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Bending Stiffness Depends on Curvature of Ternary Lipid Mixture
Tubular Membranes

Aiwei Tian,†‡ Benjamin R. Capraro,† Cinzia Esposito,† and Tobias Baumgart†‡*
†Department of Chemistry and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia,
Pennsylvania

ABSTRACT Lipid and protein sorting and trafficking in intracellular pathways maintain cellular function and contribute to organ-
elle homeostasis. Biophysical aspects of membrane shape coupled to sorting have recently received increasing attention. Here
we determine membrane tube bending stiffness through measurements of tube radii, and demonstrate that the stiffness of
ternary lipid mixtures depends on membrane curvature for a large range of lipid compositions. This observation indicates ampli-
fication by curvature of cooperative lipid demixing. We show that curvature-induced demixing increases upon approaching the
critical region of a ternary lipid mixture, with qualitative differences along two roughly orthogonal compositional trajectories.
Adapting a thermodynamic theory earlier developed by M. Kozlov, we derive an expression that shows the renormalized bending
stiffness of an amphiphile mixture membrane tube in contact with a flat reservoir to be a quadratic function of curvature. In this
analytical model, the degree of sorting is determined by the ratio of two thermodynamic derivatives. These derivatives are indi-
vidually interpreted as a driving force and a resistance to curvature sorting. We experimentally show this ratio to vary with compo-
sition, and compare the model to sorting by spontaneous curvature. Our results are likely to be relevant to the molecular sorting of
membrane components in vivo.
INTRODUCTION

Motivated by the aim to understand how molecular sorting of

membrane components is achieved in biological cells (1,2),

the coupling between membrane curvature and composition

has recently been under intensive investigation. In addition

to proteins, fluorescent lipids have been used as trafficking

markers. Importantly, lipidlike dyes of the indocarbocyanine

family with identical headgroups were shown to display

remarkably different sorting in cells (3). The protein cholera

toxin subunit B is, furthermore, frequently used to study

intracellular trafficking (4). We demonstrated that these lip-

idlike fluorophores with differing intrinsic curvature were

not significantly sorted in membranes with steep curvature

gradients (5). Conversely, we found that cholera toxin

subunit B is effectively sorted among connected membranes

with differing curvature (5).

Several different types of membrane curvature can be

distinguished in cells (6,7). Among these, membranes with

spherical (e.g., vesicles) and cylindrical curvature (e.g., mem-

brane tubes) are the most prominent long-lived high curva-

ture intracellular membrane morphologies. Our research

focuses on biophysical characterization of sorting in tubular

membranes. Biological membrane tubes have recently

received increasing interest in various contexts, including

intercellular nanotubes with signaling function (8) and intra-

cellular tubes connecting different organelles (9).

For a quantitative characterization of mechanical contribu-

tions to the sorting of membrane components, lipid model

membrane systems have proved advantageous. Evidence
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for the sorting of fluid phase domains with differing bending

stiffness came from fluorescence microscopy images of giant

unilamellar vesicles with liquid-ordered (Lo) and liquid-

disordered (Ld) phase coexistence (10,11). Lateral segrega-

tion has also been observed in tubular model membranes

(10,12). Lipid bilayer membrane tubes have long been of

interest to biophysicists (13–15), and model membrane tubes

with complex composition are receiving increasing attention

(5,12,16–18). This contribution investigates how curvature

sorting is amplified in nonideally mixing multicomponent

membranes.

The coupling between membrane curvature and composi-

tion has been theoretically investigated. Several continuum

theories have been developed. An early analytical exposition

is the one by Markin (19), who proposed the composition

dependence of the models of spontaneous curvature and

bending stiffness considered in this work. Kozlov developed

a thorough thermodynamic analysis of elastic amphiphile

mixture interfaces (20,21), which forms the basis of the

analytical component of this contribution. Phenomenolog-

ical continuum theories predicted curvature instabilities

(22,23) and curvature-induced phase segregation in vesicles

(24), and several, more recent contributions have computed

membrane composition profiles as a function of curvature

(25–27). In the strong segregation limit, the influence of

elastic domain properties on membrane shape has been

investigated (28–35) and the weak segregation limit has

also been explored (22,23,36). Dynamic aspects associated

with curvature-composition coupling and phase transitions

influenced by membrane proteins have recently been inves-

tigated (37). Most of these studies focused on the role of

local spontaneous curvature, as opposed to bending stiffness,
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in coupling membrane shape and composition. Several

previous experimental studies have examined the effect of

composition on bending stiffness. Amphiphilic membranes

of interest have included emulsions (38,39) and lipid bilayers

(12,40–42).

MATERIALS AND METHODS

Materials

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol (Chol),

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-stearoyl-2oleoyl-

sn-glycero-3-phosphocholine (SOPC), and distearoylphosphatidyl-ethanol-

amine-N-[biotinyl(polyethylene glycol)2000] (DSPE-Bio-PEG2000) were

from Avanti Polar Lipids (Alabaster, AL). Fatty-acid free bovine serum

albumin was obtained from Sigma Chemical (St. Louis, MO). Texas Red-

1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium

salt (TR-DHPE) was purchased from Invitrogen (Carlsbad, CA).

