U. However, if a color is complete at a 
child u of v, that color does not constrain the ordering of u’s children at all. The 
constraints arise because of colors incomplete at children of u. Therefore, the first 
step in extending the coloring is to compute for each internal node u the set INC(u) 
of colors incomplete at 0. 

Note that for any T’ z T with a node u, the frontier of the subtree of T’ rooted at 
u, denoted frT.(u), is a consecutive subsequence of the frontier fr( T’) of T’ (see 
Definition 2.1). If in addition fr( T’) satisfies the color c E INC(o), then the c-colored 
ground elements form a consecutive subsequence r of fr( T’). Since c E INC(c), fr(u) 
and z overlap, but fr(o) does not contain r. These considerations yield the following 
lemmas: 

LEMMA 2.4. Zf fr( T’) satisfies a color c incomplete at v then at least one endpoint 
of fr TS( u) is colored c. 

LEMMA 2.5. If !P( T, 6) = 0 then each node has at most two uncovered children at 
which the color c is incomplete. 

Proof of Lemma 2.5. If the c-colored elements form a consecutive subsequence r 
of fr( T’) (where T’ z T), then for each uncovered child u of v at which c is incom- 
plete, fr(u) contains an endpoint oft. 1 

If Y( T, 6) # 0, then it follows from Lemma 2.4 IINC(u)I d 2 for all nodes u. We 
can therefore obtain, using tree contraction: 
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LEMMA 2.6. Zf Y(T, S)#0, INC(.) can be computed for all nodes v 
simultaneously in O(log n) time using processors. 

Proof: By Lemma 2.4, we may assume that INC(v) never contains more than 
two elements. Consider the sequence of leaves of T, read left to right. For each 
color c, consider the first and the last node in this sequence that have color c. Their 
lowest common ancestor, which we will call LCA(c), is the lowest node in the tree 
at which the color c is complete. It is easy to compute lowest common ancestors for 
all colors simultaneously within the stated bounds (see Remark 2.2). 

If v is a leaf colored c, INC(v) is either {c}, or, if v is the only node colored c, 
then INC(u) is empty. If v is an internal node, then 

INC(u) - {c: LCA(c) = v}. 
u is child of v 

For an internal node u, INC(V) can be computed by determining the colors 
incomplete at the children of v, and checking each such color c to see if LCA(c) is v. 
By Lemma 2.4, each child can be assumed to contribute at most two colors. 
Moreover, the colors contributed by all children can be checked against LCA( .) 
simultaneously. Thus we have defined the problem of computing INC( .) as an 
expression evaluation problem, which can then be solved using the technique of 
parallel tree contraction. I 

It at any node, the number of incomplete colors turns out to exceed two, the 
processor at that node should set a flag signifying failure. After the computation 
completes, it can be determined in O(log n) time whether any processor has set a 
failure flag. If so, the result of the reduction is T,,“,,. 

If the above computation succeeds, we can proceed with extending the coloring. 
The new coloring A will assign each node v a pair of colors 

A(u)= (~1, ~2) 

according to the following cases: 

l If two colors are incomplete at v, then c1 and c2 are these colors. 
9 If only one color c is incomplete at u but c does not cover u, then c1 = c and 

c2 is a new color c”, unique to v. 
l If one color c is incomplete at u and covers u, then cl = c2 = c. 
l If no colors are incomplete at u, c1 = c2 = c,, the new color unique to v. 

If the two colors c, and c2 assigned to u are distinct (i.e., in the first two cases), 
we say that u is orientable. Note that no colors are incomplete at the root, so the 
root is not orientable. 
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DEFINITION 2. I 1. For a color c, let 

h,.(c)= ‘ 
i 

if c E INC(U) 

cr if c $ INC(u), 

where c, is the new color we associated with u in defining A( .). 

For a PQ-tree T’, if w, and wk are the leftmost and rightmost elements, respec- 
tively, of fr,.(u), let 1,.[u] = h,,(6(w,)) and rT,[v] = h,(&w,)). Let IrT.[o] = 
(lT,[u],rT,[u] ). We leave out the subscript T’ when the choice of PQ-tree is clear. 
We write (a, h) - (a’, b’) if (a, hS = {a’, h’}. W e use juxtaposition to stand for 
concatenation of tuples. 

The following corollary follows from Lemma 2.4 and the definition of A(u). 

COROLLARY 2.2. If fr( T’) satisfies every color, then for every node u, 

lr,,[u] -A(u). (3) 

We now give a lemma that gives a local characterization of color satisfaction. 

LEMMA 2.7. Assume (3) holds for every node u of T’. For each node u, the follow- 
ing two conditions are equivalent: 

(a) The frontier of u in T’ satisfies euery color. 

(b) For each (not necessarily proper) descendent v of u, tf v1 ... v, are the 
children of u in order, then every color in lr[vl ] lr[vJ . . . lr[ v,] occurs consecutively. 

Proof By induction on height of u; trivial for u = a leaf. 
(a) 3 (b) Let wi and xi be the leftmost and rightmost elements, respectively, of 

the frontier of chid vi. Since w, x, ... w,~x, is a subsequence of the frontier of u, if the 
frontier of u satisfies every color, then certainly so does w i x, . . . w,x,. Hence every 
color occurring in 6( w, ) 6(x, ) . . .6( ws) &x,~) occurs consecutively. Suppose 
c= (wi)$INC(vi). Then c must be complete at c’~, so c is not the color of any 
element of the frontier of any other child ui of v. It follows that every color occur- 
ring in 6(w,) a(~,) . ..cU.6(xi) ...@w,~) 6(x,) occurs consecutively, where we have 
simply replaced 6(wi) with c~,!. Continuing in this way, we obtain condition (b). 

(b)*(a) Suppose condrtton (b) holds, and let the frontier of u be wi ... w,. 
Suppose for a contradiction that condition (a) does hot hold. A counterexample to 
condition (a) would be a consecutive subsequence wi ... w, ... wk of the frontier of u 
such that 6(w,) = 6(w,) # S(wj). Choose such a counterexample of smallest length. If 
wi . . . wk is contained within the frontier of some child of u, that frontier does not 
satisfy 6(wi), so apply the inductive hypothesis to obtain a contradiction. Thus wj 
and wk must belong to the frontiers of distinct children ui, and uk, of u (i’<k’). 
Hence the color c= 6(w,) is incomplete at uis and uk,, so, by (3), CE /r[ui9] and 
c E lr[uk,]. By condition (b), since i’ < k’, r[ui.] = I[ukS] = c. 

Let uj. be the child of u to whose frontier ~1, belongs, so i’ d j’ Gk’. Since i’ <k’, 



EFFICIENT ALGORITHM FOR PLANARITY 205 

either i’<.j’ or j’< k’. In former case, condition (b) implies that /[u,,] = c. It 
follows that if w, is the leftmost element of the frontier of uj,, then w, ... wj is a 
smaller counterexample to condition (a) than wi ... wk, contradicting the choice of 
wi.. . wk. The case j’ < k’ is analogous. 1 

The following corollary follows from Eq. (3) and condition (b). 

COROLLARY 2.3. Suppose the frontier of T’ E T satisfies every color. Then for 
each node v and each color c, the children of v at which c is incomplete form a 
consecutive subsequence vj. . . vk, where vi + , . . . vk _ 1 are all covered by c. 

Proof By Corollary 2.2 and Lemma 2.7, condition (b) holds for T’. Let v be a 
node of T’ with children v, ... v,, and let c be a color. By (3), any child vi at which 
c is incomplete has c E Zr[v,]. By condition (b), the children vi with color c E lr[vi] 
form a consecutive subsequence vi.. . vt. Moreover, a child vi such that /[vi] # r[vJ 
must be an endpoint, i.e., either v, or vk. For suppose j < i < k and, say, /[vi] = c 
but r[vi] fc. Then r[vi] lies between two occurrences of the color c in 
lr[lv, 1 ... fr[v,], contradicting condition (b). We see that, for j< i < k, vi must have 
r[Vi] = r[ui] = c. But then vi must be covered by c, or else the frontier of vi would 
fail to satisfy the color c. 1 

Phase A is shown below. Figure 7 illustrates Phase A being applied to a single 
P-node. 

PHASE A. For each P-node v: 

Al Reorder the children of v so that for each color c, all children covered by c 
are consecutive. 

A2 For each color c, if there are at least two children covered by c (and at least 
one child not covered by c), insert a new P-node w, between these c-covered 
children and v. 

A3 At most two colors are incomplete at each child vi. For each color c, find 
the set A,. of children at which c is incomplete. There is at most one child covered 
by c. If there are more than two uncovered children in A,, set a flag signifying 
FAILURE. Otherwise, form the degree-2 graph G, whose nodes are the children of 
v, where there is an edge between vi and vi if 

l there is some color c common to INC(v,) and INC(v,), and 
l either one node, say vj, is covered by c, or there are no children covered 

by c. 

A4 Using known pointer-jumping techniques, identify the connected com- 
ponents of G,, and verify that each is a simple path-not a cycle (otherwise, 
FAILURE). Call these paths color chains. 
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AA 3 6 
FIG. 7. Applying phase A to a P-node u, with children labelled 1 through 7. For this example, the 

colors are blue, red, and ran. The coloring of nodes is as follows: d(u) = (tan, blue), d( 1) = (red, c, ), 
A(2)= (tan, cz). A(3) = (red, red), A(4) = (blue, c,,), d(5)= (red, cs>, A(6) = (red, red), 
A(7)= cc,, c,). 

A5 For each color chain x containing at least two nodes, 

Choose one of the two orientations of x arbitrarily. 
Reorder the children of v so that the nodes of 1 are consecutive, 
and insert a new Q-node between these nodes and v. 

A6 Consider the subset of u’s current children consisting of nodes at which no 
color is incomplete. Reorder the children of u to make this subset consecutive, and, 
if it is a proper subset containing at least two children, insert a new P-node v 
between v and the subset, and rename v to be a Q-node. 

Steps Al, A3, A5, and A6 can be implemented using small-integer sorting. Let T,., 
be the result of Phase A. 

LEMMA 2.8. No P-node of T, is orientable. 

Prooj A node v that was a P-node in T is a Q-node in T,, or else no color is 
incomplete at a child of v in TA, in which case INC(v) = 0, so v is not orientable. 
A node w,. created in step A2 is covered by c. For a P-node fi created in step A6, if u 
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is a child of B, then no color is incomplete at U. Hence no color is incomplete 
at 5. 1 

LEMMA 2.9. Every P-node u in TA satisfies (3) of Corollary 2.2 and condition (b) 
of Lemma 2.7. 

Proof: A node w,. is covered by c, and hence trivially satisfies both (3) and 
condition (b). A node 0 has no incomplete colors (as shown in the proof of 
Lemma 2.8), and hence trivially satisfies (3). To show that D satisfies condition (b), 
note that no colors appears in the frontier of two different children of 5 (else the 
color would be incomplete at each of the children and hence appear in two distinct 
color chains-a contradiction). 1 

LEMMA 2.10. L( TA) c L(T). 

Proof Note that for every node v of T, leaves,,(v) = leaves,(v). Moreover, 
every node v that is a Q-node in T is also a Q-node in TA, and the order of v’s 
children is the same in T and T,. It follows that 

l there is a PQ-tree T’ E T with fr(T’) =fr(TA), and 
l any equivalence transformation that may be applied to T, may also be 

applied to T’. 

This proves the lemma. 1 

LEMMA 2.11. L(TA)z Y(T, 6). 

Proof. If !P( T, 6) = 121, the lemma is trivial. Therefore, assume !P( T, 6) # 0. It is 
easy to see that if Phase A is applied to a tree T’ equivalent to T, the result TL is 
always a tree equivalent to T,. Indeed, when a new node is inserted between v and 
some of v’s children, the choice of children depends only on what colors are incom- 
plete at what nodes, and this is independent of the order of children. Thus each 
node of Ti has the same children as in TA. Moreover, since the construction of G, 
also depends only on incomplete colors, the color chains are the same, and so the 
order of children of each new Q-node is the same in Ti and TA, up to a flip. 

Let T’ be any PQ-tree E T whose frontier satisfies every color. We will prove that 
Phase A may be applied to T’, yielding a PQ-tree TJ,, without altering the frontier, 
i.e., such that fr( TJ,) = fr( T’). By the remarks above, Ti g T,. This proves that 
!P(T,h)cL(T,). 

The reader may find it helpful to refer to Fig. 7 as well as to the procedure for 
Phase A. 

Let v be a P-node of T’ with children vi ... v,. Let c be any color incomplete at 
some child. Suppose at least one child of v is covered by c; the case in which there 
are no such children is similar. By Corollary 2.3, the children covered by c are all 
consecutive. Hence in step A2, when a P-node w, is inserted between these covered 
children and v, this transformation can be carried out without altering the frontier. 
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The result of step A2 is a PQ-tree T, such that fr( T, ) = fr( T’) and each P-node that 
was also in T’ has at most one child covered by a given color. 

By Lemma 2.5, step A3 does not fail. Let (ti,, u,} be an edge of the graph G,. 
constructed in step A3 of Phase A. By construction of G,, there is some color c 
incomplete at both vi and 0,. If c covers one of these nodes, say u,, then c does not 
cover the other, v,. By Corollary 2.3, vi must be adjacent to v.~ in the ordering of u’s 
children in T, If c covers neither node, then c covers none of U’S children. Again u, 
and vj must be adjacent by Corollary 2.3. 

We have verified that two adjacent nodes of G, are adjacent children of v in T,. 
It follows that each connected component of G,, is a simple path whose nodes, in 
order, are a consecutive subsequence of children of v. (Note that this implies that 
step A4 of Phase A does not fail.) Hence in step A5, when a new Q-node is inserted 
between u and this subsequence of children, the insertion can be carried out while 
preserving the frontier. The result of step A5 is a PQ-tree T, such that for each 
P-node u and each color incomplete at a child of u, v has only one child at which 
the color is incomplete. 

