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Abstract

In this paper we provide an accurate bound on primordial gravitational waves, i.e. tensor-to-scalar ratio
(r) for a general class of single-field models of inflation where inflation occurs always below the Planck
scale, and the field displacement during inflation remains sub-Planckian. If inflation has to make connection
with the real particle physics framework then it must be explained within an effective field theory description
where it can be trustable below the UV cut-off of the scale of gravity. We provide an analytical estimation
and estimate the largest possible r , i.e. r � 0.12, for the field displacement less than the Planck cut-off.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

If the primordial inflation [1] has to make connection to the observed world and be a predictive
science then it has to be embedded within a particle theory [2], where the last 50–60 e-foldings of
inflation must occur within a visible sector with a laboratory measured inflaton couplings to the
Standard Model physics in order to create the right form of matter with the right abundance [4].1

* Corresponding author.
1 Note that after Planck there is no trace of isocurvature perturbations and there is a severe constraint on dark radia-

tion [3]. Therefore the inflaton vacuum cannot be arbitrary as first pointed out in this review [2]. Models of inflation
based on gauge invariant flat directions of Standard Model quarks and leptons naturally provides an ideal inflaton
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This inevitably puts constraint on the vev of inflation, i.e. φ0, and the range of flatness of the
potential during the observed 17 e-foldings of inflation, i.e. �φ. For the simplest single field
dominated model of inflation, there are two important constraints which all the models must
satisfy.

• φ0 � Mp – vev of the inflaton must be bounded by the cut-off of the particle theory, where
Mp = 2.4 × 1018 GeV. We are assuming that 4 dimensions Mp puts a natural cut-off here
for any physics beyond the Standard Model.

• |�φ| � Mp – the inflaton potential has to be flat enough during which a successful inflation
can occur. Note that the flatness of the potential has to be fine tuned – there is no particle
physics symmetry which can maintain the flatness [2]. We will assume V ′′(φ0) ≈ 0, where
V (φ) denotes the inflaton potential, and prime denotes derivative w.r.t. the φ field.

The aim of this paper is to impose these two conditions to obtain an improved bound on
the tensor-to-scalar ratio, r . In Refs. [7–12], it was realised that it is possible to obtain large
r ∼ O(10−1–10−2) for small field excursion characterised by, φ0 � Mp and �φ � Mp . The
bound on r was further improved in the recent work, see Ref. [6], where it was demonstrated that
it is possible to saturate the Planck limit on tensor-to-scalar ratio, i.e. r � 0.12 [1].

Such a large tensor-to-scalar ratio can be obtained provided one deviates from a monotonic
behaviour of slow roll parameter εV , which we will elaborately discuss below by incorporating
the effects of higher order slow-roll corrections for generic class of sub-Planckian inflationary
models in presence of a non-negligible and scale-dependent running of the scalar and tensor
power spectrum [6–8,13].

In this respect we are improving on previously obtained bound on large r , i.e. r ∼ O(0.1),
where φ0 and |�φ| were taken beyond Mp , see [14], and for its most generalised updated version
in presence of phase velocity at the horizon crossing also see [15]. Such a significant tensor to
scalar ratio, can be obtained in the framework of large-field models of inflation, such as “chaotic
inflation” [16,17], so-called “Higgs inflation” along with its conformal generalisation [18,19]
and “axion monodromy inflation” [20]. In this class of models, slow-roll inflation occurs when
the inflaton vacuum expectation value (VEV) exceeds the Planck scale, so that the large field
excursion, �φ > Mp is possible. However, in this paper the main goal is to provide an analytical
expression for tensor-to-scalar ratio when �φ < Mp , as suggested in Refs. [7,8]. As it has been
show recently [6], it is indeed possible to obtain large r � 0.12 for field values �φ � Mp , here
we provide an analytical proof of the earlier results.

Our analytical results are important because any positive detection on large tensor-to-scalar
ratio, i.e. r ∼ O(0.01–0.1), in forthcoming experiments might not be able to conclusively favour
high scale super-Planckian models of inflation.