Vesicle preparation, micropipette fabrication, and tether pulling method

were as previously described (5) (also see Supporting Material).

Membrane tension, tether radius, and bending
stiffness determination

Lateral membrane tension s is obtained from pipette aspiration pressure DP,

by the formula (43)

s ¼ DP
Rp

2
�
1� Rp=Rv

�; (1)

in which Rp and Rv are the pipette radius and vesicle radius (of the spherical

part of the vesicle outside of the pipette; also see Supporting Material),

respectively.

Membrane tension determines a corresponding tether radius. The tether

radius is obtained from stepwise horizontal elongation and release of the

membrane tube as described in Tian and Baumgart (5). Briefly, the tether

was typically elongated in three-to-five steps (each of 20 mm) and the asso-

ciated change in the length of the pipette-aspirated vesicle projection was

measured. The tether radius can then be calculated from the ratio of projec-

tion length change (DLp) and tether length change (DLt). The ratios (i.e., the

slopes) at different membrane tensions are shown later in Fig. 2 a.

From the conservation of membrane area and total vesicle volume, the

following relation can be obtained, which we used to calculate tether radii

(44,45):

Rt ¼ �
DLp

DLt

�
1� Rp

Rv

�
Rp: (2)

The influence on the determination of Rt of vesicles with prolate spheroid

shape is quantitatively discussed in the Supporting Material. Briefly, the

error is negligible under all conditions used.

Imaging

Vesicles were imaged by fluorescence confocal microscopy scanning

system (model No. FV300 integrated with a motorized inverted microscope

IX81; Olympus, Center Valley, PA), using a 60�, 1.2 NA water immersion

lens with coverslip correction collar (Olympus). Illumination intensities and

illumination times were minimized to reduce photoeffects (46). Image

analysis was performed using IMAGEJ (National Institutes of Health,

Bethesda, MD).

Additional methods (error propagation analysis and method of bending

stiffness determination by micropipette aspiration) are described in the

Supporting Material.
RESULTS

We focused our investigation of curvature-dependent sorting

on the ternary lipid mixture DOPC, DPPC, and Chol, the

phase behavior of which is well characterized (47,48) (see

Fig. 1). We chose six different compositions (labeled I–VI

in Fig. 1) made with these three lipid types. Vesicles were

prepared with the addition of the fluorophore TR-DHPE,

as well as a biotinylated lipid with oligo-ethyleneglycol

spacer, which allowed us to couple streptavidin-coated beads

to the vesicular membranes. The large majority of vesicles

prepared with these six compositions were optically homo-

genous as determined by fluorescence microscopy, in accor-

dance with the published phase diagram (47,48). To localize

the position of the phase boundary and critical point at our

measurement temperature (22 5 0.5�C) in the ternary phase

diagram, we determined approximate area fractions as well

as the fraction of phase-separated vesicles. The resulting

phase boundary shown in Fig. 1 is in good agreement with

data by Veatch and Keller (47). Only optically homogenous

vesicles were examined in the experiments below. We

selected two different compositional trajectories: one

approximately parallel to the phase boundary (compositions

I–III), and one roughly orthogonal to the phase boundary

(compositions III–VI); see Fig. 1. These two compositional

directions are expected to lead to differing critical exponents

of thermodynamic quantities (49). According to the phase

Chol
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FIGURE 1 Experimental phase diagram indicating compositions

(depicted using stars) of ternary lipid mixture DOPC/Chol/DPPC: I,

70:20:10; II, 55:28:17; III, 40:37:23; IV, 40:40:20; V, 40:46:14; and VI,

40:50:10. Circles mark compositions of vesicles imaged to determine the

upper phase boundary and the critical point of phase separation (critical con-

solute point). Population fractions of vesicles with phase separation are indi-

cated in the left legend. The grayscale line represents the upper phase

boundary binodal line at ~22�C. The binodal line also displays the area frac-

tions of the disordered phase according to the legend on the right. Compo-

sitions III and IV are in the neighborhood of the critical point where area

fraction is 40–60% (indicated by the thick bar on binodal and right legend).

Our compositions I–VI are chosen in the homogeneous phase region outside

the miscibility gap and approach the neighborhood of the critical point in

two directions: along lines parallel (I, II, and III) and lines perpendicular

(VI, V, IV, and III) to the upper phase boundary.
Biophysical Journal 97(6) 1636–1646



1638 Tian et al.
L p /
 μ

m

Lt / μm

Rt / nm

σ / (N/m)

σ / (N/m)
0

20

60

40

0

20

60

40

0 20 60 8040

0

2

6

8

4

10

0.0

0.4

0.8

1.2

1.6

×
1
0

-
1

9

0 20 60 80 100 12040
×10-4

0.0    1.0    2.0    3.0    4.0

0.0     1.0     2.0     3.0     4.0

×10-4

R
t /

 n
m

R
t /

 n
m

a b

dc

80

Decreasing Rt
Increasing Rt

κ
 / 

J
FIGURE 2 Membrane bending stiffness from projection

length (Lp)/tether length (Lt) measurements. (a) Demon-

stration of Lp versus Lt plots at different membrane

tensions. (Square, s ¼ 1.2 � 10�4 N/m; triangle,

s¼ 5.2� 10�5 N/m; circle, s¼ 3.4� 10�5 N/m; and solid

and open symbols represent the elongation and relaxation

steps of the tether, respectively.) This example is chosen

from three tether radius measurements of composition III.