Now if some color c is incomplete at v, it had better be incomplete at a leftmost 
or rightmost child of v in T, by Corollary 2.2. Each color incomplete at u occurs in 
a unique child of u. Therefore the children of v at which no color is incomplete form 
a consecutive subsequence. Hence step A6, where a new P-node Ij is inserted 
between u and these children, may be done without altering the frontier. We thus 
obtain TL such that fr( TJ,) = fr( T’). This completes the proof. 1 

Having processed the P-nodes in Phase A, we focus entirely on Q-nodes in 
Phase B. We now give an informal description of Phase B. The goal of Phase B is 
to rearrange the PQ-tree so that each node v satisfies (3) of Corollary 2.2 and 
condition (b) of Lemma 2.7. Each child vi of u has a pair d(u;) = (c,, c2) of colors. 
Assume (in accordance with Corollary 2.2) that /r[ui] - (c,, cz). Thus if u, is 
orientable (i.e., c, # c,), then u, has two distinct “orientations,” lr[vi] = (c,, cl) 
and fr[u,] = ( c2, ci >. Note that by flipping every node in the subtree rooted at vi, 
we go from one orientation of vi to the other. 

In step B3, each Q-node u “tries” to choose orientations LR[u,] for its children 
u, ...u,~ such that m[v,] . ..LR[u.] satisfies every color (cf. condition (b) of 
Lemma 2.7). If such orientations can be chosen, v stores in U[v] the resulting 
orientation of v; i.e., such that if lr[o,] =D[u,] for each child ui, then 
fr[u] = LR[u]. 

It is useful to think of m[v,] = (c,, cz) as a “request” that ri adopt the 
orientation (ci , c,), if the order of u’s children remains unchanged, and adopt the 
orientation ( c2, c, ) if u flips. 

In steps B7 through Bll, the requests are fulfilled. Each orientable node v com- 
pares the request it received (LR[u]) to its “idea” of its current orientation 
(LR[v]) and sets OPP[u] to true if there is a discrepancy. Then each node com- 
putes the parity REV[u] of the number of discrepances along the path from itself to 
the root, and flips if the number of discrepancies is odd. This ensures that if there is 
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a discrepancy between LR[u] and n[o], either u or its parent flips. Thus in the 
resulting tree T,, all discrepancies wil have been resolved. This is the meaning of 
Lemma 2.12. (“OPP” and “REV” are intended to be pneumonic for “opposite” and 
“reverse.“) 

It can be proved that fr( T,) satisfies all colors. But we can say more. In fact, flips 
may be permitted which do not reintroduce discrepancies. Thus if an orientable 
node u flips, its parent must also flip, and vice versa. This is the meaning of 
Eq. (10). 

We use the following notation in phase B and in the proof thereafter. 

DEFINITION 2.12. If (a, b) N (a’, 6’) and a #b, we write (a, b) swap(a’, 6’) 
for the predicate that is true if (a, 6) = (b’, a’) and false if (a, b) = (a’, 6’). We 
write @ to denote “exclusive-or,” and assign it lowest precedence. 

Note that 

(a, 6) swap(a”, b”) = (a, b) swap(a’, 6’) 0 (a’, 6’) swap(a”, b”) (4) 

if all three predicates are defined. Phase B is shown below. (The function h, is 
defined in Definition 2.11.) 

PHASE B. 

Bl For each Q-node u: 
B2 Let the children of u be uI ... u,. 
B3 Assign to each n[u,] either d(ui) or Am such that every color in the 

sequence LR[u, . ..m[u.] occurs consecutively, and such that 
h”( <au, I, mbl > IN 40). 

B4 If this is impossible, return FAILURE. 
B5 Otherwise, set LR[u] := h,( (L[u,], R[u,] )). 
B6 For each node u: 
B7 if u is orientable, then 

set OPP[u] := LR[u] swap LR[u] 
otherwise, set OPP[u] :=false. 

B8 For each node u: 
B9 set REVbl := Ouanancestorofv OPPbl. 

BlO For every orientable node u: 
Bll if REV[u] then flip u. 

Let TB be the result of Phase B. Note that by steps B3 and B5, if u is an orien- 
table node of T,, then each of LR[u] and m[u] is N d(u). The implementation of 
Phase B uses only elementary techniques. In particular, step B3 can be done using 
ideas from the proof of Corollary 2.3. Note also that step B9 of Phase B can be 
done using standard parallel pointer-jumping techniques. 
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DEFINITION 2.13. For a Q-node u (or an R-node, to be defined later) in 
PQ-trees T, and T,, define T, flip,, T, to be true if the order of children of u in T, is 
the reverse of the order in T,, false if the order is the same, and undefined 
otherwise. 

Note that 

T, flip, T, = T, flip, T2 0 T, flip, T, (5) 

if all three predicates are defined. 
The following lemma captures the effect of the flips performed in step Bll of 

Phase B (see Definition 2.11.) 

LEMMA 2.12. Zf v is an orientable node of T,, 

LR[v] swap LR[u] = T, flip, Ts@ T, flip,,,, T,. 

Proof: In step B7 of Phase B, we set 

OPP[v] := LR[u] swapm[u]. 

In step B9, we have 

REV[o] := @ OPP[u] 
uanancestororv 

= OPP[o] 0 0 OPP[u] 
uanancestorofpp(v) 

= OPP[u] @ REV[p(u)] 

and by step Bll, T, flip, T, = REV[u] and T, flip,,,, T, = REV[p(u)]. The lemma 
follows. 1 

The following lemma states that the frontier of a tree satisfies every color iff every 
request is fulfilled in that tree. 

LEMMA 2.13. For T;I 1 TB, fr( Ti) satisfies every color iff for every orientable 
node u, 

m[u] swap lr,[u] = Th flip,,,, T,. (6) 

Proof: Assuming that (6) holds for every orientable child v of u, and that m[u] 
is chosen in accordance with step B3 of phase B, it follows that (3) and condition 
(b) hold for U, and hence that fr,,(u) satisfies every color, by Lemma 2.7. On 
the other hand, a violation of (68 would mean a violation of either (3) or 
condition (b). 1 
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Note that it follows from the proof that if Phase B fails, there is no ordering 
generated by TA satisfying all colors. 

The following lemma states that if no discrepancies are introduced below a node 
of a tree, that node’s “idea” of its own orientation is correct. 

LEMMA 2.14. For any orientable node u, if T;I flip, T, = T;1 flip,,,, TB for each 
orientable proper descendent v of u, then LR[u] swap It-,&u] = Th flip, T,. 

Proof By induction on height of u. Trivial for leaves, which are not orientable. 
Let u be an orientable node, and assume the lemma holds for the children ui ... u, 
of u. We consider the case TL flip, T, =false. (The case in which T;I flip, TA = true 
is analogous.) In this case, ui and u,, respectively, are the leftmost and rightmost 
children of u in TL, so 

b,[u] = h,( <r,[ul], r,&u,] >) 

In step B5, LR[u] is assigned h,( (t[u,], R[u,] )). We therefore must prove that 
h,(L[u,]) = hu(lTh[ul]) and h,(R[u,]) = h,(r,&u,]). We show the former equality; 
the proof of the latter equality is analogous. 

We know LR[u,] -fr[ul]; the equality is then trivial if u, is not orientable. 
Therefore, assume u, is orientable. Our premise implies that TLflip,, 
TB @ T;1 flip, TB = false. We assumed T, flip, TA = false, so 

TL flip,, T, @ T, flip, T, = (Tj, flip,, TB@ TL flip, T,) 0 ( TA flip, TA) 

= (false) 0 (false) by Eq. (5). 

Then 

TA flip,,, T;I = T, flip,,, T;10 ( TA flip,, TB 0 T, flip, TB) 

= TA flip,, T,Q TA flip, TB 

= LR[u,] swap m[u,] by Lemma 2.12. 

By the inductive hypothesis, 

(7) 

(8) 

LR[u,] swap h,[u,] = T, flip,, T;I. (9) 

By combining (7) and (9), we obtain m[u,] =b,[u,] which implies the desired 
equality. a 

Now we give a locally enforceable condition for a tree equivalent to T, to have a 
frontier satisfying every color. 

LEMMA 2.15. For Tiz TB, the frontier of Ti satisfies every color iff for every 
orientable node 

TA flip, TB = T; flip,,,, TB. (10) 

571/37/z-7 
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Proof: By Lemma 2.13, the frontier of TA satisfies every color iff (6) holds 
for every orientable node u of TL. We use (4) and (5) to combine (6) with the 
conclusion of Lemma 2.12, obtaining 

LR[v] swap Zr,[v] = T, flip, TB@ TB flip,(,, T;1. (11) 

Thus the frontier of TL satisfies every color iff (11) holds for every orientable node 
v. It remains to show that (11) holds for every orientable node u iff (10) holds for 
every orientable node v. 

(e) Assume that (10) holds for every orientable node u. Let v be an orientable 
node. By Lemma 2.14, 

LR[v] swap lrTi[v] = T;I flip, TA 

= TL flip, T, @ T, flip, TA by (5) 

= TA flip,,,, T, @ T, flip, T, by assumption. 

We have proved (11) holds for any orientable node. 
(a) Assume that (11) holds for every orientable node v. We prove that (10) 

holds for every orientable v, by induction on height of v. The basis is trivial because 
leaves are not orientable. Assume (10) holds for all orientable proper descendents of 
v. By Lemma 2.14, 

LR[v] swapfr,;l[v] = TAflip, T,. 

We use (11) to substitute for the left-hand side, yielding 

TA flip, TA = TA flip, T,@ TB flip,(,, T;1 

which implies ( 10). 1 

In order to enforce (lo), it is useful to invent a new kind of node, an R-node, 
which is like a Q-node, only more restrictive. A “legal” set of equivalence transfor- 
mations on a PQ-tree with R-nodes is a set which flips each R-node if and only if it 
flips the parent of the R-node. In this sense, an R-node “follows the lead” of its 
parent node. (An R-node is not permitted to be the child of a P-node, only of a 
Q-node or another R-node.) 

Another way to view an R-node is as a notational device for signifying that the 
R-node’s children should be inserted into the sequence of its parent’s children. An 
R-node may be eliminated and its children reattached to its parent without disturb- 
ing their order; the resulting tree generates exactly the same set of orderings. This is 
illustrated in Fig. 8, where we signify that a node is an R-node by using two lines 
to connect it to its parent. R-nodes are merely a notational and computational 
convenience-they do not enhance the expressibility of PQ-trees. 
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FIG. 8. Eliminating an R-node by reattaching its children to its parent without disturbing their 
order. 

In order to ensure that (10) holds for every orientable node u, we merely carry 
out phase C: 

PHASE C. For each orientable node u, rename o to be an R-node. 

Let Tc be the result of phase C. 

LEMMA 2.16. L( T,) = Y( T,, 6). 

Proof: Suppose TAz T,. Consider the set of equivalence transformations used 
to obtain TA from T,. If this set of transformations may be legally applied to T,, 
the result would be a PQ-tree T& equivalent to Tc and having the same frontier as 
Th, so fr( Th) E L(T,). Otherwise, fr( TA) # L( T,). The set of transformations is 
applicable to Tc iff an R-node is flipped whenever its parent is flipped; i.e., 
TL flip, T, = Th flip,,,, T, for each R-node v in T,. The R-nodes of T, are the 
orientable nodes, so we have 

fr(TL)cUT,) 

iff for each orientable node v, 

T;1 flip, T, = Ti flip,,,, T,. 

In view of Lemma 2.15, this completes the proof. fl 

It remains to obtain a PQ-tree p such that L(p) = L( T,) and f has no R-nodes. 
We can accomplish this in O(log n) time using n processors as follows: First com- 
pute a preorder numbering of T, (using the techniques in [19]). Now, by use of 
parallel pointer-jumping techniques, each child u of an R-node can determine its 
lowest Q-node ancestor. This will be u’s new parent. Each Q-node can use the 
preorder numbering to sort all its new children to obtain the proper order for them. 
The resulting tree f generates the same orderings as T,, but has no R-nodes. 
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This completes the description of the disjoint-reduction algorithm and the proof 
of Theorem 2.1. 

2.3. Intersection 
In this subsection, we give an algorithm for intersecting a pair of PQ-trees. For 

each node v of a PQ-tree T over a ground set S, we define a collection of sets, called 
the constraint sets of v (in T), as follows: 

l One constraint set is leaves(v). 
l If v has children vi, . . . . v, in order, and Ai = leaves(v,), then the sets 

A , , . . . . A, (12) 

are also constraint set of v. 
l Finally, if v is a Q-node, the sets 

A, “A,, A,uA,, . ..> AzL~,z,-1 uAys,z, (13) 

and the sets 

are also constraint sets of v. 

Remark 1. The sets (12) are all disjoint, as are the sets (13) and the sets (14). 
Hence the collection of constraint sets of v can be devided into four subcollections, 
where each subcollection consists of disjoint sets. 

Remark 2. If TO is any subtree of T (i.e., any connected subgraph of T), v is an 
internal node of TO, and A, is a constraint set of v in TO, then the corresponding 
constraint set of u in T is A = UW, AO leaves,(w). 

LEMMA 2.17. For a PQ-tree T over the groud set S, an ordering A of S is in L(T) 
iff A satisfies every constraint set of every node of T. 

Proof: Note that the constraint sets of v in Tare the same as the constraint sets 
of v in any T’ r T, and for any T’ z T, fr( T’) satisfies every constraint set of every 
node. It is easy to show by induction on the height of v that if an ordering T of 
leaves(u) satisfies all the constraint sets of u and all its descendents, then T is the 
frontier of some PQ-tree equivalent to the subtree of T rooted at v. l 

COROLLARY 2.4. Let T and T’ be two PQ-trees over the same ground set. Then 

L(T)n Y(T’)= Y(T’, {C,, . . . . C,}), 

where C, , . . . . C, are all the constraint sets of all of the nodes of T. 
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Corollary 2.4 suggests an algorithm for finding the intersection of T with T’: 
reduce T’ with respect to all the constraint sets of all the nodes of T. While this 
approach would work, it would require many calls to MREDUCE, which expects 
its sets to be disjoint. Instead, we achieve the same effect using a decomposition of 
T’; we invoke MREDUCE in parallel on many different parts of T’. We then make 
use of the following lemma: 

LEMMA 2.18. Let T be a PQ-tree, and let TO be a tree obtained from T by 
deleting all the proper descendents of some nodes of T. The ground set of TO consists 
of leaves of TO, which are nodes (not necessarily leaves) of T. Suppose we reduce TO 
with respect to a subset A,, of its ground set. The effect on T is the same as tf we had 
reduced T with respect to the set A = UveAo leaves,(v). 