2. Generic framework for sub-Planckian inflation

The tensor to scalar ratio can be defined by taking into account of the higher order corrections,
see Refs. [13,21,22]:

r = 16εH

[1 − (CE + 1)εH ]2

[1 − (2CE + 1)εH + CEηH ]2
, (2.1)

candidate embedded within a visible sector with well-known interactions, discussed in Ref. [4], and their recent update
after Planck [5,6].
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where CE = 4(ln 2 + γE) − 5 with γE = 0.5772 is the Euler–Mascheroni constant [13]. In
Eq. (2.1) the Hubble slow roll parameters (εH ,ηH ) are defined as:

εH = −d lnH

d lna
= − Ḣ

H 2
, ηH = −d ln φ̇

d lna
= − φ̈

H φ̇
, (2.2)

where dot denotes time derivative with respect to the physical time. Now considering the ef-
fect from the leading order dominant contributions from the slow-roll parameters, the Hubble
slow-roll parameters can be expressed in terms of the potential dependent slow-roll parameters,
(εV , ηV ), as: εH ≈ εV + · · · , and ηH ≈ ηV − εV + · · · , where · · · comes from the higher order
contributions of (εV , ηV ). Here the slow-roll parameters (εV , ηV ) are given by in terms of the
inflationary potential V (φ), which can be expressed as:

εV = M2
p

2

(
V ′

V

)2

, ηV = M2
P

(
V ′′

V

)
. (2.3)

We would also require two other slow-roll parameters, (ξ2
V ,σ 3

V ), in our analysis, which are given
by:

ξ2
V = M4

p

(
V ′V ′′′

V 2

)
, σ 3

V = M6
p

(
V ′ 2V ′′′′

V 3

)
. (2.4)

With the help above mentioned slow roll parameters, i.e. εV , ηV , ξV and σV , we can recast
Eq. (2.1) as:

r ≈ 16εV

[1 − (CE + 1)εV ]2

[1 − (3CE + 1)εV + CEηV ]2
(2.5)

where we have neglected the contributions from the higher order slow-roll terms, as they are
sub-dominant at the leading order. With the help of

d

d ln k
= −Mp

√
2εH

1 − εH

d

dφ
≈ −Mp

√
2εV

1 − εV

d

dφ
, (2.6)

and Eq. (2.5), we can derive a simple expression for the tensor-to-scalar ratio, r , as:

r = 8

M2
p

(1 − εV )2[1 − (CE + 1)εV ]2

[1 − (3CE + 1)εV + CEηV ]2

(
dφ

dlnk

)2

. (2.7)

Consequently, we can obtain a new bound on r in terms of the momentum scale (k):

kcmb∫
ke

dk

k

√
r(k)

8
= 1

Mp

φcmb∫
φe

dφ
(1 − εV )[1 − (CE + 1)εV ]
[1 − (3CE + 1)εV + CEηV ]

≈ 1

Mp

φcmb∫
φe

dφ (1 − εV )
[
1 + CE(2εV − ηV ) + · · ·]

≈ �φ

Mp

{
1 + 1

�φ

[
(2CE − 1)

φcmb∫
dφ εV − CE

φcmb∫
dφ ηV

]
+ · · ·

}
, (2.8)
φe φe
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where note that �φ ≈ φcmb − φe is positive in Eq. (2.8), and this implies the left hand side of
the integration over momentum within an interval, ke < k < kcmb, is also positive. Individual
integrals involving εV and ηV were estimated in Appendix A, see Eqs. (A.1) and (A.2).

Here (φe, ke) and (φcmb, kcmb) represent inflaton field value and the corresponding momentum
scale at the end of inflation and the Hubble crossing respectively. The imprints of the primordial
gravitational waves can be directly measured in the CMB experiments via r(kcmb). It is important
to note that the recent observational constraint from Planck [1] only fixes the upper bound on
r(kcmb ≈ k	) (� 0.12) by fixing the upper bound of the scale of inflation at the GUT scale (V	 �
1016 GeV).