From the slopes of these plots, we obtained tether radii

(see Eq. 2). (Square, Rt ¼ 20.6 nm; triangle, Rt ¼ 34.0 nm;

and circle, Rt ¼ 39.0 nm.) (b) Relation of tether radius and

membrane tension of a tether consisting of binary mixture

DOPC/Chol¼ 2:1. Solid line indicates the fit of data points

using a single bending stiffness (k ¼ 7.4 � 10�20 J). (c)

Bending stiffness versus tether radius plot. Bending stiff-

ness is calculated from panel b and is observed to be

roughly constant, under changing curvature. (d) Relation

of tether radius and membrane tension of a tether from

ternary mixture III. Solid and open circles represent

decreasing and increasing Rt, respectively. Solid line and

shaded line are plots at the maximum (kmax ¼ 1.5 �
10�19 J) and the minimum (kmin ¼ 8.5 � 10�20 J) bending

stiffness values among these data points. It is thus observed

that the bending stiffness decreases with curvature for this

mixture. Error bars were determined as explained in the

Supporting Material.
diagram, compositions III and IV are expected at room

temperature to be in the neighborhood of a critical consolute

(i.e., mixing/demixing) point (47,48).

Vesicles were pipette-aspirated and the lateral membrane

tension was adjusted by a hydrostatic approach, as described

in Tian and Baumgart (5). Our approach to determining

membrane bending stiffness as a function of curvature is

identical to our previous measurements (5), and a similar

technique has been described by Bo and Waugh (14). Vesi-

cles with sufficient excess membrane area (relative to the

area of a sphere with the same volume) were chosen for

pipette aspiration. The excess area yields a pipette-aspirated

membrane fraction with a length that should exceed the inner

aspiration pipette radius under all experimental conditions.

After pipette aspiration, a streptavidin-coated bead was

brought into contact with the vesicular membrane by means

of a second pipette that was moved via a micromanipulator

assembly. Moving the bead away from the vesicle generated

a cylindrical tether from the vesicular membrane. The curva-

ture of the tether was adjusted by means of the pipette aspi-

ration pressure. We determined the radius by a stepwise

extension of the tube length (Lt) and measurement of the

accompanying decrease of the length (Lp) of the pipette-aspi-

rated vesicle projection in the pipette interior (5,14). Exam-

ples for such measurements are shown in Fig. 2 a for three

different lateral membrane tensions. From the slope of the

plot in Fig. 2 a, the tube radius can be calculated. Examples

are shown in Fig. 2 b, where, to contrast with ternary

mixtures, we consider a binary mixture of DOPC/Chol in

a molar ratio 2:1. The line in Fig. 2 b is a fit to the equation

Rt ¼
ffiffiffiffiffiffiffiffiffiffi
k=2s

p
(50,51). The excellent agreement between fit

and experimental data in Fig. 2 b indicates that the binary
Biophysical Journal 97(6) 1636–1646
mixture membrane displays a constant bending stiffness

over the entire curvature range, down to ~10 nm. This

finding is further demonstrated in the bending stiffness

values that were calculated from every radius/tension pair,

shown in Fig. 2 c over the entire curvature range. Earlier

measurements using binary mixtures of palmitoyloleoyl-

phosphatidylserine and SOPC also did not report a curva-

ture-dependent bending stiffness (52).

Fig. 2 d shows radius measurement examples in a tube

with composition III (close to the critical point). The lines

in Fig. 2 d are tube radius values calculated for a constant

bending stiffness assuming either the stiffness value (kmax)

obtained from the radius/tension pair of the largest radius

in Fig. 2 d (solid line), or the stiffness value (kmin) obtained

from the radius/tension pair of the smallest radius value

(shaded line). Clearly, the experimental data cannot be fitted

by assuming a constant bending stiffness. In Fig. 3, we illus-

trate the bending stiffness values obtained from the radius/

tension pairs shown in Fig. 2 d for composition III in three

different representations: as a function of tube radius

(Fig. 3 a); as a function of curvature, C ¼ 1/Rt, where Rt is

the tube radius (Fig. 3 b); and, as a function of the square

of the tube curvature (Fig. 3 c). Fig. 3 c indicates a different

slope for the first few data points, compared to those

obtained at larger curvatures. The axis scaling of Fig. 3 c
is motivated by an analytical theory (detailed below), which

will indicate the bending stiffness to be a function of the

squared curvature in the low curvature regime. Fig. 3 d
displays data collected for measurements in eight different

vesicles over the entire curvature range of composition III.