Proof Denote by p the tree T after the subtree T,, has been reduced with 
respect to A,,. Also, let p0 be the subtree TO after reduction. Let p’ be any tree 
equivalent to ?, and let p; be the corresponding subtree. For each leaf v of f;, let 
&=frf.(o). If fr(f;)=v, . ..vk. then fr(f’)=J,, . ..I.. By definition of A, if VIE AO, 
then 1, consists entirely of elements of A. It follows that vi ... vk satisfies A, iff 
1 ... A,, satisfies A. The lemma then follows from the correctness of the reduction 
p:ocedure. 1 

To ensure that in our intersection algorithm, only a few parallel invocations are 
necessary, we use a well-known technique of parallel algorithm design: a tree 
separator. 

Fix a tree T of n nodes. A node v of T with s children determines a separation of 
T into s + 1 subtrees: let T(,,, . . . . T,,, be the subtrees of T rooted at the children of u, 
and let T(,,, be the subtree obtained from T by deleting T(,,, . . . . T,,,. We say v is a 
good separator of T if each subtree TCO,, . . . . TCS, has no more than n/2 nodes. It is 
well known that every tree with at least two nodes has a good separator. To see 
this, let size(v) be the number of descendents of v, for each node v of T. Since 
size(root of T) = n and size(any leaf of T) = 1, there must be some node v of 
maximal depth such that size(v) Z 1 + (n/2). Then v is a good separator. Using, e.g., 
the Euler tour technique of [ 191, size( .) can be computed in O(log n) time using n 
processors. We have, therefore, 

LEMMA 2.19. A good separator for a tree with n > 2 nodes can be found in 
O(log n) time using n processors. 

Finally, we call upon another technique that is specific to PQ-trees. Once we 
have reduced a PQ-tree with respect to a set E, Lemma 2.1 implies that E is 
contiguous in T. Recall from Definition 2.4 that this means that 

9 either E = leaves(lca(E)), if Ica(E) is a P-node or a leaf, 
l or else there is a consecutive subsequence up . . v, of the children u, . . . v, of 

lea(E) such that E = U; leaves(v,). 
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We need to separate the portion of the tree pertinent to E from the rest of the tree. 
We call this segregation. 

DEFINITION 2.14. We say E is segregated in T if E = leaves(lca J E)). 

If E is contiguous in T, we can modify T, obtaining T’, so that E is segregated in 
T’ and L( T’) = L( 7’). Namely, if E is not already segregated, then v = lca.(E) is a 
Q-node, by contiguity. Insert an R-node z between the children up .. . vy and v. 
(R-nodes are defined at the end of Subsection 2.2.) In the resulting tree T’, 
z = lca.(E) and leaves(z) = U; leaves(vi) = E. Moreover, it follows from the 
definition of the R-node that L(T’)= L(T). We can easily carry out this 
modification or undo it in O(log n) time and n processors, where n is the number of 
nodes in T. In fact, if E,, . . . . Ek are disjoint subsets of the ground set of T, all 
contiguous in T, we can segregate T with respect to all these sets within the same 
resource bounds. 

The algorithm for PQ-tree intersection follows. In the way we describe it, the 
algorithm modifies T’ to be the intersection. In applying the algorithm, it may be 
desirable to copy T’ first and work with this copy, so the original T’ remains 
available. Also, the intersection tree resulting may have R-nodes, but these can be 
eliminated as described at the end of Subsection 2.2. 

INTERSECT( T, T’). 

11 If T has only one node, return. 
12 Find a good separator v of T, with children v, ... v,. Using at most four 

invocations of MREDUCE (in accordance with Remark 1 above), reduce T’ with 
respect to all the constraint sets of v. 

13 Segregate T’ with respect to leaves,(v), and let v’=lca.(leaves~u)). 
14 For i = 1, . . . . s, segregate T’ with respect to leaves.(v,), and let 

v; = lca,(leaves.(u,)). 
15 Let TtO,, . . . . Tfs, be the subtrees of T determined by u, as defined above. For 

each subtree T(,,, there is a corresponding subtree T/ of T’: for i= 1, . . . . s, let T/ be 
the subtree of T’ rooted at v;, and let TA be the subtree of T’ obtained by deleting 
all proper descendents of v’. Thus v’ is a leaf of Td, just as u is a leaf of TtO,. If 
we identify v with v’, then corresponding subtrees have identical ground sets. 
Recursively intersect corresponding subtrees of T and T’. 

To prove the correctness of the intersection procedure, a simple induction on the 
number of nodes of T shows that the effect of INTERSECT(T, T’) is that of reduc- 
ing T’ with respect to all the constraint sets of all the nodes of T. (The correctness 
then follows from Corollary 2.4.) The basis, where T has only one node, is trivial. 
The induction step follows from Remark 2 and Lemma 2.18. 

The time for each recursive call is dominated by the time for reduction, which is 
O(log n) if n processors are used, where n is the number of nodes. The recursive 
calls on the subtrees may be done in parallel; the node sets of the various subtrees 



EFFICIENT ALGORITHM FOR PLANARITY 217 

are disjoint, so we may again assign one processor per node. Because a good 
separator is used in step 12, the recursion depth 6 log n. Hence the total time is 
O(log2 n ). 

This concludes our description of the intersection algorithm and the proof of 
Theorem 2.3. 1 

2.4. Representation of Cycles with PQ-Trees 

In this section, we prove lemmas 2.2 and 2.3, which are reproduced below: 

LEMMA 2.2. Let T be a PQ-tree whose ground set is the disjoint union of non- 
empty sets A, B, C. Suppose that each of these sets is contiguous in T. Then T may be 
modified to be a PQ-tree T’ in which A u B and B u C are contiguous and such that 
CYC( T’) = CYC( T). 

Lemma 2.2 allows us to place a PQ-tree T in a special form, if T is being used to 
represent cycles. 

LEMMA 2.3. Suppose A is a proper subset of the ground set of T, and is con- 
tiguous in T. Zf Al E A, then for each A E L(T), I satisfies A, iff cyc(il) satisfies A,. 

Lemma 2.3 allows us to reduce a PQ-tree T used for representing cycles. For 
suppose A,, . . . . Ak are disjoint subsets of a proper subset A of the ground set of T, 
and A is contiguous in T. It follows from Lemma 2.3 that 

cyc(‘J’Y(T, (A,, . ..> Ak})) = (0 E CYC( T): (T satisfies A,, . . . . Ak} 

and the left-hand side is just CYC(f), where f is the PQ-tree computed by 
MREDUCE. 

Proof of Lemma 2.3. Certainly if A = w1 . . . w, satisfies Al then cyc(l2) satisfies 
A,. For the converse, suppose cyc(A) satisfies A,. Suppose both endpoints of A were 
in A. By Lemma 2.1, since A is contiguous, I satisfies A, so all the elements of 1 are 
in A, contradicting the fact that A is a proper subset of the ground set of T. Thus at 
least one endpoint of A, say the left endpoint wl , does not belong to A. It follows 
that the consecutive subsequence of cyc(A) consisting of the elements of Al is con- 
tained entirely in w2 . . . w,. This prove the lemma. a 

We next proceed with the proof of Lemma 2.2. We begin with a simple 
observation. 

Observation. If vi . . . v, are some children of a node r, and leaves(r) = 
U; leaves(v,), then r has no other children. 

LEMMA 2.20. Let T be a PQ-tree with root r having children v, . . . v, in order. Let 
T, be the same as T except that the order of r’s children has been cyclically shifted; 
i.e., the order is vi...v,vI ...v~-~. Then CYC(T,)=CYC(T). 

Lemma 2.20 follows directly from our redundant representation of cycles. 
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LEMMA 2.21. Let T be a PQ-tree with root r having exactly two children v, and 
v2, both Q-nodes. Let T, be the same as T except that one child, say v2, has been 
renamed an R-node. Then CYC( T, ) = CYC( T). 

(R-nodes are defined at the end of Subsection 2.2.) 

Proof: Clearly CYC( T,) E CYC( T). To prove the reverse containment, let T’ be 
any PQ-tree equivalent to T; we show that cycfr(T)ECYC( T,). Obtain T” from T’ 
as follows: if T’ flip”, T= T’ flip, T then let T” = T’; otherwise, obtain T” from 
T’ by flipping the root r. We then have T” flip”, T= T” flip, T. This means that 
the equivalence transformations used to obtain T” from T may be applied to T, 
while respecting the R-node in T,. Hence fr(T”) E L( T,), so certainly 
cycfr( T”) E CYC( T,). It remains to show that cycfr( T”) = cycfr( T’). Let 
1, =frr.(v,) and let 1, = fr,.(v,). Then fr(T’) is either A,& or &A,, so fr(T”) is 
either 1,& or &A,. In either case, cycfr( T”) = cyc(l,&) = cycfr( T’). 1 

Proof of Lemma 2.2. Segregate A, B, and C in T, and let a = lea(A), b = lea(B), 
and c = lea(C). We first want to make a, b, and c all children of the root r. Assume 
they are not already; then at least two of these nodes, say b and c, are descendents 
of a single node v which is a child of r. Using the observation above and the fact 
that every node has at least two children, one can verify that r has exactly two 
children, a and v, and v has exactly two children, b and c. Carry out the following 
three modifications on T: 

1. If a is an R-node and v is not, rename a to be a Q-node, obtaining T,. 

2. Rename v to be an R-node, obtaining T2. 

3. Eliminate v and attach its children b and c to the root, obtaining T,. 

By Lemma 2.21, CYC(T,)=CYC(T) and CYC(T,)=CYC(T,). Finally, CYC(T,)= 
CYC( T2) by definition of an R-node (defined at the end of Subsection 2.2). 

In T,, the root I has exactly three children a, b, and c, in some order. Using 
Lemma 2.20, we can obtain T, such that CYC(T,) = CYC( T3) and the order of 
children is either a, 6, c or c, 6, a. Hence T4 satisfies the lemma. 1 

The R-nodes can be eliminated as in Fig. 8. 

2.5. Join 

In this subsection, we show how to compute the join of two PQ-trees. The reader 
is referred to Subsection 2.1 for notation and definitions. 

To review from Subsection 2.3, we say a subset E of the ground set of T is 
segregated in T if E = leaves(lca.(E)). If E is contiguous (Definition 2.4) in T but 
not segregated, we can introduce an R-node into T, obtaining T’, so that E is 
segregated in T’, and L( T’) = L(T). 
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If E is segregated in T, we denote by T 1 E the subtree of T rooted at IcadE). 
Note that T 1 E is a PQ-tree whose ground set is E.’ 

We use the following notation: For a node z, we let CYC,,,(T) denote the set 

{cycfr( T’): T’ 2 T and the order of children of z is the same in T’ and T}. 

In the case in which z is a leaf, the last clause in the definition of CYC,,,( T) is 
trivially satisfied, so CYC,,,( T) = CYC( T). 

If z is a Q-node or an R-node, we let CYCm,,(T) denote the set 

{ cycfr( T’): T’ g T and T’ flip, T = true}. 

Note that if z is a Q-node or an R-node, 

CYC( T) = CYC~,,( T) U CYCnipz( T). 

In this section, z will typically be lca.(E). 
Define the one-place function splice( -) on pairs (a, /3) of linear orderings by 

splice( (CI, /?)) = cyc(a/?). (We choose to define splice on pairs, rather than make it a 
two-place function, for reasons that will be apparent later.) For example, if (T is a 
cycle of the disjoint union of non-empty sets E and D, and cr satisfies E (and hence 
D as well), 0 = splice( (a 1 D, B 1 E)). More specifically, if T is a PQ-tree whose 
ground set is the disjoint union of E and D, and 1eavesAz) = E, then fr( T) has the 
form afly, where /l = frr(z), and hence cycfr( T) e splice( (ya, 8)). 

LEMMA 2.22. Suppose E is contiguous and segregated in PQ-trees T and T*, and 
T* 1 E is identical to T I E. Then cycfr( T*) ( E = cycfr( T) ( E. 

Proof: For any PQ-tree T in which E is segregated, cycfr(T) I E = 
frr(lcar(E)). 1 

DEFINITION 2.15. Suppose the ground set of T is the disjoint union of non- 
empty sets D and E, and E is contiguous in T. We say E is rigid in T if the 
following two conditions are satisfied: 

1. if E is segregated, then lea(E) is an R-node, and 
2. if D is segregated, then lea(D) is an R-node. 

Otherwise, if E is not rigid, we say E is hinged in T. 

If 1 holds and 2 does not, we can first segregate E if it is not already segregated, 
and then use Lemma 2.21 to modify T so that 1 no longer holds. We therefore make 
the following assumption in this subsection: 

5 T 1 E is essentially what Booth and Lueker called the pertinent subfree of T, in [3], although they 
did not consider the notion of segregation. 
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Assumption. If E is hinged in T, then E is segregated and lca.(E) is not an 
R-node. 

Given a PQ-tree T with n nodes, it is easy to find lca.(E) and determine whether 
E is rigid in T in O(log n) time using n processors. The significance of the term 
“hinged” arises from the following corollary. 

COROLLARY 2.5. If E is contiguous and hinged in T, then 

CYC( T) = splice(CYC( T) 1 D x CYC( T) 1 E). 

In other words, for any CI, BE CYC( T), there is a y E CYC( T) such that y ) D = tl ( D 
andy 1 E=/?I E. 

