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Abstract

Dynamical electroweak symmetry breaking by the Hosotani mechanism in the Randall–Sundrum warped spacetime
ined, relations among the W-boson mass (mW), the Kaluza–Klein mass scale (MKK ), and the Higgs boson mass (mH) being
derived. It is shown thatMKK /mW ∼ (2πkR)1/2(π/θW) andmH/mW ∼ 0.058kR(π/θW), wherek2, R, andθW are the cur-
vature and size of the extra-dimensional space and the Wilson line phase determined dynamically. For typical valueskR = 12
andθW = (0.2–0.4)π , one finds thatMKK = 1.7–3.5 TeV,k = (1.3–2.6) × 1019 GeV, andmH = 140–280 GeV.
 2005 Elsevier B.V.

Although the standard model of the electroweak interactions has been successful to account for all th
imental data so far observed, there remain a few major issues to be settled. First of all, Higgs particles
to be discovered. The Higgs sector of the standard model is for the most part unconstrained unlike th
sector where the gauge principle regulates the interactions among matter. Secondly, the origin of the sca
electroweak interactions characterized by the W-boson massmW ∼ 80 GeV or the vacuum expectation value
the Higgs fieldv ∼ 246 GeV becomes mysterious once one tries to unify the electroweak interactions w
strong interactions in the framework of grand unified theory, or with gravity, where the energy scale is gi
MGUT ∼ 1015–1017 GeV orMPl ∼ 1019 GeV, respectively. The natural explanation of such hierarchy in the en
scales is desirable. In this Letter we show that the Higgs sector of the electroweak interactions can be inte
the gauge sector, and the electroweak energy scale is naturally placed with the gravity scale within the fra
of dynamical gauge–Higgs unification in the Randall–Sundrum warped spacetime.

The scheme of dynamical gauge–Higgs unification was put forward long time ago in the context of
dimensional non-Abelian gauge theory with non-simply connected extra-dimensional space[1,2]. In non-simply
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connected space there appear non-Abelian Aharonov–Bohm phases, or Wilson line phases, which can dy
induce gauge symmetry breaking even within configurations of vanishing field strengths. The extra-dime
components of gauge potentials play a role of Higgs fields in four dimensions. The Higgs fields are unifi
the gauge fields and the gauge symmetry is dynamically broken at the quantum level. It was originally d
that Higgs fields in the adjoint representation inSU(5) grand unified theory are unified with the gauge fields.

The attempt to identify scalar fields as parts of gauge fields was made earlier by utilizing symmetry red
Witten observed that gauge theory in four-dimensional Minkowski spacetime with spherical symmetry red
a system of gauge fields and scalar fields in two-dimensional curved spacetime[3]. This idea was extended to si
dimensional gauge theory by Fairlie[4] and by Forgacs and Manton[5] to accommodate the electroweak theo
in four dimensions. It was recognized there that to yieldSU(2)L × U(1)Y symmetry of electroweak interaction
in four dimensions one need start with a larger gauge group such asSU(3), SO(5) or G2. The reduction of the
symmetry toSU(2)L × U(1)Y was made by an ad hoc ansatz for field configurations in the extra-dimen
space. For instance, Manton assumed spherically symmetric configurations in the extra-dimensional spaS2. As
was pointed out later[6], such a configuration can be realized by a monopole configuration onS2.1 However,
classical non-vanishing field strengths in the background would lead to the instability of the system. In this
gauge theory defined on non-simply connected spacetime has big advantage in the sense that even with
field strengths Wilson line phases become dynamical and can induce symmetry breaking at the quantum
the Hosotani mechanism.

Recently significant progress has been achieved along this line by considering gauge theory on orbifold
are obtained by modding out non-simply connected space by discrete symmetry such asZn [7–21]. With the
orbifold symmetry breaking induced from boundary conditions at fixed points of the orbifold, a part of light m
in the Kaluza–Klein tower expansion of fields are eliminated from the spectrum at low energies so tha
fermions in four dimensions naturally emerge[7]. Further, inSU(5) grand unified theory (GUT) on orbifolds th
triplet–doublet mass splitting problem of the Higgs fields[10] and the gauge hierarchy problem[8] can be naturally
solved.