Before we quantitatively examine our data (results shown

in Fig. 4), we outline the theoretical framework of our
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FIGURE 3 Bending stiffness versus (a) tether radius, (b)

tether curvature, and (c) squared curvature plots from the

same experimental data shown in Fig. 2 d. The figures

clearly indicate the bending stiffness to decrease with

increasing curvature. (d) Bending stiffness and squared

curvature C2 relation from combination of eight whole-

range data sets of composition III. The value n refers to

the number of different vesicles examined. Data points in

panels c and d are separated into two ranges by dashed lines

at C2 ¼ 0.0012 nm�2. The bending stiffnesses obtained at

C2 values <0.0012 nm�2 were chosen for fitting our ther-

modynamic model to bending stiffness-curvature relations

keff ¼ k0 � UC2, for all compositions examined.
analysis and contrast description of sorting caused by

composition-dependent spontaneous curvature (19,21,22,

24,27) to sorting invoked by composition-dependent bend-

ing stiffness in membrane mixtures. To apply the theory

developed by Kozlov and Helfrich (21) to our situation,

we first approximate the ternary mixture of Fig. 1 with a

binary mixture. Previous work has shown that a quasibinary
phenomenological condensed complex model well describes

the fluid phase boundaries of experimental ternary phase

diagrams (53). Below, we obtain alternative expressions

for ternary mixtures. These expressions are more complex

but do not change the interpretation of experimental

data. We consider a thermodynamic process that keeps the

area of the membrane tube constant but changes the
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FIGURE 4 (a) Linear fits of bending stiffness and

squared curvature obtained from multiple data sets in the

low curvature range (C2 < 0.0012 nm�2) for each compo-

sition. Compositions are indicated at the upper-left corner

of each graph, and the numbers of tethers included for

each composition are shown in the upper-right corner of

each plot. Data sets of composition III are the same as those

in Fig. 3 d but display the low curvature region instead of

the whole range. (b) Slopes from linear fits for different

compositions in panel a. Dashed lines are linear fits depict-

ing the increasing trends of slopes U for compositional

trajectories parallel (I, II, and III) and perpendicular (VI,

V, IV, and III) to phase boundary approaching the neigh-

borhood of a critical demixing point. The graph indicates

that the slope U, which determines the sorting efficiency

(see Eqs. 7 and 8), increases upon approaching the critical

region. (c) Bending stiffness at zero curvature (intercepts of

plots in panel a) for different compositions. Error bars in

panels b and c are the uncertainty of linear fits in panel a.
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curvature (compare to the Appendix of Kozlov and Helfrich

(21)) and thus define the differential of the tube free

energy, F, as

dF ¼ AkCdC þ madNa þ mbdNb

¼ AkCdC þ N
�
ma � mb

�
d4a; (3)

where A is the tube area, k is the bending stiffness of the tube,

and mi and Ni are chemical potentials and numbers of molec-

ular components i, respectively. Expansions with respect to

mole fraction 4i (as opposed to molecular component

numbers Ni) simplify the resulting expressions. Equation 3

allows us to obtain a Taylor expansion of the tube free

energy (21) about a flat membrane from expansions of the

intensive parameters in Eq. 3, followed by integration (see

Appendix of Kozlov and Helfrich (21)). We define the diffu-

sion (or exchange) potential as

m ¼ ma � mb ¼
1

N

�
vF

v4a

�
A;C

; (4)

where N is the total number of molecules in the tube, and the

derivative is evaluated at constant tube area and constant

curvature. All following derivatives are evaluated at constant

area; however, below we drop the index A. As Appendix A

demonstrates in more detail, an expansion of the quantity m

to first-order in curvature and composition change relative to

zero curvature,

D4a ¼ 4aðCÞ � 4a0;

yields the following relation between these two quantities,

D4a ¼ �
��

vm

vC

�
0

��
vm

v4a

�
0

	
C; (5)

from which an effective bending stiffness can be obtained

(see Appendix A),

keff ¼ k0 � r

�
vm

vC

�2

0

��
vm

v4a

�
0

; (6)

where r ¼ N/A is an area density that is assumed to be

constant. The index 0 in Eqs. 5 and 6 indicates that these

partial derivatives have to be evaluated for the flat membrane,

as they are Taylor coefficients associated with an expansion

about the flat state of the membrane. Note that under our

experimental conditions the curvature of the vesicle is 2–3

orders-of-magnitude smaller compared to the curvature of

the tube. We therefore regard the vesicle as flat. Furthermore,

the number of lipids contained in the vesicle is significantly

larger than that in the tube. The vesicle is therefore regarded

as a particle reservoir with fixed composition and curvature,

and therefore has constant chemical potential. Note that the

effective bending stiffness obtained through Eq. 6 is smaller

compared to the bare bending stiffness, but is not a function

of curvature. Furthermore, the first derivative in Eq. 6 will
Biophysical Journal 97(6) 1636–1646
have nonzero values only for membranes with nonzero spon-

taneous curvature (see Appendix A, which also provides an

example of a model for which the thermodynamic derivatives

can be evaluated analytically). For both of these reasons, our

observations shown in Figs. 3 and 4 cannot be explained by

means of a model that assumes primarily spontaneous curva-

ture to drive the sorting process.