Proof: For any T,, TB g T, construct T, from T, by reordering the children of 
each node u of T, 1 E as they are ordered in TB. Then T, 1 E is identical to T, I E, 
so cycfr(T,) ) E = cycfr(Tp) 1 E by Lemma 2.22. Also, for each node u whose 
children were reordered, leaves(u) contains no elements of D, so cycfr(T,) I D = 
cycfr( T,) I D. Finally, because E is hinged in T, we assume that z = lea.(E) is not an 
R-node, so T, g T. 1 

Corollary 2.5 shows that when T is E-hinged, there is independence between the 
induced ordering on E and the induced ordering on D: each may be chosen 
independently of the other. In the case in which E is rigid in T, there is still a partial 
independence: each may be chosen almost independently of the other (viz., up to a 
reversal). 

COROLLARY 2.6. Zf E is contiguous and rigid in T, and z = lca.(E), then 

CYC,,=(T) = splice(CYC,,,( T) ) D x CYC& T) I E (15) 

CYCnipz( T) = splice(CYCsi,,( T) I D X CYCn,,,( T) I E. (16) 

In particular, for any CI, /? E CYC( T), there is a y E CYC( T) such that y I D = c( I D 
and y I E is either /I I E or (b I E)R. 

Proof: The proof resembles that of Corollary 2.5. Choose PQ-trees T,, T, z T 
such that the order of children of z in T, and Ts is the same as the order in T. 
Obtain T, from T, as in the proof of Corollary 2.5; we need only note that this does 
not change the order of children of z. This ensures that T, flip, T, = false = 
T,, flip,,,, T,, where p(z) is the parent of z, so the R-node z is respected; thus T, g T. 
This proves (15); the proof of (16) is analogous. 1 

The next two lemmas show that the partial independence of Corollary 2.6 is the 
best we can prove, since cycfr(T) 1 E depend on the orientation of the node z and 
cycfr(T) I D does as well if E is rigid in T. 

DEFINITION 2.16. Suppose E is segregated in T, and z = Ica AE). We define T’s 
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partition of E to be the partition {leaves(v,): vi is a child of z}. The order of 
children of z in T provides a natural ordering among the blocks of this partition: 
say the children of z are ui, . . . . O, in order. If a E leaves( oi) and b E leaves( vi), we say 
a precedes b in the partition ordering if i <j, and a follows b if i > j. 

LEMMA 2.23. Suppose E is segregated in T, and z = Icar. is a Q-node or an 
R-node. Suppose a precedes b in T’s partition ordering of E. Then 

CYC,,,( T) ( E = {A E CYC( T) I E : a precedes b in the ordering A}. (17) 

Proof Let the children of z in T be ul, . . . . u, in order. Suppose T’g T, and let 
&=fr,(u,) for i= 1, . . . . s. Then cycfr(T’) 1 E=fr,.(z) is either 1, ...1, or &...A1, 
depending on whether T’ flip, T is false or true. Since a precedes b in 1, . . .A, and 
follows b in 1, . . . i, , this proves that T’ flip, T= false iff a precedes b in 
cycfr(T’) I E. 1 

Using Lemma 2.23, we can test if a given I E CYC( T) ) E is in CYC,,,( T) ( E; if a 
and b are in different blocks of T’s partition of E, they serve as a “test pair” for E. 
Note that unless z is a leaf, it has at least two children, so there exists such a test 
pair. 

LEMMA 2.24. Suppose E is segregated and rigid in T, and z =lca(E). Then 
CYC,xz(T) I D n CYC,ipz( T) I D = 0. 

Proof By definition of rigidity, z is an R-node, and hence has a parent p(z), 
which in turn must have at least one other child u. Assume without loss of 
generality that u is immediately to the left of z as a child of p(z) in T. If leaves(u) is 
strictly contained in D, we choose x E leaves(u) and y E D -leaves(u). If 
leaves(u) = D, then p(z) is the root of T. Moreover, condition 2 of the definition of 
rigidity implies that u is an R-node; we choose x to be a leaf of the rightmost child 
of u, and choose y to be a leaf of some other child of u. 

Then for any PQ-tree T’ 2 T such that T’ flip, T= false, we have T’ flip,,,, T= 
false as well, because z is an R-node, and additionally T’ flip,, T = false if u is an 
R-node. Then fr(T’) has the form a/??, where a contains x, fl consists of the 
elements of E, and either y precedes x in a or y is in y. In either case, y precedes x 
in cycfr(T’) ) D. Similarly, we can bhow that if T” z T but T” flip, T= true, 
y follows x in cycfr(T”) ) D, so cycfr(T’) 1 D #cycfr(T”) 1 D. This proves the 
lemma. 1 

In the above proof, x and y serve as a “test pair” for D in the same way that a 
and b served as a “test pair” for E in the proof of Lemma 2.23. 

We now make use of the new terminology and associated lemmas in showing 
how to compute the join of TO with T,, . . . . Tk. We assume for the following 
procedure that TO, . . . . Tk are PQ-trees over the ground sets SO, . . . . SR respectively, 
and that Si, . . . . S, are disjoint. We also assume that for j= 1, . . . . k, Ej = S,, n Sj is 
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non-empty and contiguous in T, and T,, and Di = S, - E, is also non-empty and 
contiguous in Tj. 

We first describe a method for computing the join of TO with T,, . . . . Tk in 
@log n) time using n processors (where n = C,” [Sit), assuming that the join is not 
the null tree. This is called the “provisional” join, because it is the correct join 
provided the correct join is not Tnu,,. Then we show how to verify the correctness of 
the provisional join-that is, determine whether the correct join is T,,,,,-in 
O(log* m) time using m processors, where m = C: ) Ejl. For this, we use the @-tree 
intersection algorithm of Subsection 2.3. 

JOIN. For j= 1, . . . . k in parallel: 

Jl Segregate TO and Tj with respect to Ej. If lEjl = 1, let pj be Tj and skip to 
step 54. 

52 Find two elements a, and bj of Ej that lie in different blocks of T,‘s partition 
of Ei and different blocks of Tj’s partition of E,. Assume that aj precedes bj in the 
frontier of TO; otherwise, swap aj and bj 

53 Obtain the PQ-tree Tj from T, as follows: if bj precedes aj in the frontier of 
Tj, then let Tj be Tj. Otherwise (if bj follows aj), let Tj be the tree obtained from Tj 
by flipping every node. This ensures that bj precedes aj in the frontier of fj. 

54 Segregate Dj in Tj. Replace the subtree T,, ( Ej of T,, by Tj I Dj, letting z be 
the root of fj I Dj in the resulting tree. If Ej is rigid in both TO and Tj, then rename 
z to be an R-node. If Ej is hinged in TO but z is an R-node, rename it to be a 
Q-node. Let T, be the resulting PQ-tree. 

Before giving the proof of correctness of the join procedure, we discuss the 
implementation of step 52. 

LEMMA 2.25. Let z, p be two partitions of E, and assume that each is non-trivial 
(i.e., has at least two blocks). Then there exist two elements a, and b, of E that are in 
different blocks of 71 and different blocks of p. 

Proof First let a be any element of E, it belongs to some block B, of 71 and C, 
of p. If there is an element b E E that lies outside of both B, and C,, then we may 
let a, = a and b, = b, satisfying the lemma. Otherwise, every element of E - B, lies 
in C,. Then every block of n: other than B, is contained in Ci. Let B, be such a 
block, and let a, E B,. Let 6, be any element of E-C,; then a, and b, satisfy the 
lemma. 1 

Note that the proof of Lemma 2.25 may be easily implemented in parallel to find 
a suitable pair a,, b,, in O(log [El) time using IEl processors. Hence each step in 
the JOIN procedure takes at most O(log n) time using n processors, where 
n=xi IS,l. 

The verification of the previsional join is as follows. For j= 1, . . . . k in parallel, 
assuming TO and T, are segregated with respect to Ej, we intersect TO I E, with 
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Tj 1 Ej. If the result of any of the intersections is a null tree, the correct join is the 
null tree. Otherwise, the provisional join is the correct join. 

We commence the proof of correctness of the join procedure. For the sake of sim- 
plified notation, we will assume that k = 1. However, the proof directly generalizes 
to k 2 1. We let E denote E, = So n S,, and let D, denote So - E. Note that D, is 
contiguous and segregated in T, , the tree resulting from 54, because lea,+ (Di) = z. 

For i = 0, 1, and any linear ordering I of E, let 

.4:=(aiIDi:oi~CYC(Ti)andojI E=A}. 

The following lemma states that the join procedure is correct. 

LEMMA 2.26. Let T, be the tree resulting from step 54. Then either 

or a null tree arises in the intersection performed in the verification step, in which case 
the right-hand side of (18) is empty. 

We start by proving the following claim: 

CLAIM. The join is null (the right-hand side of (18) is empty) iff a null tree is the 
result of the intersection performed in the verification step. 

Proof For the right-hand side of (18) to be non-empty, there must be some 
ordering I of E such that Ai and AtR are non-empty. Suppose there were such a il. 
Then there exist Td E T,, and T; z T, such that cycfr( TA) 1 E = 1= (cycfr( T;))R. If 
we let T;’ be the tree obtained from T; by flipping every node, it follows that 
fr( Ti I E) = A = fr( T;’ I E), proving that the intersection of T,, I E, with Tj I E, is not 
the null tree. 

Next suppose that the intersection yields a non-null tree with frontier 1. Then 
there exist To* z TO I E and T: z T, I E such that fr(T,*) = I = (fr( T:))R. If 
.q, = lca,,(E) is an R-node, we assume that T,* flip,, TO I E = false (for otherwise 
consider AR). Obtain a tree Td from T,, by ordering the children of each node of 
Td I E as these children are ordered in TO *. Then TA g TO; this holds even if z0 is an 
R-node, because in this case z,, did not have to be flipped to obtain T,-J from TO. We 
can similarly obtain T,’ from T, (although in this case if z1 = lca.,(E) is an R-node, 
z,‘s parent may have to be flipped to ensure T,‘g T,). We then have 
cycfr(T6) I D,,E& and cycfr(Ti) ( D, E AiR, showing that the right-hand side of 
(18) is not empty. 1 

We now prove the correctness of the provisional join procedure, assuming that 
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the join is not empty. First suppose that E is hinged in T,. Then by Corollary 2.5, 
Ai is independent of II and is always equal to CYC( T,) 1 D,, so 

u A; x AiR = CYC( T,,) 1 D, x u AiR 
2. 

=CYC(T,), D,xiYC(T,), D,. 

Similarly if E is hinged in T,. But if E is hinged in either T, or T,, then D, is 
hinged in T,, the tree resulting from step 54. Therefore, by Corollary 2.5, 

CYC( T,) = splice(CYC( To) 1 D, x CYC( T,) 1 0,) 

and we are done. 
Now suppose that E is rigid in both To and T,. Let z,, = lca,,(E), and let 

zi = lca.,(E). In this case, z0 and zi are R-nodes. Also, D, is rigid in the tree T, . 
By Corollary 2.6, 

CYGJT+) = spWCWdW I 4 x CYG&‘d I 8) 
CYC,ipz(T+ I= WNCYGipz,,(To) I Do X CYCnipz,( f,) I D, 1. 

If we could show that 

u A%@= (CYGixz,(To) I WCWix.,(f’,) ID,) 

” (CYC,ipzo(To) I DO X CYCnipzl( PI) I D, ), (19) 

we would thereby show that CYC( T, ) = splice( Un Ai x AiR), and would be done. 
To prove (19), we start by showing that the left-hand side of (19) contains the 

right-hand side. 
Let 1 be any ordering of E in CYC( To) ( En CYC( T,) 1 E such that a, precedes 

bi in il. (Since CYC( To) 1 En CYC( T1 ) 1 E is closed under reversal and we assume 
it is non-empty, there exists such a 1.) By Lemma 2.23, 1~ CYC,,,,(T,,) 1 E. By 
Corollary 2.6, CYC,,,( T,,) = splice(CYC,,,( To) I D, x CYCfi,,,( To) 1 E). Hence for 
any c1 E CYC,,,,( To) I D,, splice(a, A) E CYC,,,( T,,), proving that a E A;. This 
shows CYCeXZO( T,,) I D, c A$. Similarly AR E CYCfi,,,( pi) I E, so we have 

CYGxz,(To) I D,xCKi,.,(~‘,) I D, M$#. 

An analogous argument shows that CYC,ipzo( 7’,) 1 Do x CYC”ip,,( If,) I DI c 
AiR x A;. 

It remains to prove that the right-hand side of (19) contains the left-hand side. 
Every element of U,A$ x AtR is of the form (cr,, I Do, c, 1 D, ), where o,, E CYC( To), 
rri E CYC( T,), and do I E = A= (oi I E)R for some ordering 1 of E. 

Suppose a, precedes b, in 2. Then ~,ECYC,,,,(T,) and g1 ECYC~~~,(~~) by 
Lemma 2.23. On the other hand, if a, follows b, in 1, then oOe CYC,i,,,( To) and 
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cr, E CYCfli,,,( pi). This proves that the right-hand side of (19) contains the left- 
hand side, and we are done. This completes the proof of correctness of the join 
procedure. 1 

The following lemma is used in finding a planar embedding, once the planarity 
algorithm of Section 3 succeeds. 

LEMMA 2.27. Given o E CYC( T, ), we can use the intersections trees computed in 
the verification step to choose oi E CYC( Ti) for i = 0, . . . . k such that o = o0 join o1 
join . . . join ok and o0 1 Ei = (ai 1 Ei)R. 

ProojI As before, assume for simplicity that k = 1. We have oi 1 Di = g 1 D, by 
definition of c = u0 join (pi. We need to choose an ordering err 1 E, = (a, I E,)R such 
that oi E CYC( T,) and crO E CYC( T,). The frontier of the intersection tree is a linear 
ordering 1 I of E, such that Al---and hence also A:-are members of 
CYC( To) ( E, n CYC( T,) 1 E,. Thus 1, and ,?p are two candidates for the desired 
ordering of E, . 