The orbifold symmetry breaking, however, accompanies indeterminacy in theory. It poses the arbitrarine
lem of boundary conditions[15]. One needs to show how and why a particular set of boundary conditions is c
naturally or dynamically, which is achieved, though partially, in the scheme of dynamical gauge–Higgs unifi

Quantum dynamics of Wilson line phases in GUT on orbifolds was first examined in Ref.[14] where it was
shown that the physical symmetry is determined by the matter content. Several attempts to implement dy
gauge–Higgs unification in the electroweak theory have been made since then. The most intriguing amo
is theU(3) × U(3) model of Antoniadis, Benakli and Quiros[9]. The effective potential of the Wilson line phas
in this model has been recently evaluated to show that the electroweak symmetry breaking dynamica
place with minimal addition of heavy fermions[20]. The model is restrictive enough to predict the Kaluza–K
mass scale (MKK ) and the Higgs boson mass (mH) with the W-boson mass (mW) as an input. It turned out tha
MKK ∼ 10mW andmH ∼ √

αwmW, which contradicts with the observation.
We argue that this is not a feature of the specific model examined, but is a general feature of orbifold

in which extra-dimensional space is flat. Unless tuning of matter content is enforced, the relationmH ∼ √
αwmW

is unavoidable in flat space as shown below. To circumvent this difficulty, it is necessary to have curved
dimensional space.

Randall and Sundrum introduced warped spacetime with an extra-dimensional space having topology oS1/Z2
which is five-dimensional anti-de Sitter spacetime with boundaries of two flat four-dimensional branes[22]. It
was argued there that the standard model of electroweak interactions is placed on one of the branes
the electroweak scale becomes natural compared with the Planck scale chracterizing gravity. Since th

1 The monopole configuration forA8
M

of the SU(3) gauge fields onS2 realizes the envisaged symmetry reduction toSU(2) × U(1) in
Ref. [5].
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variations of the Randall–Sundrum model have been investigated. The standard model can be placed in
five-dimensional spacetime, not being restricted on one of the branes[23]. However, fine-tuning of the Higg
potential remains necessary.

More promising is to consider dynamical gauge–Higgs unification in the Randall–Sundrum background
gauge theory is defined in the bulk five-dimensional spacetime without five-dimensional scalar fields. T
step in this direction has been made by Oda and Weiler who evaluated the 1-loop effective potential for Wil
phases in theSU(N) gauge theory[24]. We will show in the present Letter that the electroweak symmetry brea
can be naturally implemented in dynamical gauge–Higgs unification on the Randall–Sundrum background
the aforementioned difficulty concerningMKK andmH. We show that in this scheme the Higgs massmH should
be between 140 GeV and 280 GeV, and the Kaluza–Klein mass scaleMKK must be between 1.7 TeV and 3.5 Te
It is exciting that the predicted ranges ofmH andMKK fall in the region where experiments at LHC can explore
the near future.2

We consider gauge theory in the Randall–Sundrum warped spacetime whose metric is given by

(1)ds2 = e−2σ(y)ηµν dxµ dxν + dy2

(µ, ν = 0,1,2,3). Here σ(y) = k|y| for |y| � πR, σ(y + 2πR) = σ(y) and ηµν = diag(−1,1,1,1). Points
(xµ,−y) and (xµ, y + 2πR) are identified with(xµ, y). The resultant spacetime is an anti-de Sitter spa
time (0< y < πR) sandwiched by four-dimensional spacetime branes aty = 0 andy = πR. It has topology
of R4 × (S1/Z2). The curvature is given byk2.

As a prototype of the models we take theU(3)S × U(3)W gauge theory[9], though the results do not depe
on the details of the model. Weak W bosons reside in theU(3)W gauge group. TheU(3)W part of the action
is I = ∫

d5x
√−detg {−1

2 TrFMNFMN + Lmatter} where the five-dimensional coordinates arexM = (xµ, y) and
Lmatterrepresents the part for quarks and leptons. Five-dimensional scalar fields are not introduced. The ze
of the extra-dimensional components of the vector potentials,Aa

y , generate non-Abelian Aharonov–Bohm pha
(Wilson line phases) and serve as four-dimensional Higgs fields effectively.