It follows that to obtain a curvature-dependent bending

stiffness, the quantity m has to be expanded to second-order

(or, equivalently, the free energy has to be expanded to third-

order). From such an expansion, we obtain the composition

change as a quadratic function of curvature (see Appendix B

for details),

D4a ¼ �
1

2

��
v2m

vC2

�
0

��
vm

v4a

�
0

	
C2; (7)

allowing us to express the bending stiffness as a function of

curvature (see Appendix B),

keff ¼ k0 �
3

4

��
vk

v4a

�2

0

�
r

�
vm

v4a

�
0

	
C2 ¼ k0 � UC2:

(8)

Equation 8 is valid at constant chemical potentials

fixed by the reservoir. As long as the bending stiffness is

composition-dependent, we therefore find the renormalized

(effective) bending stiffness to be a quadratic function of

curvature. The effective bending resistance is experimentally

obtained from

keff ¼ 2sR2
t ;

where s and Rt are the experimentally determined quantities.

Equation 8 is the central result of our analysis and is fitted to

data in the form

keff ¼ k0 � UC2;

where U comprises the thermodynamic derivatives in Eq. 8.

Note that these derivatives are approximately constant for

given initial conditions, as they are all evaluated at the flat state.

In both Eqs. 6 and 8, the effective bending stiffness depends

on a quantity that can be interpreted as a ‘‘driving force’’ to

sorting (the first derivative in both equations). This ‘‘driving

force’’ is divided by a quantity that resists sorting (second

derivative in both equations). The resistance to sorting is

composition-dependent (see Appendix B for details including

a model for which the thermodynamic derivatives were

analytically evaluated). For membranes that can phase-sepa-

rate, this derivative will vanish at the spinodal line, in the

neighborhood of which sorting is thus expected to be ampli-

fied. The spinodal line, which lies within the miscibility gap

of the phase diagram, can be approached most closely in the

neighborhood of a critical point. This motivates our choice

of compositional trajectories (Fig. 1). We fitted Eq. 8 to our

data within the low curvature regime defined in Fig. 3. The
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rationale behind this limited range evolves from the derivation

of Eq. 8. The relation results from Taylor expansions about the

flat state. The second-order Taylor expansion of tube free

energy in curvature has been shown to be accurate down to

curvature radii approaching membrane thickness (54).

However, it is likely that the accuracy of a second-order free

energy expansion (first-order expansion of the chemical poten-

tials) in composition change is limited to small deviations from

the composition of the flat membrane for the mixing ratios

considered in this contribution.

Fig. 4 summarizes our composition-dependent measure-

ments of bending stiffness for the six compositions of

Fig. 1. Fig. 4 a shows the low curvature regime of bending

stiffness versus squared curvature plots that, according to

Eq. 8, is expected to be linear. Results of linear fits to data

obtained from several vesicles (numbers n are indicated in

the figure) are displayed in Fig. 4, b and c. The error bars

in Fig. 4, b and c, result from the uncertainty of slope and

intercept of linear fits to the pooled data shown in Fig. 4 a.

Although these error bars are large, Fig. 4 b suggests that

the prefactor U increases upon approaching the neighbor-

hood of the critical point along the trajectory roughly parallel

to the phase boundary (compositions I–III). As further dis-

cussed below, this may be rationalized by the value of the

second derivative in Eq. 8 becoming smaller along this

trajectory. We furthermore observe that approaching the crit-

ical region along the trajectory orthogonal to the phase

boundary is also associated with an increase of the prefactor

U. Refined measurements will have to be performed to

determine critical exponents in these experiments, because

the current uncertainties are large. Our results, however, do

indicate that effective sorting, indicated by composition-

dependent bending stiffness values, occurs over a large

composition range far from the critical point.

Fig. 4 c displays bending stiffness values for the flat state

obtained from fitting Eq. 8 to our data. The figure indicates

that the reservoir bending stiffness k0 increases when

approaching the critical neighborhood through compositions

I–III. Bending stiffness measurements in ternary mixture

membranes are still rare (55,56). We therefore used a second

technique to confirm the composition dependence of the

bending stiffness of the vesicle reservoir displayed in

Fig. 4 c. We measured projected membrane area of aspirated

vesicles as a function of lateral tension, and determined

bending stiffness (57) as described in the Supporting Mate-

rial. We minimized curvature effects in these measurements

by using large pipettes and focusing on the low tension

regime. We first confirmed (see Table 1) that our experi-
mental conditions reproduced bending stiffness values for

the lipid SOPC, which has frequently been used in pipette

aspiration experiments (57,58). Previous measurements

have shown that bending stiffness often increases while

increasing the cholesterol content of fluid phase binary

mixture membranes (40,41). However, interestingly, choles-

terol has a surprisingly small effect on the bending stiffness

of binary mixtures with DOPC (42). This phenomenon is

confirmed by our pipette aspiration measurements (Table 1).

Overall, the stiffness values shown in Table 1 are systemat-

ically smaller, comparing pipette aspiration to membrane

tethers. This effect has previously been noted (59) and is

likely related to the convolution of bending and stretching

elasticities complicating analysis of pipette aspiration data

(60). The table does, however, indicate that pipette aspiration

reports a similar composition trend of reservoir bending stiff-

ness values compared to values obtained from fitting our

Eq. 8. We finally note that our DOPC/Chol bending stiffness

values are in good agreement with literature values (42,59).