If E, is hinged in both T,, and T,, the choice between I, and np is arbitrary by 
Corollary 2.5-either choice will work. Suppose E, is rigid in To or T,. (If both, we 
need only work from one; the correctness of T, ensures that the result will be con- 
sistent with the other.) Say E, is rigid in T,. To determine if 1, belongs to 
CYC,,,,( fl) I E,, we can use the test pair a,, b, as in Lemma 2.23. To determine if 
o1 I D, belongs to CYC,,,,(f,) I D, or to CYC”ip,,(Fi) I D;, we use another test 
pair as in the proof of Lemma 2.24. If 1, ECYC,,,,(T,) I E, and cri I DJ E 
CYC,,,,(~,) 1 D,, then we let o,=splice((a, I Dl,&)) so ~,ECYC,,,,(T,). 
Similarly if A, ECYC&,( AL) I E, and o1 I D, ECYC~~~,,(~~) I D,. Otherwise, we let 
o1 = splice( (a, I D,, if)). In either case, co is then determined by the requirement 
that (TV I E, = (ol I E,)R. m 

We conclude this subsection with a technical lemma that is used in the planarity 
algorithm. 

LEMMA 2.28. Suppose that T, is the join of T, with T,, . . . . Tk, obtained using the 
procedure of this subsection. Let Ej be the intersection of the ground set So of T, with 
the ground set Sj of Tj, for j= 1, . . . . k: 

( 1) Suppose a proper subset A of So is contiguous in To, and each Ej c A. Then 
(A - U’; Ej) u Uf (Sj- Ej) is contiguous in T,. 

(2) Suppose a subset Aj of Sj- Ej is contiguous in Tj. Then Aj is contiguous 
in T,. 

Proox The lemma follows from the procedure. To prove (1 ), assume for sim- 
plicity that A is segregated in T,,, and let y = lca,,(A). Since Ejc A, icar, is a 
descendent of y. In carrying out the join, we substitute Tj I (Sj- Ej) for T,, I Ej, so 
lea T+ ( Sj - Ej) becomes a descendent of y, and leaves T+ ( y) = (A - lJ: Ej) u 
U:(S,-Ej)* 
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To prove (2), assume for simplicity that A, is segregated in T,, and let 
y= lca,,(Aj). Then y is a node in Tj 1 (S,- E,), and therefore y and its subtree 
appear in T, . Thus leaves,+ ( y ) = A,. i 

3. PLANARITY TESTING 

3.1. Preliminaries 

The graphs we discuss in this section will typically be “multigraphs,” i.e., there 
may be many edges sharing the same endpoints. Moreover, we need to manipulate 
these graphs in ways that preserve the identity of edges while changing their 
endpoints. We therefore use a non-standard definition of a graph, in which an edge 
is not determined by its endpoints: 

DEFINITION 3.1. A graph G is a pair G = (p, E), where E = {e, , . . . . e,} is a 
finite set, the set of edges of G, and p is a partition of the set E x (0, 1 > of darts. 
Each block u of the partition p is a node; an edges e is incident to a node v~p if u 
contains a dart of e, i.e. if (e, 0) E u or (e, 1) E V. Paths, cycles, connectivity, etc. 
can be defined in terms of edge-node incidence. However, because a block of a par- 
tition is by definition non-empty, our definition of a graph disallows isolated points. 
We therefore assume in this section that a graph has no isolated points. 

For any edge e E E and 6 E (0, 1 }, the pair (e, S ) is a dart of e; the other dart is 
then (e, 1-S). We define the permutation other: (Ex (0, l}) + (Ex (0, l}) of the 
darts of G by other[ (e, S)] = (e, 1 - 8). For notational convenience, if d is a dart, 
we denote other(d) by dR. 

The ordinary definitions of graph embeddings and planarity are topological. 
However, a technique commonly used in the literature (see p. 22 of [21]) is the 
combinatorial representation of an embeding. We make use of this technique. 

For a graph G = (p, E), an embedding of G is a permutation 7c of the set of darts 
E x (0, 1) whose orbits are exactly the blocks of p. Thus for every node u E p, x 
determines a cycle on the set of darts belonging to u. We say (n, E) is an embedded 
graph, and we typically denote it by G,. Its underlying graph is G. To define the 
faces of the embedded graph, we define another permutation rc* of the set of darts 
by composing K with other, so i* = 710 other. Then the faces of the embedding R are 
the cycles of K*. 

As described in, e.g., Theorem 3.5 of [21], there is a correspondence between 
(combinatorial) embeddings and topological embeddings onto surfaces in which 
(intuitively) the darts incident to a node are cyclically arranged around that node 
clockwise in the sequence determined by the corresponding cycle of 72. Moreover, if 
G is connected, our combinatorial “faces” are the boundaries of the faces of a 
corresponding topological embedding; in particular, the number of faces is just the 
number of orbits of K*. 
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For an embedded graph G,, we say that IT is a planar embedding and G, is a 
planar embedded graph if this version of Euler’s formula is satisfied, 

m-n++c=f (20) 

where m = number of edges of G,, n = number of nodes, c = number of connected 
components, and f = number of faces. It follows from Theorem 3.5 of [21] that an 
embedding which is planar according to this definition corresponds to a topological 
planar embedding, and vice verse. A graph is planar if there exists a planar embed- 
ding. 

We define the dual of an embedded graph G, = (n, E) to be the embedded 
graph (G,)* = (rc *, E). Thus the edges of (G,)* are the edges of G and its nodes 
are the faces of G,. If G, is connected and planar embedded, our definition of 
the dual corresponds to the topological definition. Since the topological dual is 
connected, it follows that if G, is connected, the dual (G,)* is connected. 

FACT 3.1. The dual of the dual of G, is G,. 

Proof. (n*)* = (rc 0 other)* = rc 0 other 0 other = 7~. 1 

FACT 3.2. G, is planar lff its dual is planar. 

Proof: Taking the dual exchanges the number of nodes with the number of 
faces. Substituting into (20) gives the result. 1 

Two natural operations on graphs are deletion and contraction. To delete an 
edge e from the graph G = (p, E) is to remove e from E, remove e’s darts from p, 
and, if necessary, eliminate any resulting isolated nodes. We denote the result by 
G - e. To contract an edge e is to identify the endpoints of the edge e (i.e., union the 
blocks containing darts of e), and remove e from E and e’s darts from p. (Again any 
resulting isolated nodes are eliminated.) We denote the result by G/e. 

The operation of deletion of an edge e is also applicable to an embedded graph 
G, = (R, E). The embedded graph G, - e is defined to be ( IC’, E - {e} ), where rc’ 
is obtained from II by removing e’s darts. (To remove a dart dI from a permutation 
rc, we write 7~ as the product of its cycles, and remove d, from the cycle in which it 
appears, i.e., the cycle (d,dz . . . dk) is replaced with (dz . . . dR). Thus the cyclic order 
among the remaining darts in the cycle is preserved.) 

FACT 3.3. Deleting an edge from a planar embedded graph results in a planar 
embedded graph. 

Although the fact can be proved combinatorially, it follows directly from the 
topological definition of an embedding. 

We will define the operation of contraction as applied to an embedded graph in 
terms of deletion in the dual. Say the contraction of an edge e in a graph G is a 

571/37/2-8 
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proper contraction if e is not a self-loop in G. This definition is motivated by the 
following lemma. 

LEMMA 3.1. Suppose G, is an embedded graph in which e is not a self-loop. Then 
the underlying graph of the dual (G, - e)* is the graph obtained from the underlying 
graph of the dual (G,)* by contracting the edge e. 

Note. The case in which G, is planar embedded was proved by Whitney [22] 
for his version of a combinatorial dual. 

Proof: Suppose z[dl] = d and n[d”] = d,. Then x*[dP] = d and z*[d] = d2. If 
we delete the dart d from n*, obtaining 7t*‘, we change the value of the function n* 
only at dp. Namely, n*‘[dP] = d, but for any other dart d3 #d, x*‘[d3] = n*[d,]. 
Now let n’ = rc*’ 0 other. We have n’[dl] = d2 but for any other dart d3 # dR, 
n’[dJ = z[dJ. 

Let d and d’ be the darts of e, and suppose the (distinct) cycles of rc containing 
these darts (i.e., the endpoints of e) are e= (da, aZ...ak) and o’=(d’b, b,...b[). 
By the above remarks, if z*’ is obtained from 7t* by deleting d and d’, and 
R’ = (rr*‘)*, then 7~’ contains the cycle (a, . . ak 6, ... b,) instead of o and e’, but is 
otherwise identical to 7~. Thus the collection of darts ( # d, d’) previously belonging 
to the endpoints of e now belong to a single node. 1 

DEFINITION 3.2. The result of contracting the edge e of the connected embedded 
graph G, is defined to be ((G,)* -e)*, and is denoted by G,/e. 

By Lemma 3.1, if the contraction of e in G, is proper, the underlying graph of 
G,/e is the same as G/e, where G is the underlying graph of G,. By Facts 3.2 and 
3.3, if G, is planar, G,/e is planar. 

DEFINITION 3.3. If G is a graph and the graph G’ can be obtained from G by 
deletions and proper contractions, we say G’ is a minor of G. If rr is an embedding 
of G, then applying the deletions and contractions to the embedded graph G, yields 
an embedded graph Gk,. We say in this case that Gh, is an embedded minor of G,. 

By deletions and contractions of edges, a connected subgraph H of a planar 
embedded graph G, can be reduced to a single node h. The resulting planar 
embedding associates a cycle Q with the node h. This cycle describes how the edges 
of G - H were arranged around H in the original embedded graph G,. We will use 
such cycles to represent embeddings in the planarity algorithm of Subsection 3.2. 
Here we develop machinery enabling us to show that under certain circumstances 
the cycle cr is determined uniquely by the embedded graph G,, regardless of which 
edges of H are deleted and contracted to reduce H to a single node h. 

We say a node v of a graph G is an articulation point if there are two edges such 
that any path connecting endpoints of the two edges also contains v. For example, 
if v has a self-loop in a graph containing at least two edges, then D is an articulation 
point. 
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We now state the two main results of this section. 

UNIQUENESS LEMMA. Suppose G, is a connected planar embedded graph with a 
minor G’. There is a unique embedded minor of G, having G’ as underlying graph, if 
the following condition is satisfied: 

For any node v of G’ resulting from the identification of at least two 
nodes, of G, v is not an articulation point. 

For example, if G’ is biconnected, the condition is satisfied. 
For the next lemma, refer to the definition of the operator join, Definition 2.8. 

PLANAR CONTRACTION LEMMA. Let G, be a connected embedded graph. Let x 
and y be two adjacent nodes of G, and let A be the set of edges between x and y. 
Suppose G-x-y is connected. Let ox and aY be the cycles of 71 corresponding to x 
and y, respectively. Then x is a planar embedding of G iff the following conditions are 
satisfied: 

9 the darts of edges of A are consecutive subsequences z, and zY in ax and a,,, 
l the order of darts oft, is the reverse of the order of the corresponding darts in 

z .,,, and 
l the embedded graph Gh. is planar, where Gh, is obtained from G, by deleting 

all but one edge of A and contracting the remaining edge, identifying x and y to 
form z. 

Moreover, if the first two conditions are satisfied, the cycle az associated with z in the 
embedded graph Cl,, is ax join aY. 

We postpone the proofs of the Uniquness Lemma and the Planar Contraction 
Lemma until the end of this subsection. 

DEFINITION 3.4. For a node-induced subgraph H, we call an edge e of G an 
H-linking edge if exactly one endpoint of e is in H. The endpoint not in H is called 
the edge’s outside endpoint. Let link(H) be the set of H-linking edges. 

DEFINITION 3.5. Let G be a connected graph. We say that a subgraph H of G is 
bound in G if H is node-induced and connected, and G - H is connected. Given the 
connected graph G and a subgraph H bound in G, obtain the graph GfH from G by 
contracting the subgraph H to a node h, which we define by the following procedure: 
choose a spanning tree T of H and contract the edges of T. (Note that each con- 
traction is proper.) At this point, H has been contracted to a single node h with 
some self-loops. Next, delete all self-loops of h. Let G/H denote the result. Note that 
the edges incident to h in G/H are the H-linking edges. Also, note that G/H is 
independent of the choice of spanning tree T. Moreover, G/H-h is connected 
because G - H is connected. Hence by the Uniqueness Lemma, for any planar 
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embedding rc of G, there is a unique embedding n’ of G/H. We denote the resulting 
embedded graph by GJH. 

For each planar embedding 7-c of G, we obtain a cycle of link(H), namely the 
cycle associated with h in the embedding of G,/H. We call this cycle the embedding 
rotation of H in G,. More generally, a cycle of link(H) is an embedding rotation of 
H in the (unembedded) graph G if it is the embedding rotation of H in G, for some 
planar embedding 7~. In the planarity algorithm, we represent the set of all 
embedding rotations of certain subgraphs H in G, thereby characterizing in part the 
set of embeddings of G. For example, if G is not planar, there are no embedding 
rotations of H in G. 

Formally, the cycles of embeddings are cycles of darts, not of edges. However, 
here and in Subsection 3.2, we will at times ignore the distinction between darts and 
edges, and treat a dart as the edge it corresponds to. Thus, for example, an edge e 
appears in two cycles of an embedding-the cycles corresponding to the endpoints 
of e. 

LEMMA 3.2. Suppose G, is a planar embedded graph with a bound subgraph H. 
Let GkT be an embedded minor of G,, and let H’ be the subgraph of G’ corresponding 
to H. If H’ is bound in G’ and link(H’) = link(H) then the embedding rotation of H’ 
in Gh, is the embedding rotation of H in G,. 

Since every planar embedding rc of G induces a planar embedding 7~’ of G’, it 
follows from the lemma that every embedding rotation of H in G is an embedding 
rotation of H’ in G’. 