In order to perform the momentum integration in the left hand side of Eq. (2.8), we have used
r(k) at any arbitrary momentum scale, which can be expressed as:

r(k) = r(k	)

(
k

k	

)a+ b
2 ln( k

k	
)+ c

6 ln2( k
k	

)+···
, (2.9)

where

a = nT − nS + 1, b = (αT − αS), c = (κT − κS)

are explicitly defined in Ref. [6]. These parameterisation characterises the spectral indices,
nS,nT , running of the spectral indices, αS,αT , and running of the running of the spectral in-
dices, κS, κT . Here the subscript (S,T ) represent the scalar and tensor modes.

It was earlier confirmed by the WMAP9+high-l+BAO+H0 combined constraints that: αS =
−0.023±0.011 and κS = 0 within less than 1σ C.L. [23]. After the Planck release it is important
to see the impact on r(k∗) due to running, and running of the running of the spectral tilt by modi-
fying the generic power law form of the parameterisation of tensor-to-scalar ratio. The combined
Planck+WMAP9 constraint confirms that: αS = −0.0134±0.0090 and κS = 0.020+0.016

−0.015 within
1.5σ statistical accuracy [1], which additionally includes κS �= 0 possibility.

At the next to leading order, the simplest way to modify the power law parameterisation is
to incorporate the effects of higher order Logarithmic corrections in terms of the presence of
non-negligible running, and running of the running of the spectral tilt as shown in Eq. (2.9),
which involves higher order slow-roll corrections.2

After substituting Eq. (2.9) in Eq. (2.8), we will show that additional information can be
gained from our analysis: first of all it provides more accurate and improved bound on tensor-to-
scalar ratio in presence of non-negligible running and running of the running of the spectral tilt.
In our analysis super-Planckian physics doesn’t play any role as the effective theory puts natu-
rally an upper cut-off set by the Planck scale. Consequently the prescription only holds good for
sub-Planckian VEVs, φ0 < Mp and field excursion, �φ < Mp for inflation. Both these outcomes
open a completely new insight into the particle physics motivated models of inflation, which are
valid below the Planck scale.

Further note that the momentum integral has non-monotonous behaviour of the slow-roll pa-
rameters (εV , ηV ) within the interval, ke < k < kcmb, which implies that εV and ηV initially
increase within an observable window of e-foldings (which we will define in the next section,
see Eq. (3.1)), and then decrease at some point during the inflationary epoch when the observable
scales had left the Hubble patch, and eventually increase again to end inflation [7,8].

2 It is important to note that when Ref. [14] first derived a bound on large tensor-to-scalar ratio for super-Planckian
inflationary models (with �φ > Mp ), the above mentioned constraints on αS, κS were not taken into account due to lack
of observational constraints.
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In the most general situation, in Eq. (2.9), the parameters a, b and c are all functions of arbi-
trary momentum scale [6]. After imposing the above mentioned non-monotonicity behaviour of
the slow-roll parameters within this interval, we can easily express the parameters a, b and c at
the pivot scale k	, which is approximately close to the CMB scale, i.e. kcmb ≈ k	. The compu-
tational details of the momentum integration appearing in Eq. (2.8) are elaborately discussed in
Appendix B, see Eqs. (B.1), (B.2) and the subsequent discussion.

Let us now expand a generic inflationary potential around the vicinity of φ0 where inflation
occurs, and impose the flatness condition such that, V ′′(φ0) ≈ 0. This yields a potential, see [24]:

V (φ) = α + β(φ − φ0) + γ (φ − φ0)
3 + κ(φ − φ0)

4 + · · · , (2.10)

where α � M4
p denotes the height of the potential, and the coefficients β � M3

p , γ � Mp ,
κ � O(1) determine the shape of the potential in terms of the model parameters. Typically,
α can be set to zero by fine tuning, but here we wish to keep this term for generality.