DISCUSSION

We have thus far interpreted our measurements by means of

quasibinary mixture models with straightforward interpreta-

tion and minimized algebraic effort. In reality, however, both

bending stiffness and chemical potentials depend on the

concentrations of all three components—DOPC, DPPC,

and Chol. The ternary mixture equivalents to Eqs. 6 and 8

are obtained from an exercise in matrix algebra, using the

two exchange potentials mi ¼ mi � m3 referenced to the

chemical potential of the third component. For the effective

resistance to bending in the ternary spontaneous curvature

model, we have

TABLE 1 Bending stiffness of quasiflat membranes by pipette

aspiration and tether pulling

Composition k0 � 10�19 J (Aspiration) k0 � 10�19 J (Tether)

I 0.91 5 0.17 (n ¼ 4) 1.36 5 0.27 (n ¼ 5)

II — 1.84 5 0.12 (n ¼ 6)

III — 1.86 5 0.47 (n ¼ 8)

IV 1.40 5 0.52 (n ¼ 8) 2.16 5 0.12 (n ¼ 9)

V — 2.29 5 0.11 (n ¼ 7)

VI 0.93 5 0.13 (n ¼ 4) 1.36 5 0.11 (n ¼ 5)

DOPC/Chol ¼ 1:1 0.91 5 0.33 (n ¼ 10) —

DOPC/Chol ¼ 2:1 0.86 5 0.13 (n ¼ 8) 1.01 5 0.23 (n ¼ 9)

SOPC 0.77 5 0.14 (n ¼ 13) —

Comparison of experimental bending stiffness values using micropipette

aspiration method and tether pulling, respectively. Uncertainties result

from measurements in n vesicles indicated in parentheses.
keff ¼ k0 � r

�
vm1

vC

�2

0

�
vm2

v42

�
0

�
�

vm1

vC

�2

0

�
vm2

vC

�
0

�
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v42

�
0

þ
�

vm2

vC

�2

0

�
vm1

v41

�
0�

vm1

v41

�
0

�
vm2

v42

�
0

�
�

vm1

v42

�
0

�
vm2

v41

�
0

; (9)
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i.e., the sole difference between Eqs. 6 and 8 is the interpre-

tation of the thermodynamic factor. Equivalently, the curva-

ture- and composition-dependent resistance to bending

described by Eq. 8 reads, for a ternary mixture,
keff ¼ k0 �
3

4

�
vk

v41

�2

0

�
vm2

v42

�
0

�
�

vk

v41

�2

0

�
vk

v42

�
0

�
vm1

v42

�
0

þ
�

vk

v42

�2

0

�
vm1

v41

�
0

r
n
vm1

v41

�
0


vm2

v42

�
0
�

vm1

v42

�
0


vm2

v41

�
0

o C2; (10)
where the ratio of thermodynamic derivatives is the ternary

version of the parameter U determined from the fits shown

in Fig. 4. Presently, little is known about composition depen-

dence of k and mi along lines parallel to the edges of the

Gibbs phase triangle representing ternary mixtures. Future

experimental measurements of ternary mixture bending stiff-

ness values across the phase diagram will, we hope, allow to

test the detailed form of U.

We have approached the critical mixing/demixing region

of a ternary lipid mixture from two different compositional

directions, one approximately orthogonal and one roughly

parallel to the phase boundary. Comparing these two trajecto-

ries, Fig. 4 suggests that along the direction orthogonal to the

phase boundary the parameter U decreases more quickly

away from the critical point compared to the trajectory

asymptotically parallel to the phase boundary. It is a well-

known fact that critical exponents associated with the

liquid/gas phase transition in a single component system

differ, comparing the approach of the critical point asymptot-

ically parallel versus along a direction orthogonal to the coex-

istence curve in field space (49). The scaling behavior of

mixtures satisfies the same scaling laws as single component

systems, if suitable field variables are introduced (61,62),

alternative to the densities (mole fractions) of Fig. 1. A

more trivial challenge to the measurement of critical expo-

nents is the large uncertainty in our present measurements.

Bending stiffness values k0 of the quasiflat reservoir were

observed to increase when approaching the phase boundary

along the trajectory of compositions I–III (Fig. 4 c and Table

1), i.e., along a trajectory with increasing DPPC concentra-

tion. Importantly, this behavior in approaching a demixing

transition phase boundary is opposite to the trends in bending

stiffness near a main phase transition in single component

membranes. In DMPC membranes, for example, a significant

softening occurs when decreasing temperature toward the

phase transition temperature (63–65). This decreased

bending stiffness is likely due to a divergence of the area

compressibility modulus at the DMPC main phase transition

temperature (59,66). On the other hand, the area compress-

ibility modulus of ternary lipid mixtures does not appear to

show anomalies near a mixing/demixing phase boundary

(56). In the critical neighborhood of a mixing/demixing tran-
Biophysical Journal 97(6) 1636–1646
sition in ternary mixtures, the area compressibility modulus

and bending stiffness thus appear to remain finite, whereas

the osmotic compressibility diverges. We therefore argue

that the increase of the quantity U, defined in Eq. 8, upon
approaching the critical neighborhood, is dominated by the

divergence of the denominator, whereas the numerator

remains finite and is not likely to show anomalies near the

critical point. Equation 8 indicates that membranes consist-

ing of nonideal lipid mixtures may become mechanically

instable toward curvature fluctuations in the neighborhood

of the critical mixing/demixing point.