Proof of Lemma 3.2 (see Fig. 9). Let U be the minor of G obtained by first con- 
tracting H to a node h, and then contracting G - h to a node g. The embedding rr of 
G induces an embedding fi of U. The above way of obtaining UA as an embedded 
minor of G, shows that the cycle that 72 associates with h is the embedding rotation 
of H in G,. Another way to obtain U from G is to first obtain G’ from G and then 
obtain U from G’. The resulting embedding of U is also fi, by the Uniqueness 
Lemma. This way of obtaining U, as an embedded minor of G shows that the cycle 
associated with h is the embedding rotation of H’ in Gh,. This proves the lemma. 1 

LEMMA 3.3. Let G be a graph containing a bound subgraph H. Let G’ = G/H be 
the minor of G obtained by contracting H to a node h. Let G” be a minor of G con- 

G GIH 

(I 
FIG. 9. The graph Cl is a minor of both G’ and G/H. Moreover, G’ and G/H are minors of G. Thus I!/ 

can be obtained as a minor of G in two different ways. 
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taining H and all the H-linking edges. Let R’ be a planar embedding of G’ associating 
the cycle Q with h. Then two conditions are equivalent: 

1. There exists a planar embedding 71 of G such that Gh. is an embedded minor 
of G,. 

2. The cycle o is an embedding rotation of H in G”. 

Proof (1) * (2) Suppose Gh, is an embedded minor of G,. Let rr” be the 
embedding of G” induced by the embedding R of G. Then by Lemma 3.2, the 
embedding rotation of H in G$ equals the embedding rotation of H in G,, which 
equals the embedding rotation of h in G;., which is (r. This proves (2). 

(2) Z= (1) Suppose (r is an embedding rotation of H in G”, and let 71” be the 
corresponding planar embedding of G”. We obtain an embedding R of G from K’ by 
replacing the cycle Q with the cycles X” associates with nodes of H. Assume for a 
contradiction that rr is not a planar embedding, and let Gd be a minimal non-planar 
embedded minor of the embedded graph G,. Let x and y be any two adjacent 
nodes of G, and let A be the set of edges between them. Since A is not a planar 
embedding, it must violate one of the three conditions of the Planar Contraction 
Lemma. By minimality of G,, the third condition is not violated; hence either the 
edges A are not consecutive in the cycles ox and (TV associated with x and y, or they 
are consecutive but rr, 1 A # (o,, 1 A)R. But if x and y are both in H, then this same 
violation holds for the planar embedded graph Gz... If x and y are not both in H, 
then the edges A between them exist in G’, and the same violation holds in the 
planar embedded graph Gi,. In either case, we have a contradiction. 4 

The remainder of this subsection contains proofs of the Uniqueness Lemma and 
the Planar Contraction Lemma. Understanding of these proofs is not vital for 
understanding the planarity algorithm. 

Let G, be a planar embedded graph, and let H be a bound subgraph. Define the 
permutation other, of the darts of G by 

other,[d] = 
other[d] if d is a dart of an edge of H 
d 

otherwise. 

For a permutation 71 of the darts of G, define r?‘= rroother,. Note that 
*ff= (n*)G-H. 

Define the exfaces of H in G, to be those cycles of rcH that contain darts belong- 
ing to nodes of H. Note that each exface of H contains only darts of edges of H and 
H-linking edges. For example, if H consists of a single node v, then H has no edges. 
Hence for any dart d contained in the node v, nH(d) = n(d), which is another dart 
contained in v, so the only exface of H in G is the cycle of K corresponding to v. 

LEMMA 3.4. (1) Zf e is not an edge of H, then deleting e from G, has the same 
effect as removing its darts from 11~. 
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(2) If e is an edge of H, then deleting e from G,* has the same effect as remov- 
ing its darts from ?I~. 

Proof: Let d be a dart of e 4 H. If x has the form TC = ... (... d, d d, . ..) then rcH 
has the form zH = . (... other,[d,] d d, .. .). Thus removing d from n leaves 
rc’= ... (...d, d,...), so (r~‘)~= . ..(...other.[d,] d, . ..). Applying this obser- 
vation twice, once for each dart of e, proves (1). Since rc” = (rc*)“- “, (2) is the dual 
version of (1). 1 

A consequence of (1) is that the exfaces of H in G,, with all edges of G - H 
omitted (i.e., with their darts removed), are just the faces of H (with the induced 
embedding). For example, an embedded tree has only one face, so it has only one 
exface. The following lemma, which is a consequence of (2), is the principal purpose 
of exfaces. 

LEMMA 3.5. If T is a tree in G,, and we contract the edges of T in G, one by 
one, until T has become a single node t, the cycle corresponding to t in the resulting 
embedded graph is the exface of T in G,, with edges of T omitted. 

The proof is by induction on the number of nodes of T, using (2) of Lemma 3.4. 

The following lemma is a combinatorial analog of the Jordan Curve Theorem. 

LEMMA 3.4. Suppose H is connected, and darts d, d’ E G- H are in different 
exfaces of H in G. Then every path between the node containing dR and the node 
containing (d’)R goes through a node of H. 

Proof The lemma is trivial if d’ = dR, for then both the node containing dR and 
the node containing (d’)R are nodes of H. Suppose F, = (d d, d2 . . . d,) and 
F2 = (d’ d; d; ... d:) are two different exfaces of H in G, with edges of 
G - H- (e, e’} omitted, where e and e’ are the edges associated with d and d’. Sup- 
pose there is a path between d and d’ avoiding H, and let d= b,, bz, . . . . b, = (d’)R 
be the corresponding sequence of darts; i.e., by and bi+, are incident to the same 
node v $ H, for i = 1, . . . . r - 1. Let G’ be the union of H and the edges corresponding 
to b , , . . . . b,. Then (b, . . b, d; . ..d. bp . ..bp d, . ..d.) is a face of G’. Thus the num- 
ber of faces of G’ is one fewer than the number of faces of H. But we added r edges 
and r - 1 nodes to H to get G’. It follows that if H satisfies Euler’s formula, then G’ 
does not. This is a contraction, because G’ can be obtained from G by deletions, 
which preserve planarity. 1 

We can use Lemma 3.6 to prove the Planar Contraction Lemma. 

Proof of Planar Contraction Lemma. (~5) Suppose that the first two con- 
ditions hold. Write ox = (d, . . . d, y) and (T.” = (d p . . d p y’), where d, , . . . . d, are darts 
of edges in A, and y and y’ are sequences of other darts. We then have faces 
(df di+ I) for i= 1, . . . . t - 1. Deletion of all edges in A but one yields an embedded 
graph G, in which these t - 1 faces have disappeared. Contraction of the remaining 
edge e does not change the number of faces but does reduce by one the number of 
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nodes and the number of edges. It follows that if the resulting graph Gh. satisfies 
Euler’s formula, then so does G,. 

Moreover, if we let H be the subgraph of G consisting of x, y, and the edge 
e between them, then the exface of H in G, is O= (d, y’ df y), where d, and 
d p are the darts of e. Contracting the edge e is deleting e in the dual, which by 
part (2) of Lemma 3.4 transforms o into Q’ = (y’ y), which is cX join oY. But 
following contracting of e, H consists only of the node z. As observed before 
Lemma 3.4, the exface of a single node is the cycle associated with that node. Thus 
6; = f~’ = crX join 0,. 

(*) Now suppose that rt is a planar embedding of G. The third condition 
holds because deletions and proper contractions preserve planarity. Let H be the 
subgraph consisting of X, y, and the edges A between them. Let 7t’ be the embedding 
of H induced by the embedding rt of G (i.e., H,, is obtained from G, be deleting all 
edges of G - H). 

If IAl = 1, the first two conditions hold trivially. Suppose A = {e,, e2}. Then 
H,. has two faces. Because G-H is connected, it follows from Lemma 3.6 that 
one of the two exfaces of H in G contains no darts of G-H, i.e., is just a face 
of H,!, say ((e,, 6,)(e,, 6,)). It follows that n[(ei, 1 -S,)] = (e2, S,) and 
rr[ (e,, 1 -S,)] = (e,, 8,). This proves the first two conditions of the lemma. 

Finally, suppose A contains more than two edges. If all but two edges of A are 
deleted from G,, the remaining two edges satisfy the first and second conditions in 
the resulting graph, as we just proved. It follows that all the edges of A satisfy these 
conditions in G,. 1 

We need one more lemma to prove the Uniqueness Lema. 

LEMMA 3.7. Let H be a node-induced connected swbgraph of G, and let A be a 
subset of the H-linking edges. Suppose that for any two H-linking edges not in A, 
there is a path connecting endpoints of the two edges that avoids H. For any spanning 
tree T qf H, let CD(T) be the exface of T in G, with edges of A v H omitted. Then 
Q(T) is always the same, independent of choice of T. 

Proof We first prove that Q(T) = @(T’) for any two spanning trees T 
and T’ such that IT- T’( = 1. Let eE T- T’, and let e’ E: T’- T. Then Tu T’ = 
Tu {e’} has a single cycle containing e and e’. Hence Tu T’ has two faces, 
hence two exfaces in G. Let these two exfaces be (da d’ /I) and (dR y (d’)R A), where 
d is a dart of e, d’ is a dart of e’, and a, 8, y, I are sequences of darts. Then the 
exface of T in G is F= (d a d’ ,J dR y(d’)R p) while the exface of T’ in G is F’ = 
(d’ fi d y (d’)’ A dR a). 

The exfaces of H contain only H-linking edges and edges of H. We assume that 
every pair of H-linking edges not in A are connected by a path avoiding H, so only 
one exface of T u T’ can contain darts not in A u H, by Lemma 3.6. Thus either 
a, JI or y, 2 contain only darts of A u H. Then the cycles F and F’ become identical 
when edges of A u H are omitted. We have shown @(T) = @(T’). 

We now prove the lemma for any two different spanning trees T and T’, by 
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induction on (T- T’I. We proved the basis of the induction. Now suppose 
1 T - T’I > 1. Choose e E T- T’, and let e’ be an edge of T’ - T appearing in the 
unique cycle in T’ue. Let T”= Tu (e}- {e’}. Then IT”- T’I = 1 and IT”- TI < 
) T’ - TI, so by the inductive hypothesis, Q(T) = @(T”) and @(T”) = Q(T). 1 

We restate and then prove the Uniqueness Lemma: 
Suppose G, is a connected planar embedded graph, and G’ is a minor of G. Any 

sequence S of deletions and proper contractions that yields G’ when applied to G 
yields the same embedding 7~’ of G’ when applied to G,, if the following condition is 
satisfied: 

connectivity condition. For any node v of G’ resulting from the iden- 
tification of at least two nodes of G, v is not an articulation point of G’. 

Proof of the Uniqueness Lemma. Assume the connectivity condition is satisfied. 
It is easy to see that the two operations deletion followed by contraction may be 
swapped in a sequence S without affecting the resulting embedding, so we may 
assume that all contractions happen before any deletion in each sequence S. The 
order among the deletions clearly does not matter to the resulting embeddings; 
moreover, since contractions are just deletions in the dual, the order among the 
contractions also does not matter. 

Let S, and S, be two sequences of proper contractions followed by deletions that 
yield G’ when applied to G. Let C, be the set of edges contracted in Si, and let Di be 
the set of edges deleted in Si, for i = 1,2. 

Fix a node v E G ‘, and let Z-Z(v) = {u E G: 3 dart dg v n u ). Then the nodes of H(v) 
are identified to form v in G’, so the contracted edges Ci contain a tree Ti spanning 
H(v) in G. (If H(v) consists of a single node, the T, contains no edges.) 

The set of edges Ai = (Ci u 0;) n (edges incident to H(v)} consists of those edges 
incident to H(v) that are not incident to v, so A, = A,. 

Let oi be the cycle that rci associates with v. Our goal is to show that cri = cr2. By 
Lemma 3.5, ci is the exface of T, in G,, with edges of A, omitted. If H(v) consists of 
a single node u, the exface of T, in G, is just the cycle rt associates with u, so 
c, = oz. Suppose therefore that H(v) consists of at least two nodes. Then by our 
assumption that the connectivity condition holds, u is not an articulation point of 
G’, so for any two edges incident to v, there is a path in G’ connecting these edges 
that avoids v. Hence for any two edges incident to H(v) and not in A,, there is a 
path in G connecting these edges that avoids H(u). Then by Lemma 3.7, the exface 
of T, in G, with edges of A, omitted is the same as the exface of T2 with edges of 
A, omitted. Thus o, = oz. 1 

3.2. The Algorithm 

Our main theorem is 

THEOREM 3.1. A graph with n nodes and no multiple edges can be tested for 
planarity in O(log’ n) time using n processors. If the graph is planar, a combinatorial 
representation of a planar embedding can be found within the same bounds. 
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The basic strategy of our planarity-testing algorithm is to process the graph 
“from the bottom up,” starting with embeddings of individual nodes and ending 
with embeddings of the whole graph. A basic step in the algorithm is combining 
embeddings of subgraphs to form an embedding of the larger subgraph. We cannot 
merely choose a single embedding for each subgraph, for the chosen embeddings of 
two subgraphs might be inconsistent, preventing the embeddings from being com- 
bined. Instead, we use PQ-trees to represent the set of all embeddings of each sub- 
graph. Once the planarity-testing algorithm succeeds, a “top-down” process can 
obtain a combinatorial embedding of the graph from the PQ-trees just computed. 

Note that it is sufficient to achieve O(log* n) time using O(n) processors, for we 
can then reduce the number of processors by a constant factor at the expense of a 
constant factor increase in the time bound. Also, it follows from Euler’s formula 
that if an n-node graph G with no multiple edges or self-loops has more than 3n 
edges, it is not planar, and our planarity-testing algorithm may immediately reject 
it. We assume therefore that G has m 6 3n edges; the processor bound for our 
algorithm will be O(m) = O(n). 

Note. In this section, we make use of the notation that identifies a set of nodes 
with the subgraph induced by that set of nodes. 