To see it more clearly, it is convenient to work in a new coordinate systemxM = (xµ,w), wherew = e2ky for
0� y � πR. The metric becomes

(2)ds2 = 1

w
ηµν dxµ dxν + 1

4k2w2
dw2.

Boundary conditions for the gauge potentials in the original coordinate system(xµ, y) are given in the form
(Aµ,Ay)(x, yj − y) = Pj (Aµ,−Ay)(x, yj + y)P

†
j , wherey0 = 0, y1 = πR, Pj ∈ U(3) andP 2

j = 1 (j = 0,1)

[14,18,20]. They follow from theS1/Z2 nature of the spacetime. In the new coordinate system(xµ,w), the bound-
ary conditions are summarized as

(3)

(
Aµ

Aw

)
(x,wj ) = Pj

(
Aµ

−Aw

)
(x,wj )P

†
j ,

(
∂wAµ

∂wAw

)
(x,wj ) = Pj

(−∂wAµ

∂wAw

)
(x,wj )P

†
j ,

wherew0 = 1 andw1 = e2πkR . Similarly, for a fermion in the fundamental representation

(4)ψ(x,wj ) = ηjPjγ
5ψ(x,wj ), ∂wψ(x,wj ) = −ηjPjγ

5∂wψ(x,wj ),

whereηj = ±1. We take

(5)P0 = P1 =
(−1

−1
1

)

2 Cosmological consequences of the Hosotani mechanism in curved spacetime has been previously investigated in Ref.[25]. The Hosotani
mechanism in the Randall–Sundrum warped spacetime has been applied to the electroweak symmetry breaking in Ref.[26].
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The advantage of thew coordinate over they coordinate lies in the fact that zero modes ofAw(x,w) become

independent ofw. In they coordinateAy(x, y) has cusp singularities aty = 0 andy = πR. To observe it explicitly,
we specify the gauge-fixing term in the action. A general procedure in curved spacetime has been given in[2].
It is convenient to adopt the prescription for gauge-fixing given in Ref.[24]. As is justified a posteriori, the effectiv
potential is evaluated in the background field method with a constant backgroundAc

M = δMwAc
w. The gauge fixing

term
∫

d4x dw
√−gLg.f. is chosen to be

(6)Lg.f. = −w2 Tr
(
Dc

µAµ + 4k2wDc
wAw

)2
,

whereDc
MAN ≡ ∂MAN + ig[Ac

M,AN ] and Dc
µAµ ≡ ηµνDc

µAν . In the path integral formula we writeAM =
Ac

M + A
q
M and expand the action inAq

M . The bilinear part of the action including the ghost part is given by

(7)

Ieff = −
∫

d4x

w1∫
w0

dw

{
1

2kw
TrAq

ν

(
∂µ∂µ + 4k2wDc

wDc
w

)
Aqν + 2k TrAq

w

(
∂µ∂µ + 4k2Dc

wwDc
w

)
Aq

w

− 1

2kw2
Tr η̄

(
∂µ∂µ + 4k2wDc

wDc
w

)
η

}
.

Partial integration necessary in deriving(7) is justified as TrAµ∂wAµ and TrAw∂wAw vanish atw = w0,w1 with
the boundary conditions(3).

Let us denoteAM = ∑8
a=0

1
2λaAa

M with the standard Gell-Mann matricesλa (λ0 represents theU(1) part).
With (3) and (5), Aa

µ (a = 0,1,2,3,8) andAb
w (b = 4,5,6,7) satisfy Neumann boundary conditions atw =

w0,w1, whereasAa
µ (a = 4,5,6,7) andAb

w (b = 0,1,2,3,8) satisfy Dirichlet boundary conditions. Zero mod
independent ofw are allowed forAa

µ (a = 0,1,2,3,8) andAb
w (b = 4,5,6,7). It is found from(7) that they

indeed constitute massless particles in four dimensions whenAc
w = 0. Gauge fields ofSU(2)L × U(1)Y are inAa

µ

(a = 0,1,2,3,8), whereas doublet Higgs fields are inAb
w (b = 4,5,6,7). We note that in they coordinate system

A′
y = 2ke2kyAw so that the zero modes are not constant iny, which gives rise to unphysical cusp singularities

y = 0,πR.
Mode expansion forAµ(x,w) is inferred from(7) to be

Aa
µ(x,w) =

∑
n

Aa
µ,n(x)fn(w), −4k2w

d2

dw2
fn(w) = λnfn(w),

(8)

w1∫
w0

dw
1

2kw
fn(w)fm(w) = δnm.