In all measurements of curvature/bending resistance rela-

tions, the bending stiffness decreased monotonously with

increasing curvature and no discontinuous transitions were

observed. We thus conclude that the finding of curvature-

induced sorting in ternary lipid mixtures is not associated

with an abrupt, first-order phase transition. This hypothesis is

supported by the fact that we have not observed any sharp

boundaries, which would separate a membrane tube phase

from a second phase of the quasiflat (vesicle) reservoir. Accord-

ingly, the composition change as a function of curvature must

be a continuous transition toward a phase with a more disor-

dered-phase character, associated with a composition of the

tube membrane that does not enter the coexistence region.

In characteristically different regions of the phase diagram

than those investigated in this study, in the strong segrega-

tion limit far from the critical point, we have, however,

observed curvature-dependent nucleation of domains in

initially homogeneous phase membrane tubes (not shown).

After nucleation, exclusively, a single liquid-disordered

domain, with sharp phase boundaries, extended with charac-

teristic square-root growth kinetics that are strongly depen-

dent on curvature. This phenomenon thus shows rather

different behavior compared to the measurements described

above for the weak segregation limit in the critical neighbor-

hood. A detailed description of these curvature-induced first-

order transitions along with an initial theoretical analysis will

be the topic of a forthcoming article.

CONCLUSIONS

Our results indicate that curvature-induced lateral lipid

segregation in membranes with curvature gradients is ampli-

fied in nonideal lipid mixtures. Entropic penalties to sorting

that dominate (5) the distribution of ideally diluted trace

components, and that also dominate in ideal lipid mixtures,
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can thus be overcome by enthalpic contributions from pref-

erential lipid/lipid interactions. The resistance to sorting,

expressed in Eqs. 5–8, vanishes at the spinodal line of the

ternary mixture phase diagram, where sorting thus becomes

maximally efficient.

We note that the phenomenon of curvature-induced demix-

ing that we show here seems to be confirmed by recent inde-

pendent measurements of pulling forces for tubes extracted

from vesicles composed of a multicomponent mixture of

several different sphingomyelins plus DOPC and cholesterol

(18). Our choice of technique yields the tube radius, and thus

does not require the use of reference curvatures.

The measurements described in this report have focused on

simple model membrane mixtures. Recent contributions have

reported phase transitions (67) and near-critical behavior (68)

in vesicles obtained from cellular membranes, indicating

strongly nonideal mixing. This suggests that curvature-

modulated lateral sorting may be a relevant mechanism for

sorting in biological membranes. Trace components, such

as DiI dyes (3), have been shown to sort differentially among

intracellular biological membranes (3). Our findings suggest

that membrane trace components are sorted by sensing the

curvature-dependent membrane bulk composition. This sort-

ing mechanism is different from trace components directly

sensing membrane curvature, a scenario that we (5), and

others (27,69), have found to be inefficient.

Lipid model membrane systems bear the potential for

providing further insight into the biophysical contribution

of membrane curvature to biological sorting phenomena.

APPENDIX A: SORTING BY SPONTANEOUS
CURVATURE

To obtain a relation between the curvature C and the sorting effect

D4a ¼ 4aðCÞ � 4a0, where fa0 is the composition of a flat reservoir, we

expand the quantity m about the flat state (C ¼ 0),

m ¼ m0 þ
�

vm

vC

�
0

C þ
�

vm

v4a

�
0

D4a; (11)

where the index 0 indicates that partial derivatives are evaluated at the flat state.

For the spontaneous curvature model, the second derivative in Eq. 11 is a func-

tion of the spontaneous curvature of the membrane. Equation 5 is obtained from

considering diffusional equilibrium mðCÞ ¼ m0 of a flat reservoir (approxi-

mated by the vesicle) and bent membrane (tube). Equation 5 can be used to

calculate the degree of sorting with specific models, such as the one proposed

by Markin (19) and Kozlov and Helfrich (21), who consider an overall sponta-

neous curvature Cs and bending energy Fbend to be a function of composition,

Csð4Þ ¼ Ca4a þ Cb4b

Fbend ¼ 1

2
kðC� Csð4ÞÞ2A;

(12)

where Ci values are molecular spontaneous curvatures of molecule i. From

these equations, the following chemical potential can be calculated (for the

outer monolayer and molecule a (5)) as

ma ¼ akðC� Csð4ÞÞ4bðCb � CaÞ þ kBTln 4a; (13)

where a¼ 1/r is the area per molecule, and kB is Boltzmann’s constant, such

that Eq. 5 becomes
D4a ¼ �
��

vm

vC

�
0

��
vm

v4a

�
0

	
C

¼ C

ðCa � CbÞ þ
kBT

ak0ðCa � CbÞ

�
1

4a

þ 1

4b

�: (14)