The first step of the algorithm is to find the biconnected components of the input 
graph. 

LEMMA 3.8 [19]. A graph G on n nodes and m edges can be (edge) partitioned 
into its biconnected components in O(log’ n) time on n + m processors.6 

By the following lemma, the planarity of each biconnected component may be 
considered independently. 

LEMMA 3.9 [22]. A graph G is planar lff its biconnected components are planar. 
Moreover, the combinatorial representation of a planar embedding of G can be 
immediately obtained from the combinatorial representations of planar embeddings of 
its biconnected components. 

We therefore assume for the remainder of this section that G is biconnected. 
The second step is to find an St-numbering for G. An assignment of distinct 

integers to the nodes of G is called an St-numbering’ if two adjacent nodes s and t 
are the lowest and highest numbered, respectively, and every other node is adjacent 
to both a lower numbered and a higher numbered node. Note that an St-numbering 

6 This algorithm works in O(log n) time on a concurrent-write model of parallel computation. 
However, the algorithm may be run on a weaker model with exclusive-write at a O(log n) factor increase 
in the time bound, using a simulation result of Vishkin [20] and the fact that small integer sorting may 
be done in O(log n) time using n processors on this weaker model. 

’ As originally defined, an st-numbering was an assignment of integers from 1 to n to the n nodes, but 
we tind it convenient to make this minor change. 
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of G induces a direction on the edges of G-namely, an edge points toward its 
higher numbered endpoint. Accordingly, we call an edge incident to v an incoming 
edge if its other endpoint is numbered lower than 2) and an outgoing edge if its other 
endpoint is numbered higher than v. Let in(v) be the set of incoming edges 
of v, and let out(v) be the set of outgoing edges. The important fact about an 
St-numbering is that in the resulting directed acyclic graph, for every node v, there 
is a directed path from s to t through v. 

LEMMA 3.10 [13]. G has an st-numbering iff G is biconnected and has at least 
two nodes. 

In [6], Even and Tarjan give a linear-time sequential algorithm for finding an 
St-numbering. This algorithm does not seem parallelizable. Fortunately, Maon, 
Schieber, and Vishkin have an efficient way to find an St-numbering in parallel, 
based in part on the parallel ear-decomposition technique of Lovasz [ 14). 

THEOREM 3.2 [ 153. Given a biconnected graph G on n nodes and m edges, and an 
edge {s, t}, an St-numbering can be found in O(log* n) time on m + n processors.8 

The remainder of our planarity algorithm may be viewed as a contraction 
process on the St-numbered graph, taking place over a series of stages. We start 
with the original St-numbered graph G (Or = G In stage i + 1, we choose a collection . 
of bound subgraphs of the graph G(‘) in accordance with the St-numbering. We con- 
tract these subgraphs, and we update the St-numbering, producing the graph G(‘+ ‘). 

We say a node v #s, t of G(‘) is joinable if u is adjacent to some node u # s, t in 
G(j). In each stage, we contract some of the edges connecting joinable nodes, reduc- 
ing the number of joinable nodes. We stop after stage i if G(‘) contains no joinable 
nodes; let 9 be this last stage. Thus every node in G(“) except s and t is adjacent 
only to s and t. 

For each node u E G(‘) and each j d i, we let H”‘(v) denote the subgraph of G(j) 
that was contacted over stages j+ 1, . . . . i to form v. We write H(v) for H”‘(v). If 
u E H”‘(v) for u E G(j), we let u(‘) denote v. 

Note that G(‘) is actually a multi-graph, not a graph. That is, G(‘) may have mul- 
tiple edges with the same endpoints. The reason is that two nodes adjacent to a 
common node u may have been identified to form a node v, in which case the node 
u will have two edges to U. 

We choose our bound subgraphs to contract at each stage so that 

l Neither s nor t is ever identified with any other node; i.e., s(‘) = s and t’” = t 
for all i. 

l Only O(log n) stages are needed. 
l The St-numbering is easy to update, following contraction of edges. 

‘See Note 6 
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l For each node v # S, t in G(‘), the subgraph H(o) permits a PQ-tree represen- 
tation of the set of its embeddings. 

We first show how the subgraphs are chosen and show that our method of 
choosing subgraphs has the first three properties. Then we describe the method for 
representing the set of embeddings of a subgraph with a PQ-tree, and we show how 
this representation is updated when edges are contracted. Finally, we show how to 
obtain an embedding of the original graph G. 

To ensure that only O(log n) stages are needed, we use a sequence of four stages, 
called a phase, to reduce the number of joinable nodes by a factor of two. In par- 
ticular, during a phase every joinable node is identified with some other joinable 
node. Thus, if G(‘) is the graph immediately preceeding the beginning of a phase, 
then for any joinable node u of G(‘), IP(u(‘+ 4’)1 > 2. This shows that each phase 
reduces the number of joinable nodes by a factor of two, so only [log nl 
phases = 4rlog nl stages are needed. 

A phase has two parts, an s-rooted part and a t-rooted part, and each part con- 
sists of two subparts, a main stage and a clean-up stage. 

For the s-rooted part of a phase, we construct a spanning tree of G(‘) - {t} 
rooted at s. By the definition of St-numbering, every node u E G(‘) other than s and f 
is adjacent to some lower numbered node and to some higher numbered node. For 
each such u, let its parent p(u) be the highest numbered neighbor of u whose num- 
ber is less than that of u. We thereby define a “multi-tree,” a graph that would be a 
tree if multiple edges were identified. The root of the multi-tree is S. Using parallel 
pointer-jumping, compute for each node u the distance from s to u in the multi-tree. 
Call a node “even” or “odd,” according to whether this distance is even or odd. In 
the main stage, we identify even nodes with their (necessarily odd) parents. In the 
clean-up stage, we identify odd leaves with their (necessarily non-leaf) parents, 
except for those leaves whose parent is S. In each case, we identify children with 
parent and assign to the resulting node the parent’s number. 

The t-rooted part of a phase is similar; the parent of u is chosen to be the lowest 
numbered neighbor of u with a higher number than u. Analogous properties hold of 
this part of the phase. 

Note the following properties: 

(a) There are no edges between children of the same parent. 
(b) Edges are directed from parent to child during the s-rooted part and from 

child to parent during the t-rooted part. 
(c) Each node adjacent to some lower numbered node other than s is iden- 

tified with another node during one of the two stages in the s-rooted part. Each 
node adjacent to some higher numbered node other than t is identified with another 
node during one of the two stages in the t-rooted part. 

(d) Let f be the St-numbering function. For any u E G(‘), f(u(‘+‘)) <f(u) if the 
ith stage belongs to the s-rooted part andf(u(‘+ ‘) ) af(u) if the ith stage belongs to 
the t-rooted part. 
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We will make use of properties (a) and (b) later when we show how to implement a 
stage. Property (c) shows that in each phase the number of joinable nodes is halved. 
Property (d) makes possible the following lemma. 

LEMMA 3.11. For any i, suppose that the numbering f of G(‘) is an St-numbering. 
Then, the numbering f of G(‘+ I) is also an St-numbering. 

Proof: Let u be any node of Cc’+‘). Consider the case in which the ith stage 
belongs to the s-rooted part of a phase. Suppose H”‘(u) = {u,, . . . . ok}, where we 
assume without loss of generality that u, was a parent and the other nodes (if any) 
were children. By the inductive hypothesis, u1 has an incoming edge (u, uI) in G(j), 
so there is an edge (u(‘+‘),u) in Cc’+‘). We have f(u’““)<f(u), f(u)<f(u,) by 
definition of an incoming edge, so f(u”+“)<f(ul). Since f(u,)=f(u) by choice of 
u,, we conclude that (u(‘+ ‘), u) is an incoming edge of u. It remains to show that u 
has an outgoing edge. But uk has an outgoing edge (uk, w) in G(‘). There are two 
cases. If w was identified with its parent p(w) in stage i, f(w(j+ ‘)) = f (p(w)) > f (uk) 
by choice of p( w). If w was not identified with its parent in stage i, then f (w@+ “) = 
f(w)>f(uA)>f(uf)).Ineithercase, (u~+‘~,w”+“)isanoutgoingedgeofu~~=u. 1 

We now consider the representation of the set of embeddings of a subgraph. Fix a 

node u # s, t in G(‘). For j< i, let s(u) be the graph obtained from H(j)(u) by 
adding in the nodes s and t, the edge (s, t}, and the H(j)(v)-linking edges, identify- 
ing the outside endpoints of all incoming (outgoing) edges with s (t). (Note that 
this identification may cause some of the H(j)(u)-linking edges to become multiple 

edges.) It follows from the St-numbering of G(O) that G(u) is a minor of G(O). (See 
Definition 3.3 for the definition of minor.) 

Because u was formed by contraction of H”‘(o), H(j)(u) is connected. The sub- 

graph G(u) - H(j) consists of the nodes s and t and the edge between them, so it 
n 

is also connected. It follows that H”‘(u) is bound in H”‘(u). By similar reasoning 
one can show that H”‘(u) is also bound in G(O). 

We call the embedding rotations of H(u) in H(‘)(u) the arrangements of u. Note 
that the arrangements of u are cycles of link(H(u))= link(u) = the set of edges 
incident to u. 

Note that by Lemma 3.2, we have 

LEMMA 3.12. Any embedding rotation of H(u) in G(O) is an arrangement of u. 

From the Planar Contraction Lemma of Subsection 3.1, we may obtain 

COROLLARY 3.1. In any arrangement of u, the incoming edges in(u) are 
consecutive (and hence the outgoing edges out(u) are consecutive). 

We will use a PQ-tree T(u) to represent the set of arrangements of u. Recall from 
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Subsection 2.1 that a PQ-tree T represents a set CYC( T) of cycles over its ground 
set. Recall from Definition 2.4 that a subset A of the ground set of T is said to be 
contiguous in T if T has either a node v such that A = leaves(v) or a consecutive 
subsequence up . . . vq of the children of a Q-node such that A = U; leaves(vj). It 
follows from Lemma 2.1 that if A is contiguous in T, the elements of A form a con- 
secutive subsequence in every cycle in CYC(T). 

We say the PQ-tree T(v) over the ground set link(H(v)) is valid if 

l CYC( T(v)) = the set of arrangements of v, and 
l in(v) and out(v) are contiguous in T(v). 

If v E G’O’, we can directly construct a valid PQ-tree T(v). For in this case 
H(v) = {v}, so any cycle of the edges incident to v is an arrangement of v, provided 
that the incoming edges are consecutive and the outgoing edges are consecutive. In 
this case, therefore, we let T(v) be the tree (depicted in Fig. 10) whose root is a 
Q-node with two P-node children, Uin and vout, where the children of Uin are the 
edges in(v) and the children of u,,,~ are the edges out(v). 

At every stage i, we compute the PQ-trees for each new node v E G(‘+ ‘) in parallel 
from the PQ-trees for the nodes H(‘)(v) identified to form v. 

If a null tree arises as T(v) for some node u, it follows that there are no 
arrangements of v, i.e., no embedding rotations of H(v) in a(v), hence no 
embedding rotations of H(v) in G(O) by Lemma 3.2. But then G(O) is not planar. We 
therefore halt the algorithm when a null tree arises. 

Assume, on the other hand, that the contraction process continues until there are 
no joinable nodes remaining in G’“‘; every node of G(>) other than s and t is 
adjacent only to s and t. Let ol, . . . . vk be these nodes. Since they are not joinable, 
there are no edges between them, so no edges between the corresponding 
WV,), ..., H(vk). For j= 1, . . . . k, if T(vj) is not Tnu,,, then there is a planar 
embedding nj of fi(vj). Using the fact ([ 161) that a graph G is planar iff its tricon- 
netted components are, it follows that G(O) is planar, for s and t form a separation 
pair whose blocks are a( vl), . . . . fi(u,). 

e; 
O”& 

FIG. 10. The PQ-tree T(u) representing the set of arrangements of a node v E G(O). 
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To obtain an algorithm that works in O(log’n) time using O(n) processors 
(where n = number of nodes in G(O)), it suffices to prove the following lemma. 

LEMMA 3.13. For each stage i+ 1 (i=O, 1, . ...9- l),for each node VEG(‘+‘), a 
valid PQ-tree T(v) representing the set of arrangements of v, can be computed from 
valid PQ-trees ( T(v,): v, E H(‘)(v)} in O(log* n(v)) time using n(u) processors, where 
n(u) = Coaj<k Ilink(v,)l. 

When T(v) is computed in parallel for each v E G(‘+ l), the resulting processor 
bound is C, E G (,+I) n(v), which is easily seen to be ~2 (number of edges in G”‘). 
Since we assumed that the number of edges is < 3n, the overall processor bound is 
O(n). 

For the time bound, certainly n(v) <n for every node v E G(‘+ ‘), hence by 
Lemma 3.13, each stage can be computed in O(log* n) time. There are O(log n) 
stages, for a total of O(log3 n) time. 

We first prove Lemma 3.13, and then show how the algorithm may be improved 
to work in O(log* n) time using n processors, proving Theorem 3.1. 

Suppose that H”‘(u) = { uo, u , , . . . . uk}, where u. =p(u,) for j= 1, . . . . k. We first 

consider embeddings of @v). Assume that stage i belongs to the s-rooted part of 
a phase so that the parent u. is lower numbered than its children. (See Fig. 11.) Let 
A = in(u,). For j= 1, . . . . k, let Ej c in(u,) be the non-empty set of edges between U, 
and uo, let F,=out(u,), and let Bj=in(uj)-E,. Let D=out(u,)-U,.i., Ej. 

In &$a), the outside endpoint of each edge in D and in each F, is t, and the out- 
side endpoint of each edge in A and in each Bj is s. Note that 
in(v)=A~(U,.~~~ Bj) and out(o)=D~(U,~~~k Fj). 

We first make an assumption. 

ASSUMPTION 3.1. If Bj is non-empty, there is a path between u. and t avoiding s 
and ui. 

CLAIM. Assumption 3.1 can be made without loss of generality. 