Note that at this point, we do not need to specify any particular model of inflation for
Eq. (2.10). However, not all of the coefficients are independent once we prescribe the model
of inflation here.This is true only if the model is fully embedded within a particle theory such
as that of MSSM [4]. We will always observe the crucial constraints: φ0 < Mp and �φ < Mp .
Then �φ can be redefined as, �φ = (φcmb − φ0) − (φe − φ0).

Now substituting the explicit form of the potential stated in Eq. (2.10), we evaluate the cru-
cial integrals of the first and second slow-roll parameters (εV , ηV ) appearing in the right hand
side of Eq. (2.8). For details see appendix where the leading order results are explicitly men-
tioned.

3. Accurate bound on ‘r’ for small field values of inflation

At any arbitrary momentum scale the number of e-foldings, N (k), between the Hubble exit
of the relevant modes and the end of inflation can be expressed as [1]:

N (k) ≈ 71.21 − ln

(
k

k0

)
+ 1

4
ln

(
V	

M4
P

)
+ 1

4
ln

(
V	

ρend

)

+ 1 − 3wint

12(1 + wint)
ln

(
ρrh

ρend

)
, (3.1)

where ρend is the energy density at the end of inflation, ρrh is an energy scale during reheating,
k0 = a0H0 is the present Hubble scale, V	 corresponds to the potential energy when the relevant
modes left the Hubble patch during inflation corresponding to the momentum scale k	 ≈ kcmb,
and wint characterises the effective equation of state parameter between the end of inflation and
the energy scale during reheating.

Within the momentum interval, ke < k < kcmb, the corresponding number of e-foldings is
given by, �N =Ne −Ncmb, as

�N = ln

(
kcmb

ke

)
≈ ln

(
k	

ke

)
= ln

(
a	

ae

)
+ ln

(
H	

He

)
≈ ln

(
a	

ae

)
+ 1

2
ln

(
V	

Ve

)
(3.2)

where (a	,H	) and (aeHe) represent the scale factor and the Hubble parameter at the pivot scale
and end of inflation, and we have used the fact that H 2 ∝ V . We can estimate the contribution of
the last term of the right hand side by using Eq. (2.10) as follows:
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ln

(
V	

Ve

)
= ln

(
α + β(φ	 − φ0) + γ (φ	 − φ0)

3 + κ(φ	 − φ0)
4 + · · ·

α + β(φe − φ0) + γ (φe − φ0)3 + κ(φe − φ0)4 + · · ·
)

≈ ln

(
1 + Mp

β

α

(
�φ

Mp

)
︸ ︷︷ ︸

�1

[1 + · · ·︸︷︷︸
�1

]
)

≈ ln(1 + · · ·︸︷︷︸
�1

), (3.3)

where (�φ/Mp) � 1, and we assume (βMp/α) � 1, consequently, Eq. (3.4) reduces to the
following simplified expression:

�N ≈ ln

(
k	

ke

)
≈ ln

(
a	

ae

)
≈ 17 e-folds. (3.4)

Within the observed limit of Planck, i.e. �N ≈ 17, the slow-roll parameters, see Eqs. (A.1),
(A.2) of Appendix A, show non-monotonic behaviour, where the corresponding scalar and tensor
amplitude of the power spectrum remains almost unchanged.3

At the scale of Hubble crossing (k	 = a	H	), the slow-roll parameter εV must be sufficiently
large enough to generate an observable value of tensor-to-scalar ratio r	 at the pivot/normalisation
scale k	, and it must increase over the �N ≈ 17 e-foldings, as first pointed out in Refs. [7,8].
After Hubble crossing (k	 
 a	H	), the slow-roll parameter εV must quickly decrease, which
is necessary to generate enough e-folds of inflation. However instead of a quick decrement of
εV if it decreases gradually, it will need to eventually decrease to a much smaller value because,
εV ∝ (�φ/Mp�N ) < 1/17, by imposing the constraint, �φ < Mp .