This expression shows that at zero temperature, the curvature C is equal to

the difference of spontaneous curvature in the bent and in the flat state,

C ¼ Cs;tube � Cs0;

and that sorting becomes less efficient at higher temperatures. Using the

quantity m, the free energy change of the tube/flat reservoir combination

associated with a process at constant area A, is given to second-order by (21)

DF ¼ 1

2
k0C2A þ 1

2
N

�
vm

v4a

�
0

D42
a þ N

�
vm

vC

�
0

D4aC:

(15)

Insertion of Eq. 14 leads to the simple form

DF ¼ 1

2
keffC

2A; (16)

where the effective bending stiffness is expressed as

keff ¼ k0 � r

�
vm

vC

�2

0

��
vm

v4a

�
0

¼ k0 �
ak2

0ðCa � CbÞ2

ak0ðCa � CbÞ2þ kBT

�
1

4a

þ 1

4b

�: (17)

The effective bending stiffness is thus equivalent to the bare bending

stiffness k0 if both spontaneous curvatures are equal, or if the temperature

is high. An equation equivalent to Eq. 17 has been derived in Kozlov and

Helfrich (21) for the case of compressible membranes.

APPENDIX B: SORTING BY BENDING STIFFNESS

For a model that considers a composition-dependent bending stiffness, we

have to carry the Taylor expansion of the free energy change comparing

flat and bent state up to third-order. A third-order Taylor expansion of F,

say in the parameters C and fi, will in general include homogeneous

third-order derivatives such as FCCC and F4i4i4i
, as well as mixed derivatives

and their permutations. For these third-order derivatives, we only consider

the terms of FCC4i
of which there are three permutations. Note that we there-

fore have neglected terms of F4i4i4i
, i.e., third-order contributions to an order

parameter expansion of F, which may not always be justified (70), as Fig. 3

shows. The terms of FCC4i
quantify the composition dependence of the

bending stiffness, since k is defined as

k0 ¼
1

A
FCC ¼

1

A

�
v2F

vC2

�
0

: (18)

This definition leads to a relation connecting the third-order derivatives,�
v2m=vC2

�
¼ A=Nðvk=v4aÞ;

and that thus represents two permutations of FCC4i
. We thus have, for

second- and third-order contributions to the Taylor expansion of the free

energy that results from Eq. 3, after inserting intensive parameters expanded

to second order, followed by integration (21),
Biophysical Journal 97(6) 1636–1646
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DF ¼ 1

2
k0C2A þ 1

2
r

�
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v4a

�
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D42
aA þ 1

2

�
vk

v4a

�
0

D4aC2A:

(19)

Equation 19 is written to obtain, as required at constant curvature, a first-order

homogeneous function in A ¼ 2pRtL, where L is the length of the tube. We

note that this free energy expansion does not contain contributions from

line tension (10,46,71–73), as we did not observe curvature-induced phase

transitions with the mixtures examined in this contribution. A free energy

functional similar to Eq. 19 has also been considered in Sorre et al. (18).

To obtain a relation between composition change and curvature, the expan-

sion of Eq. 11 carried to second-order leads to

C2 ¼ � 2

��
vm

v4a

�
0

��
v2m

vC2

�
0

	
D4a

�
��

v2m

v42
a

�
0

��
v2m

vC2

�
0

	
D42

a;

(20)

after consideration of diffusional equilibrium and realizing that the first

partial derivative term in Eq. 11 is zero for membranes where sorting occurs

by bending stiffness only. Equation 20 can be viewed as a second-order

series expansion of C2 in the parameter D4a. Reverting this series (74)

yields, to first-order in C2,

D4a ¼ �
1

2

��
v2m

vC2

�
0

��
vm

v4a

�
0

	
C2: (21)

Equation 21 is used in Eq. 19 to eliminate the composition dependence. To

obtain a mechanical balance equation, Eq. 19 is then amended by the term

sA. Minimizing the resulting functional with respect to radius changes at

constant tube length results in

s ¼ 1

2

k0

R2
t

� 3

8

��
vk

v4a

�2

0

�
r

�
vm

v4a

�
0

	
1

R4
t

¼ 1

2

keff

R2
t

; (22)

which leads to Eq. 8 of the main text.

For the bending stiffness composition-dependence model suggested by Mar-

kin (19) and Kozlov and Helfrich (21), we have bending stiffness and

energy,

1

kð4Þ ¼
4a

ka

þ
4b

kb

Fbend ¼ 1

2
kð4ÞC2A; (23)

where ki values are the molecular bending stiffnesses. These expressions

determine the chemical potential for molecule a (5),

ma ¼
1

2
akð4Þ2C24b

�
1

kb

� 1

ka

�
þ kBTln4a; (24)

from which an effective bending stiffness can be obtained as

keff ¼ k0 �
3
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As it should, the sorting effect thus disappears if both molecular bending

stiffnesses ki are equal, as well as if the temperature is large. We have

expressed the resistance to sorting in Eqs. 24 and 25 as a mere entropic

contribution. In the case of phase-separating mixtures, an interaction term

can reduce this resistance to zero at the spinodal line. For these cases, the

formalism can easily be generalized to more complex free energy functions

that include intermolecular interactions.
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