ProoJ: Suppose Bj is not empty. If k > 1 then u. has a neighbor up # Uj. 
Moreover, up is adjacent to t, satisfying Assumption 2. In the case k = 1, we can 
exchange the roles of u. and u, and exchange the roles of s and t for the proof of 
Lemma 3.13. Following this exchange, the new u,, is adjacent to the new t. 1 

A planar embedding of H”‘(v) is shown in Fig. 11. We next establish that every 

embedding of H’;;;iu) resembles that depicted in Fig. 11. Recall from Definition 2.6 
that a cycle 0 of elements of S satisfies a proper subset A c S if the elements of A 
form a consecutive subsequence z of 0, and in this case o 1 A denotes the 
subsequence z. 
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F1c.11. An embedding of g(u). 

LEMMA 3.14. L20j be a cycle of link(uj) for j=O, . . . . k, There is a planar 

embedding rc of H”‘(u) associating the cycle aj with uj for each j= 0, . . . . k iff the 
following conditions hold: 

(i) For j= 1, . . . . k, aj satisfies Bj, Ej, and Fj. 

(ii) a0 satisfies E,, . . . . E,, Du E, u ..’ v E,, and A. 

(iii) For j= 1, . . . . k, a0 1 Ej = (aj 1 Ej)‘. 

(iv) The cycle a = a0 join . ..join ak of link(u) satisfies in(u) and out(v). 

Moreover, if x is such a planar embedding, then the cycle a is the embedding rotation 
A 

of H”‘(u) in H”‘(o) determined by the embedding 71. 

Proof (a) Assume there is a planar embedding x of 3~) associating the 
cycle aj with uj (Vj). Applying the Planar Contraction Lemma with x = uj (j# 0) 
and y = t shows that ai satisfies Fj. Applying it with x = s and y = u. shows a0 
satisfies in(u,) = A. Applying it with x = u. and y = uj (j # 0) shows a0 and aj satisfy 

Ej and a0 1 Ej = (aj I Ej)R. Applying it to the contracted graph s(u)/{ t, ur, . . . . uk} 
with x = u. and y = t shows that a0 satisfies out(u,) = D u E, u . .. u Ek. Finally, 
suppose Bj is not empty. By Assumption 3.1, there is a path between u. and t 
avoiding s and uj. Hence we can apply the Planar Contraction Lemma with x = s 
and y = uj to show that aj satisfies Bj. 

Using k applications of the last statement of the Planar Contraction Lemma, one 

can show that a is the embedding rotation of H”‘(u) in &$v) determined by the 
embedding rr. This means that when we contract the subgraph { uo, . . . . ZQ) of the 

n 
embedded graph (H”‘(u)),, the cycle associated with the resulting node u is a. 
Applying the Planar Contraction Lemma to this contracted graph with x = s and 
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y= v shows that rs satisfies in(v); applying it with x= v and y = t shows that (T 
satisfies out(u). 

(-z=) Suppose conditions (i), (ii), (iii), and (iv) are satisfied. Define the 
embedding rc as follows: n associates 4, with uj (Vj), and associates (e (a 1 in(v))“) 
with s and (e (a 1 out(u))“) with t, where e is the edge between s and t. We use 
induction on k to show that rc is a planar embedding. 

First suppose k = 1. The first two conditions of the Planar Contraction Lemma 
with x = u0 and y = ui follow from (i), (ii), and (iii). We must verify the third 

condition. Starting from the embedded graph (%&(v))., contract the subgraph 
(u,,, pi} to form u. By the last statement in the Planar Contraction Lemma, the 
cycle associated with v is g. It is then easy to verify that the resulting embedding, 
consisting of 0, (e (0 1 in(u))“), and (e (CJ ) out(v))“) is a planar embedding. Thus 
the third conditions of the Planar Contraction Lemma is verified, so the embedding 
rr is planar. 

Next, suppose k > 1. Write (TV = (a 6 i E, 6, s2 . . . Sk sk dk + i ), where a is an order- 
ing of A, sj is an ordering of Ej (renumbering u,, . . . . uk if necessary), and Sj is an 
ordering of the subset Djc D (writing D as the disjoint union of D,, . . . . Dk+ I). 
Write c1 = (E; /?i q5,), where /3i is an ordering of B, and q5i is an ordering of F,. 
Then a=a,join . ..join ok has the form (a 6, /I, @i 6, . ..). Now A and B, are sub- 
sets of in(v), and G satisfies in(u), so either a and pi must be adjacent, and hence D, 
is empty, or else Bj is empty. 

Let ab=o,joino,=(a 6, /I1 4, 6, s2 ..-). Let H,. be the embedded graph 
A 

obtained from (H”)(v)), by contracting the subgraph (u,, u,} to form ub. It follows 
from the last statement of the Planar Contraction Lemma that ah is the cycle rc’ 
associates with ub. The incoming edges of ub are A u B, and the outgoing edges are 
DuFluE2u ... u Ek. From the fact that either D, or B, is empty, it follows that 
0; satisfies the incoming edges of ub and the outgoing edges of ub. We may 
therefore use the inductive hypothesis to show that rc’ is a planar embedding. We 
have satisfied the third condition of the Planar Contraction Lemma applied with 
x = u0 and y = ui ; the first and second follow from (i), (ii), and (iii). Hence rz is a 
planar embedding. 1 

Every planar embedding of A(v) induces a planar embedding of g(u), namely, 
that obtained by contracting the disjoint subgraphs H(uj) to uj for j= 0, . . . . k. A 

given planar embedding rr of 6$v) is induced by some planar embedding of Z?(v) 
iff for j = 0, . . . . k, the cycle aj of x associated with the node uj is an arrangement of 
uj. (This follows from Lemma 3.3 of Subsection 3.1.) We conclude that the 
arrangements of u are those cycles arising as g0 join . .-join ok, where a, is an 
arrangement of uj for j= 0, . . . . k and conditions (i), (ii), (iii), and (iv) of 
Lemma 3.14 are satisfied. 

We make a second assumption: 
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ASSUMPTION 3.2. The sets B,, . . . . Bk-, are empty. 

CLAIM. Assumption can be made without loss of generality. 

Proof By the st-numbering, each Fj is non-empty. Suppose more than two Bis 

are non-empty, say B,, B,, B,. Then in au), the nodes s, t, and u0 are all 
adjacent to the nodes u 1, u2, u3. Thus the Kuratowski subgraph K3,3 is a subgraph 

of al;), proving that a(v) is not planar and hence that G(O) is not planar, by 
Kuratowski’s theorem (see [2]). In this case, we terminate the algorithm. 
Otherwise, by renumbering the nodes u,, . . . . uk, we can ensure Assumption 3.2. i 

We break up the process of computing a valid PQ-tree T(v) into the following 
three steps: 

Pl Process each T(uj) to get a PQ-tree T’(uj) such that CYC( T’(u,)) = 
{ oj E CYC( T(u,)): trj satisfies (i) and (ii) of Lemma 3.14). 
To make the next step possible, ensure that for j= 1, . . . . k, the set 
link(uj) - Ej is contiguous in T’(uj). 

P2 Let T’(v) be the join of T’(u,) with T’(u,), . . . . T’(Q). 

P3 Process T’(u) to get a PQ-tree T(o) such that 

CYC( T(u)) = { CJ E CYC( T’(v)): 0 satisfies in(u) and out(v)} 

and in fact in(u) and out(u) are contiguous in T(u). 

A procedure for carrying out step P2 is described in Subsection 2.5. It remains to 
fill out further details in steps Pl and P3. 

First suppose je { 1, . . . . k} and Bj = 0. In this case, Ej = in(uj) and Fj = out(uj). 
We assumed that T(uj) is valid, hence every cycle in CYC( T(u,)) satisfies Ej and Fj, 
and, moreover, Ej and link(uj) - Ej = Fj are contiguous in T(uj). Hence for such a j, 
we merely let T’(uj) = T(uj) for step Pl. 

Next, suppose j is 1 or k, and Bj is non-empty. Note that because T(uj) is valid, 
the two sets Fj = out(uj) and Ej u Bj = in(uj) are contiguous in T(uj). Calling upon 
Lemma 2.3, we reduce T(uj) with respect to Ej and Bj using MREDUCE. Next we 
carry out ROTATE(Ej, Bj, Fj) to ensure that Bj u Fj = link(uj) - Ej is contiguous. 
(See Lemma 2.2). We let T’(uj) be the resulting PQ-tree. 

Now we consider the PQ-tree T(u,). Note that because T(u,) is valid, in(uo) = A 
and out(u,) = D u E, u . . . u Ek are contiguous in T(u,). Calling upon Lemma 2.3, 
we use MREDUCE to reduce T(u,) with respect to E,, . . . . Ek E out(u,), letting 
T’(u,) be the reduced tree. Because of the validity of T(u,), every ordering in 
CYC( T’(u,)) already satisfies A. 

Having processed each PQ-tree T(uj) to obtain a PQ-tree T’(u,), we now com- 
pute the join of T’(u,) with T’(u,), . . . . A’, obtaining a PQ-tree T’(u). 

Step P3 remains. By (1) of Lemma 2.28, B, u B, u D u F, u .-. u Fk is con- 
tiguous in T’(u). If B, and Bk are empty, we are done, for then it follows that 
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in(v) = A and out(u) = D u F, u . . . u Fk are contiguous in T’(u). Therefore, assume 
without loss of generality that B, is non-empty. Calling upon Lemma 2.3, we 
use MREDUCE to reduce T’(u) with respect to out(u). By Lemma 2.1, out(u) is 
now contiguous in T’(u). Also, since B, u Fk was contiguous in Y(u,), the same 
set is contiguous in T’(u) by (2) of Lemma 2.28. Since out(u) contains Fk, it 
follows by Corollary 2.1 that B, u out(u) is contiguous in T’(u). Carry out 
ROTATE(A, B,, Bk u out(u)) to make A u B, contiguous. Then if B, is nonempty, 
carry out ROTATE(A u B,, Bk, out(u)) to make A u B, u B, contiguous. Let the 
resulting PQ-tree be T(u). 

Steps Pl and P3 can be computed in @log n(u)) time. Step P2, however, takes 
time O(log’ n(u)). This is sufficient to prove Lemma 3.13. 

We have shown how the planarity algorithm may be carried out in 0(log3 n) 
time using O(n) processors. To improve the time bound to O(log* n) time, we 
reduce the time for step P2 from 0(log2 n(u)) time to O(log n(u)), by computing a 
“provisional” join (described in Subsection 2.5) that is correct unless the correct 
result is the null PQ-tree. This permits us to quickly proceed to step P3 and then to 
the next stage. We need not wait for the join to be verified, because if a join fails the 
verification, it means that u has no arrangements, so Z?(u) is not planar and hence 
G(O) is not planar. We delay the verification of all the joins until after the last stage 
is completed. The processor bound for verification of the join of step P2 is propor- 
tional to the number I= IE, u ... u E,J of common elements. These are elements of 
link(u,) and link(ui) (for j= 1, . . . . k) not appearing in link(u). Since each edge of 
G(O) occurs at most once as a common element in a join, the total number of 
processors required to verify all joins simultaneously is proportional to the number 
of edges. The time is O(log2(number of common elements)) = O(log’ n). Thus the 
time for all verifications merely adds O(log’n) time to the total time for the 
planarity-testing algorithm. 

Finally, we sketch the method for obtaining a combinatorial embedding of each 
p(u), assuming the planarity-testing algorithm successfully terminated. That 
algorithm consisted of a sequence of Y = O(log n) stages; in each stage subgraphs 
were contracted to single nodes. In carrying out this process, we defined a contrac- 
tion forest with trees rooted at the nodes of GcY), where the children of a node 
u E G(‘+ i) are the nodes H”‘(o). The trees are all of height < Y + 1 = O(log n). For 
each node r E G’” + ‘), we have a cycle cycfr( T(r)) of the H(r)-linking edges that is 
consistent with some embedding of G (>) We first show how to choose cycles cs and . 
(T, of the edges incident to s and t respectively, such that gs, or, and the cr:s are all 
consistent with some embedding of G (‘) Then we show how to find such an . 
embedding by processing each tree of the contraction forest from the root down. 

Say the nodes of G’” + ‘) are w,, . . . . wk, and g,, . . . . gk are the corresponding 
cycles. The incoming edges of uji form a consecutive subsequence Ai of oi, and 
the outgoing edges form a consecutive subsequence 1: of (TV. Let o,~ = 
cyc(qI,R- 1 ...nfe) and a,=~yc(A;~I$~.. J$Rs), where e is the edge between s and 
t. It follows from the Planar Contraction Lemma that all the cycles are consistent 
with an embedding of G(O). 
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Next we find cycles for all the nodes of G (O) other than s and t, thereby defining 
an embedding of G . (O) We do this in 9 stages, by processing each tree of the con-. 
traction forest in parallel, starting at its root r and ending at its leaves, which are 
nodes of G(O). Say we are at height i+ 1 in the contraction tree rooted at a node 
r E G’$ + l). Assume inductively that there is some planar embedding of G(O) such 
that cV is the corresponding embedding rotation of H(o), and we are given c‘D for 
each node u at height i+ 1 (i.e., each u E G(‘+ “) in the tree. We operate on each 
such u in parallel. Suppose H”)(u) = {uo, . . . . uk} as in Fig. 11 and in Lemma 3.14 
and the preceeding text. To carry out the induction step, we must find co, . . . . uk 
such that (T, = o. join (TV join . . . join ck, such that (i), (ii), (iii), and (iv) of 
Lemma 3.14 are satisfied, and such that oi is an arrangement of ui, for i = 0, 1, . . . . k. 
In a sense, we wish to “invert” the join operation. A procedure for doing this is 
sketched in Lemma 2.27 of Subsection 2.5. Using this procedure, we can descend a 
single level of the contraction forest in O(log n) time using n processors. The forest 
has O(log n) levels, so after O(log2 n) time, we end up with cycles for each node 
u E G(O) other than s and t. 
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