ForAw(x,w) one finds

Aa
w(x,w) =

∑
n

Aa
w,n(x)hn(w), −4k2 d

dw
w

d

dw
hn(w) = λ̂nhn(w),

(9)

w1∫
w0

dw 2khn(w)hm(w) = δnm.

Given boundary conditions,(λn, fn(w)) and (λ̂n, hn(w)) are determined.Aa
µ (Aa

w) has a zero modeλ0 = 0

(λ̂0 = 0) only with Neumann boundary conditions atw = wj . For the zero modesf0(w) = 1/
√

πR and
h (w) = 1/

√
2k(w − w ) [27].
0 1 0
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Except for the zero modes, bothλn and λ̂n are positive. Apart from the normalization factors eigen-functi

are given byfn(w) = √
wZ1(

√
λnw/k) andhn(w) = Z0(

√
λ̂nw/k) whereZν(z) is a linear combination of Bess

functionsJν(z) andYν(z) of orderν. (λn, fn) with the Neumann boundary conditions and(λ̂n, hn) with the Dirich-
let boundary conditions are determined by

(10)
J0(βn

√
w0 )

Y0(βn
√

w0 )
= J0(βn

√
w1 )

Y0(βn
√

w1 )
,

whereas(λn, fn) with the Dirichlet boundary conditions and(λ̂n, hn) with the Neumann boundary conditions a
determined by

(11)
J1(βn

√
w0 )

Y1(βn
√

w0 )
= J1(βn

√
w1 )

Y1(βn
√

w1 )
.

Hereβn = √
λn/k or

√
λ̂n/k. Forβn � 1, βn = πn/(

√
w1 − √

w0 ). Forw−1/2
1 � βn � 1, βn = (n − 1

4)π/
√

w1

or (n + 1
4)π/

√
w1 for the case(10) or (11), respectively. The first excited state is given byβ1

√
w1 ∼ 2.6 or 3.8.

Hence, the Kaluza–Klein mass scale is given by

(12)MKK = πk√
w1 − √

w0
=

{
R−1 for k → 0,

πke−πkR for eπkR � 1.

With Pj in (5), the W boson and the weak Higgs doubletΦ are contained in the zero modes of(A1
µ ± iA2

µ)(x,w)

andAb
w(x,w) (b = 4,5,6,7):

1√
2

(
A1

µ + iA2
µ

)
(x,w) ⇒ 1√

2

(
A1

µ,0 + iA2
µ,0

)
(x)f0(w) = 1√

πR
Wµ(x),

(13)
1√
2

(
A4

w − iA5
w

A6
w − iA7

w

)
(x,w) ⇒ 1√

2

(
A4

w,0 − iA5
w,0

A6
w,0 − iA7

w,0

)
(x)h0(w) = Φ(x)√

2k(w1 − w0)
.

There is no potential term forΦ at the classical level, but nontrivial effective potential is generated at the qua
level. As in the model discussed in Ref.[20], the effective potential is supposed to have a global minimum
Φ 
= 0, inducing dynamical electroweak symmetry breaking. Making use of the residualSU(2) × U(1) invariance,
we need to evaluate the effective potential for the configuration

(14)Aw = Ac
w = αΛ, Λ =


 1

1


 .

Note thatv = √
2〈Φ0〉 = 2

√
2k(w1 − w0)α.

The Randall–Sundrum warped spacetime has topology ofR4 × (S1/Z2). As S1 is not simply connected, ther
arise Aharonov–Bohm phases, or Wilson line phases, which become physical degrees of freedom[1,2]. The Wilson
line phases are defined by eigenvalues ofP exp{ig ∫

C
dw Aw} · U , where the pathC is a closed non-contractibl

loop alongS1 andU = P1P0. In the present caseU = I so that all gauge potentials are periodic onS1. It follows
thatα in (14) is related to the Wilson line phase by

(15)θW = 2gα(w1 − w0).