Substituting the results obtained from Eq. (A.1), Eq. (A.2) and Eq. (B.2) (see Appendix A and
Appendix B), and with the help of Eq. (3.4), up to the leading order, we obtain:√

r(k	)

8

{(
a

4
− b

16
+ c

48
− 1

2

)[
1 − k2

e

k2
	

]
+ · · ·

}

≈
{(

1 +
10∑

m=0

Am

(
φe − φ0

Mp

)m

︸ ︷︷ ︸
�1

)
�φ

Mp

+
10∑

m=0

mAm

2

(
φe − φ0

Mp

)m−1(
�φ

Mp

)2

︸ ︷︷ ︸
�1

+· · ·
}

, (3.5)

where (ke/k	) ≈ exp(−�N ) = exp(−17) ≈ 4.13×10−8 and we have defined a new dimension-
less binomial expansion coefficient (Am) as:

Am = Mm+2
p

[(
CE − 1

2

)
Cm − 6CEDm

]
(∀m = 0,1,2, . . . ,10) (3.6)

3 In this paper we fix �N ≈ 17 e-foldings as within this interval the combined Planck+WMAP9 constraints on the

amplitude of power spectrum ln(1010PS) = 3.089+0.024
−0.027 (within 2σ C.L.), spectral tilt nS = 0.9603 ± 0.0073 (within

2σ C.L.), running of the spectral tilt αS = −0.0134 ± 0.0090 (within 1.5σ C.L.) and running of running of spectral tilt
κS = 0.020+0.016 (within 1.5σ C.L.) are satisfied [1].
−0.015
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with an additional requirement Dm = 0 for m = 0 and m > 6 obtained from the binomial
series expansion obtained from the leading order results of the slow-roll integrals stated
in Appendix A.4 Additionally it is also important to note that the expansion coefficient Am(∀m)

are suppressed by the various powers of the scale of inflation, α, which is the leading order term
in generic expansion of the inflationary potential as shown in Eq. (2.10) (see Eq. (A.3) in Ap-
pendix A). Consequently we can expand the left side of Eq. (3.5) in the powers of �φ/Mp , using
the additional constraint �φ < (φe − φ0) < Mp . This clearly implies that the highlighted terms
by · · ·︸︷︷︸ are sufficiently smaller than unity for which we can easily neglect the higher order terms

of �φ/Mp .
To the first order approximation – we can take k	 ≈ kcmb within 17 e-foldings of inflation,

and neglecting all the higher powers of ke/k	 ≈ O(10−8) from the left hand side of Eq. (3.5).
Consequently, Eq. (3.5) reduces to the following compact form for r(k∗):

3

25

√
r(k	)

0.12

∣∣∣∣
{

3

400

(
r(k	)

0.12

)
− ηV (k	)

2
− 1

2
−

(
6CE + 14

3

)
ε2
V (k	) − η2

V (k	)

6

+
(
CE − 1

4

)
ξ2
V (k	)

2
−

(
2CE − 5

12

)
ηV (k	)εV (k	) − σ 3

V (k	)

24
+ · · ·

}∣∣∣∣ ≈ |�φ|
Mp

, (3.7)

provided at the pivot scale, k = k	 ≈ kcmb 
 ke, here ηV 
 {ε2
V , η2

V , ξ2
V ,σ 3

V , . . .} approximation
is valid for which at the leading order, the first three terms dominate over the other higher order
contributions appearing in the right hand side of Eq. (3.7).

Now, it is also possible to recast a(k), b(k), c(k), in terms of r(k), and the slow roll parameters
by using the relation, Eq. (2.5), to write:

a(k	) ≈
[
r(k	)

4
− 2ηV (k	) − 4

(
2CE + 1

3

)
εV (k	)ηV (k	) − 4

(
6CE + 11

3

)
ε2
V (k	)

+ 2CEξ2
V (k	) − 2

3
η2

V (k	) + · · ·
]
,

b(k	) ≈ [
16ε2

V (k	) − 12εV (k	)ηV (k	) + 2ξ2
V (k	) + · · ·],

c(k	) ≈ [−2σ 3
V + · · ·], (3.8)

where “· · ·” involves higher order slow-roll contributions which are negligibly small in the lead-
ing order approximation. The additional constraint a 
 b 
 c defined in Eq. (2.9) is always
satisfied by the general class of inflationary potentials, for instance the saddle or the inflection
point models of inflation do satisfy this constraint [4].

The recent observations from Planck puts an upper bound on gravity waves via tensor-to-
scalar ratio as r(k	) � 0.12 at the pivot scale, k	 = 0.002 Mpc−1 [1]:

V	 �
(
1.96 × 1016 GeV

)4 r(k	)

0.12
. (3.9)

4 In Eq. (3.6), and Eqs. (A.1), (A.2) (see Appendix A), Cp and Dq are Planck suppressed dimensionful (mass dimen-

sion [M−(m+2)
p ]) binomial series expansion coefficient which are expressed in terms of the generic model parameters

(α,β, γ, κ, . . .) as presented in Eq. (2.10). These coefficients follow another additional restriction on the indices appear-
ing in the subscript as, p = 0,1, . . . ,10, and q = 1,2, . . . ,6. Instead of using two indices (p, q) if we generalise them
by a single index m as mentioned in Eq. (3.6), the above mentioned requirement on Dm naturally appears in the present
context.
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Combining Eqs. (3.7) and (3.9), we have obtained a closed relationship between V∗ and �φ, as:

|�φ|
Mp

�
√

V	

(2.20 × 10−2 Mp)2

∣∣∣∣
{

V	

(2.78 × 10−2Mp)4
− ηV (k	)

2
− 1

2
−

(
6CE + 14

3

)
ε2
V (k	)

− η2
V (k	)

6
+

(
CE − 1

4

)
ξ2
V (k	)

2
−

(
2CE − 5

12

)
ηV (k	)εV (k	)

− σ 3
V (k	)

24
+ · · ·

}∣∣∣∣, (3.10)

where ηV 
 {ε2
V , η2

V , ξ2
V ,σ 3

V , . . .} are satisfied, and at the leading order first three terms dominate
over the other higher order contributions, therefore

|�φ|
Mp

�
√

V	

(2.20 × 10−2 Mp)2

∣∣∣∣ V	

(2.78 × 10−2Mp)4
− ηV (k	)

2
− 1

2

∣∣∣∣. (3.11)

The above Eqs. (3.10), (3.11) are new improved bounds on �φ during a slowly rolling single field
φ within an effective field theory treatment, where the vev of an inflaton remains sub-Planckian,
i.e. φ0 < Mp and �φ � Mp . From Eq. (3.7), we can see that large r ∼ 0.1 can be obtained for
models of inflation where inflation occurs below the Planck cut-off. Our conditions, Eqs. (3.7),
(3.10), provide new constraints on model building for inflation within particle theory, where the
inflaton potential is always constructed within an effective field theory with a cut-off. Note that
ηV (k∗) � 0 can provide the largest contribution, in order to satisfy the current bound on r � 0.12,
the shape of the potential has to be concave.

4. Summary and discussion

To summarise, in this paper we have presented an accurate bound on tensor to scalar ratio, r ,
and �φ for a sub-Planckian models of inflation in presence of higher oder slow-roll correction,
see Eqs. (3.7), (3.10), (3.11). The bounds obtained here satisfy the numerical estimations made
for inflation models based on saddle or inflection points with sub-Planckian VEVs.

Further, we have shown that it is indeed possible to realise large tensor-to-scalar ratio for sub-
Planckian vevs of inflation by assuming the non-monotonicity of the slow-roll parameter εV . Our
constraints would help inflationary model builders and perhaps would enable us to reconstruct
the inflationary potential [25–28] for a single field model of inflation. We have also analysed
the fact that the additional constraint on slow-roll parameter, ηV (k∗) � 0, at the pivot scale of
momentum, k	, also restricts the shape of the potential to be a concave one.
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Appendix A. Slow-roll integration

The crucial integrals of the first and second slow-roll parameters (εV , ηV ) appearing in the
right hand side of Eq. (2.8), which can be written up to the leading order as:
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φcmb∫
φe

dφ εV = M2
p

2

φcmb∫
φe

dφ
[β + 3γ (φ − φ0)