It will be shown below thatθW andθW + 2π are gauge equivalent. TheSU(2)L gauge coupling constant in fou
dimensions,g4, is easily found by insertingAµ(x,w) ∼ (πR)−1/2Aµ,0(x) into Fµν :

(16)g4 = g√
πR

.
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NonvanishingθW or v gives the W boson a massmW. In our scheme the mass term for W arises from the t
− ∫

dw 2k TrAq
νDc

wDc
wAqν in (7). The resultant relation is the standard one,mW = 1

2g4v. Thus one finds

(17)mW = g4v

2
=

[
πk

2R(w1 − w0)

]1/2
θW

π
=

{ 1
2

θW
π

MKK for k → 0,

1√
2πkR

θW
π

MKK for eπkR � 1,

whereMKK is given in(12).
The precise value ofθW depends on the details of the model. If the effective potential is minimized atθW = 0,

then the electroweak symmetry breaking does not occur. If it occurs,θW takes a value typically around 0.2π to
0.4π , unless artificial tuning of matter content is made. As an example, in the model discussed in Ref.[20] in flat
space,θW ∼ 0.25π , which, withmW = 80.4 GeV inserted, yielded too smallMKK ∼ 640 GeV.

In the present case, with the value ofθW given, kR determinesMKK and k. Recall that the four- and five
dimensional Planck constantsMpl andM5d are related byM2

plk ∼ M3
5d. To have a natural relationM5d ∼ Mpl, kR

must be in the range 11< kR < 13. To confirm it, takeθW = 0.25π as an example. ForkR = 12, one findsMKK =
2.8 TeV andk = 2.1× 1019 GeV. However, forkR = 6 and 24 one findsk = 9.7× 1010 GeV and 7.0× 1035 GeV,
respectively. In(17), MKK/mW ∝ √

kR, andkR is about 12 if there is only one gravity scale (M5d ∼ k). Thus the
value ofMKK is predicted to be 1.7 TeV< MKK < 3.5 TeV for 0.2π < θW < 0.4π in the present scenario.

How about the Higgs boson mass? The finite mass of the Higgs fieldΦ is generated by quantum effects[14]. One
needs to evaluate the effective potential for the Wilson line phase,Veff(θW). The Higgs mass is determined fro
the curvature at the minimum, with the substitutionθW = g[(w1 − w0)k

−1Φ†Φ]1/2. Its magnitude is estimate
reliably thanks to the phase nature ofθW.

To prove thatθW andθW + 2π are physically equivalent, we go back to the boundary conditions(3) and(4)
with generalPj . Let us perform a gauge transformationA′

M = ΩAMΩ† − (i/g)Ω∂MΩ†. A′
M does not satisfy the

same boundary conditions asAM in general. Instead,(
A′

µ

A′
w

)
(x,wj ) = P ′

j

(
A′

µ

−A′
w

)
(x,wj )P

′†
j ,

(
∂wA′

µ

∂wA′
w

)
(x,wj ) = P ′

j

(−∂wA′
µ

∂wA′
w

)
(x,wj )P

′†
j ,

(18)P ′
j = Ω(x,wj )PjΩ(x,wj )

†,

provided[
P ′

j , ∂µΩΩ†(x,wj )
] = {

P ′
j , ∂wΩΩ†(x,wj )

} = 0,

(19)
{
P ′

j , ∂µ(Ω∂wΩ†)(x,wj )
} = [

P ′
j , ∂w(Ω∂wΩ†)(x,wj )

] = 0.

In general,P ′
j differs fromPj . When the conditions in(19) are satisfied, the two sets of the boundary conditi

are said to be in the equivalence relation{P0,P1} ∼ {P ′
0,P

′
1}, which defines equivalence classes of bound

conditions. Extensive analysis of the equivalence classes of boundary conditions has been given in Refs.[2,14,16].
It was shown there that physics is the same in each equivalence class of boundary conditions.