2 + 4κ(φ − φ0)
3 + · · · ]2

[α + β(φ − φ0) + γ (φ − φ0)3 + κ(φ − φ0)4 + · · · ]2

≈ 1

2

10∑
p=0

M
p+2
p Cp

(p + 1)

(
φe − φ0

Mp

)p+1{(
1 + �φ

Mp

(
φe − φ0

Mp

)−1)p+1

− 1

}

+ · · · , (A.1)

φcmb∫
φe

dφ ηV = 6M2
p

φcmb∫
φe

dφ
[γ (φ − φ0) + 2κ(φ − φ0)

2 + · · · ]
[α + β(φ − φ0) + γ (φ − φ0)3 + κ(φ − φ0)4 + · · · ]

≈ 6
6∑

q=1

M
q+2
p Dq

(q + 1)

(
φe − φ0

Mp

)q+1{(
1 + �φ

Mp

(
φe − φ0

Mp

)−1)q+1

− 1

}

+ · · · , (A.2)

where we have used the (φ − φ0) < Mp (including at φ = φcmb and φ = φe) around φ0. The
leading order dimensionful Planck scale suppressed expansion coefficients (Cp) and (Dq ) are
given in terms of the model parameters (α,β, γ, κ), which determine the hight and shape of the
potential in terms of the model parameters as:

C0 = β2

α2
, C1 = −2β3

α3
,

C2 = 6βγ

α2
, C3 = 8βκ

α2
− 14β2γ

α3
,

C4 = 9γ 2

α2
− 18β2κ

α3
, C5 = 24γ κ

α2
− 30γ 2β

α3
− 48γ 2βκ

α3
,

C6 = 16κ2

α2
− 32κ2β

α3
− 28βγ κ

α3
,

C7 = −18γ 3

α3
− 16βκ2

α3
, C8 = −66γ 2κ

α3
,

C9 = −80γ κ2

α3
, C10 = −32κ3

α3
,

D1 = γ

α
, D2 = 2κ

α
− βγ

α2
, D3 = −2κβ

α2
,

D4 = −γ 2

α2
, D5 = −3κγ

α2
, D6 = −2κ2

α2
. (A.3)

Appendix B. Momentum integration

The momentum integral appearing in the left hand side of the Eq. (2.8) is computed as:
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kcmb∫
ke

dk

k

√
r(k)

8
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√
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8
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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for a, b, c �= 0 & a > b > c
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e
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(B.1)

Further using kcmb ≈ k	 and (ke/k	) ≈ exp(−�N ) = exp(−17) ≈ 4.13 × 10−8, within 17
e-foldings Eq. (B.1) can be simplified to the following expression:
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k
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8
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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4
− b

16
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48
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2
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+ · · · for a, b, c �= 0 & a > b > c

√
r(k	)

8

(
a

4
− b

16
− 1
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+ · · · for a, b �= 0, c = 0 & a > b

1

a + 1

√
r(k	)

8
+ · · · for a �= 0 & b, c = 0

O(17) ×
√

r(k	)

8
for a, b, c = 0,

(B.2)

where the last possibility a, b, c = 0 surmounts to the Harrison & Zeldovich spectrum, which is
completely ruled out by Planck+WMAP9 data within 5σ C.L. Similarly the next to last possi-
bility a �= 0 & b, c = 0 is also tightly constrained by the WMAP9 and Planck+WMAP9 data
within 2σ C.L.

The second possibility a, b �= 0, c = 0, and a > b is favoured by WMAP9 data and tightly
constrained within 2σ window by Planck+WMAP9 data.
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Finally, a, b, c �= 0, and a > b > c case is satisfied by both WMAP9 and Planck+WMAP9
data within 2σ C.L. Here a > b > c is the only criterium which is always satisfied by a general
class of inflationary potentials. In this article, we have only focused on the first possibility, i.e.
a > b > c, from which we have derived all the constraint conditions for a generic model of
sub-Planckian inflationary potentials.
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