In the present context we are interested in the residual gauge invariance which preserves the bounda
tions. In particular we would like to knowΩ(x,w) which satisfies(19) and yieldsP ′

j = Pj , but shiftsθW. Take
(P0,P1) in (5). We perform a gauge transformation

(20)Ω(x,w) = eiβ(w−w0)Λ,

whereΛ is defined in(14) and satisfies{Λ,Pj } = 0. Note thatP ′
0 = P0, P ′

1 = e2iβ(w1−w0)ΛP1, and∂wΩΩ† =
−Ω∂wΩ† = iβΛ. All the conditions in(19)are satisfied. Further, forβ = nπ/(w1 − w0) (n: an integer),P ′

j = Pj ,
i.e. the boundary conditions are preserved. For the configurationAw in (14), the new gauge potential isA′

w =
(α −[nπ/g(w1 −w0)])Λ. θW = 2gα(w1 −w0) is shifted, under the gauge transformation(20), to θ ′

W = θW −2nπ .
θ andθ + 2π are related by a large gauge transformation so that they are physically equivalent.
W W
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Having established the phase nature ofθW, we estimateVeff(θW). Veff(θW) in the models in flat orbifolds ha
been evaluated well[12,14,16,18,20]. Veff(θW) in the Randall–Sundrum spacetime in theSU(N) gauge theory ha
been evaluated by Oda and Weiler[24]. With the backgroundAc

w or θW, the spectrumλn of each field degree o
freedom depends onθW as well as on the boundary conditions of the field. Its contribution to four-dimens
Veff(θW) at the one loop level is summarized as

(21)Veff(θW) = ∓ i

2

∫
d4p

(2π)4

∑
n

ln
{−p2 + λn(θW)

}
,

where ‘−’ (‘ +’) sign is for a boson (fermion). The spectrumλn for θW = 0 is determined as described in t
discussions from Eq.(7), to Eq.(11). It is found there thatλn ∼ M2

KKn2 for largen. Hence one can write, afte
making a Wick rotation, as

(22)Veff(θW) = ±1

2
M4

KK

∫
d4qE

(2π)4

∑
n

ln
{
q2
E + ρn(θW)

} + const,

whereρn(θW) = λn/M
2
KK . It is known that on an orbifold with topology ofS1/Z2, fields form aZ2 doublet

pair to have an interaction withθW [14]. The resultant spectrum for aZ2 doublet is cast in the form where th
sum in (22) extends over fromn = −∞ to n = +∞. Further,ρn(θW + 2π) = ρn+�(θW) (�: an integer), and
ρn(θW) ∼ [n + γ (θW)]2 for large|n|, whereγ (θW + 2π) = γ (θW) + �. For instance, in theU(3) × U(3) model
in flat space,ρn(θW) = [n + �θW/2π + (const)]2 with � = 0,±1,±2 [20]. The important feature is that asθW is
shifted toθW + 2π by a large gauge transformation, each eigen mode is shifted to the next KK mode in g
but the spectrum as a whole remains the same.

Recall the formula

(23)
1

2

∫
d4qE

(2π)4

∞∑
n=−∞

ln
{
q2
E + (n + x)2} = − 3

64π6
h(x) + const, h(x) =

∞∑
n=1

cos2nπx

n5
.

Thex-dependent part is finite. In the present case we have
∑

(±)h[γ (θW)]. The total effective potential takes th
form

(24)Veff(θW) = Neff
3

128π6
M4

KKf (θW),

wheref (θW + 2π) = f (θW) and its amplitude is normalized to be an unity. Once the matter content of the m
is specified, the coefficientNeff is determined. In the minimal model or its minimal extension,Neff = O(1) as
supported by examples.

WhenVeff(θW) has a global minimum at a nontrivialθW = θmin
W , dynamical electroweak symmetry breaki

takes place. It typically happens atθmin
W = (0.2–0.3)π [20]. It is possible to have a very smallθmin

W ∼ 0.01π by
fine-tuning of the matter content as shown in Ref.[19], which, however, is eliminated in the present considera
for the artificial nature. The massmH of the neutral Higgs boson is found by expandingVeff(θW) aroundθmin

W and
usingθW = g[(w1 − w0)k

−1Φ†Φ]1/2. One finds

(25)m2
H = Nefff

′′(θmin
W

) 3αw

64π4

R(w1 − w0)

k
M4

KK ,

whereαw = g2
4/4π . In a generic modelf ′′(θmin

W ) ∼ 1. Making use of(12)and(17), one finds

(26)mH =




c
( 3αw

32π3

)1/2
MKK = c

(3αw

8π3

)1/2 π

θmin
W

mW for k → 0,

c
( 3αw

64π2

)1/2√
kRMKK = c

(3αw

32π

)1/2
kR π

θmin
W

mW for eπkR � 1,
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wherec = [Nefff
′′(θmin

W )]1/2. The values ofθmin
W andc depend on details of the model. In the models analy

in Ref. [20], (θmin
W , c) ranges from(0.269π,2.13) to (0.224π,1.63), which justifies our estimate. Hereafter we

c = 1.9, understanding 20% uncertainty. Insertingαw = 0.032 andkR = 12, we obtain thatmH = 0.70(π/θmin
W )mW

and MKK = 12.4mH. In flat space (in thek → 0 limit), mH = 0.037(π/θmin
W )mW and MKK = 53.9mH, which

yielded too smallmH. There appears a large enhancement factorkR in the relation connectingmH andmW in the
Randall–Sundrum warped spacetime. For a typical valueθmin

W = (0.2–0.4)π , the mass of the Higgs boson and t
Kaluza–Klein mass scale are given bymH = (140–280) GeV andMKK = (1.7–3.5) TeV, respectively.

The relations(17) and(26) reveal many remarkable facts. First of all, only the parameterkR in the Randall–
Sundrum spacetime appears in the relations connectingmW, mH andMKK . Secondly, if one supposes thatk =
O(Mpl), thenkR = 12± 1 to have the observed value formW. The electroweak-gravity hierarchy is accounted
by a moderate value forkR. Thirdly, another quantityθmin

W involved in those relations is dynamically determine
once the matter content of the model is specified. In case the electroweak symmetry breaking takes place, it
takes(0.2–0.4)π . mH andMKK are predicted up to the factorθmin

W . Fourthly and most remarkably, the predict
value formH, 140–280 GeV, is exactly in the range which can be explored in the experiments at LHC an
planned facilities in the near future. In conjunction with it, we recall that in the minimal supersymmetric sta
model the Higgs boson mass is predicted in the range 100< mH < 130 GeV[28]. Experimentally preferred valu
is mH = 126+73

−48 GeV [29].
In the dynamical gauge–Higgs unification the Higgs field in four dimensions is identified with the

dimensional component of the gauge fields. The Hosotani mechanism induces dynamical electroweak s
breaking, giving both weak gauge bosons and Higgs boson finite masses. The desirable enhancement facmH
originates from the property that the Higgs field is a part of five-dimensional vector, not a scalar, whose cou
gravity and matter differs from those of four-dimensional gauge fields in the Randall–Sundrum warped spa

Our scenario significantly differs from the Higgsless model where four-dimensional Higgs fields are elim
from the spectrum by ad hoc boundary conditions on orbifolds[30]. In our scenario there is a Higgs boson w
mH = (140–280) GeV. Its mass is generated by radiative corrections. There is no quadratic divergence as
with m2

H thanks to the gauge invariance in five dimensions. As in supersymmetric theories the unitarity is e
to be assured by the existence of light Higgs boson.

The scenario of the dynamical gauge–Higgs unification in the warped spacetime is promising. In the
Letter we focused onmH andMKK . There are many issues to be examined. Yukawa couplings among fer
and the Higgs boson, couplings of fermions to Kaluza–Klein excitations of the gauge and Higgs boso
self-couplings of the Higgs boson can be also explored in the forthcoming experiments. It is also intere
extend our analysis to supersymmetric (SUSY) theories in the Randall–Sundrum spacetime[31]. SUSY breaking
scaleMSUSY ∼ 1 TeV is not far fromMKK in the present Letter. We shall come back to these issues in sep
publications.
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