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Abstract

This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the 
concept of random weighting estimation to estimate the covariance matrices of system state noises and observation noises for 
controlling the disturbances of singular observations and the kinematic model errors. It satisfies the practical requirements of the 
residual vector and innovation vector to sufficiently utilize observation information, thus weakening the disturbing effect of the 
kinematic model error and observation model error on the state parameter estimation. Theories and algorithms of random 
weighting estimation are established for estimating the covariance matrices of observation residual vectors and innovation vec-
tors. This random weighting estimation method provides an effective solution for improving the positioning accuracy in dynamic 
navigation. Experimental results show that compared with the Kalman filtering, the extended Kalman filtering and the adaptive 
windowing filtering, the proposed method can adaptively determine the covariance matrices of observation error and state error,
effectively resist the disturbances caused by system error and observation error, and significantly improve the positioning accu-
racy for dynamic navigation. 

Keywords: estimation; navigation; error; random weighting estimation; dynamic navigation positioning; covariance matrix; ki-
nematic model error; observation model error 

1. Introduction1

The Kalman filter is a commonly used computa-
tional method in aerospace navigation. It is required 
that both the state errors predicted from the kinematic 
model error and the observation model error be nor-
mally distributed with zero means. If the kinematic and 
observation models contain errors, the navigation esti-
mates will be biased, and even divergent. However, it is 
unavoidable in practical engineering applications that 
the kinematic and observation models contain global or 
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local errors, due to the disturbances caused by singular 
observations and random factors in the dynamic envi-
ronment. Therefore, it is necessary to estimate the de-
viations of the kinematic and observation models for 
improving the accuracy of dynamic navigation posi-
tioning. 

In essence, the control of the influences caused by 
the kinematic model error and observation model error  
is to reduce the covariance matrix of observation vec-
tors, thus sufficiently utilizing observation information 
to weaken the influence of the model errors on the state 
parameter vector[1]. The windowing method is a com-
monly used method to adaptive estimation of the co-
variance matrix of observation noise[2-5]. It uses m ep-
ochs of innovation vectors or residual vectors to esti-
mate the current observation residual covariance ma-
trix. In the case of innovation vectors, it is called the Open access under 
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innovation-based adaptive estimation (IAE) filtering. 
Otherwise, it is called the residual-based adaptive es-
timation (RAE) filtering. However, this method re-
quires residual vectors at each epoch be in the same 
type and the identical dimension and distribution, 
which is difficult to achieve in a highly dynamic envi-
ronment[2,4]. Jazwinski[6] reported a method to com-
pensate the model errors by using polynomial fitting. 
The use of a high-order polynomial may lead to the 
difficulty in solving the state parameters, while the use 
of a low-order polynomial may result in the low com-
pensation accuracy. Mehra[7] proposed an innova-
tion-based adaptive estimation by windowing ap-
proximation. This method adaptively updates the co-
variance matrices of the observation equations and the 
state errors by using the observation information[4].
However, it requires that the covariance matrices of 
observation vector and state errors be adaptively 
changed according to observation information, which is 
difficult to achieve in practical engineering. Yang, et 
al.[1] reported an adaptive filter by combining the ro-
bust maximum-likelihood estimation with the state 
covariance matrix of the expansion model to improve 
the accuracy of dynamic navigation positioning. How-
ever, when the observational information is not suffi-
cient at some epochs, it is difficult for this filtering 
method to estimate state parameters. 

The robust adaptive filter is a method to control the 
influence of singular observations and the kinematic 
model errors by robustly estimating the covariance 
matrix of observation noise and adaptively adjusting 
the covariance matrix of the state noise through the 
adaptive factor[8-10]. The robust adaptive filtering ab-
sorbs the merits of both robust estimation and adaptive 
filtering. It cannot only resist the disturbance of the 
observation, but also obtain reliable filtering results by 
using robust estimation principles for observation in-
formation. However, in the robust adaptive filtering, 
the iterative process for estimating the covariance ma-
trix of the observation noise requires reliable state es-
timates. If the state estimates are disturbed by singular 
observation model error and the kinematic model error, 
the reliable equivalent covariance matrix cannot be 
obtained[5,11]. The arithmetic mean estimation is a 
straightforward method for estimating the covariance 
matrix of the innovation vectors and the residual vec-
tors[12-13]. However, when calculating the covariance 
matrix of the observation noise vectors, there exists 
error in state prediction. If the state prediction error is 
large, the predicted residual is also large, thus decreas-
ing the reliability in estimating the covariance matrices 
of the innovation vectors and the observation residual 
vectors.

The random weighting method is an emerging com-
puting method in statistics[14-16]. It has many benefits, 
such as the unbiased estimation, the simplicity in 
computation, the suitability for large samples, and no 
need to know the accurate probability distribution of 
objective characteristic parameters. The random 
weighting method can also be used to calculate statis-

tics with a probability density function, since the resul-
tant statistical distribution provides a probability den-
sity function. Therefore, the random weighting method 
has been used to solve different problems[14-19]. Just 
recently, Gao, et al.[19] adopted the concept of random 
weighting estimation to fusion of multi-dimensional 
position data. However, the random weighting estima-
tion is only used to estimate position data from single 
sensors. To the best of our knowledge, there has been 
very limited research to use random weighting method 
for dynamic navigation positioning. 

In this paper, a new method is presented for dynamic 
navigation positioning. This method estimates the co-
variance matrices of observation noise and state noise 
to control the disturbances of singular observations 
model error and the kinematic model error on the state 
parameter estimation. It satisfies the practical require-
ments of the residual vector and innovation vector to 
sufficiently utilize observation information, thus 
weakening the disturbing effect of the kinematic model 
error and observation model error on the state parame-
ter estimation. Experiments and comparison analysis 
with the existing methods are conducted to compre-
hensively evaluate the performance of the proposed 
method. 

2. Principle of Random Weighting Estimation 

Assume that X1, X2, …, Xn are independent and iden-
tically distributed random variables with common dis-
tribution function F(x), and the corresponding empiri-
cal distribution function is 
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3. Covariance Matrices of Observation Residual 
Vectors and Innovation Vectors 

Assume that the kinematic model is defined as[1]

, 1 1 1k k k k kX X W           (2) 

where Xk and Xk 1 are the m-dimensional state parame-
ter vectors at epoch tk and tk 1, respectively, k,k 1 is an 
m m state transition matrix, and Wk the model error 
vector whose mathematical expectation is zero and the 
covariance matrix is  

0
k

k i

k i
k i

W
W W          (3) 

whereWk is a Gaussian white noise vector. 
Assume that the random observation vectors are Z1,

Z2, …, Zk 1, and the optimally estimated value 1
ˆ

kX  of 
the state parameter at time tk 1 is obtained from the 
previous k 1 steps of filtering. Also assume that ob-
servation vector Zk can be obtained at time tk. Then, the 
relationship between Zk and system state parameter 
vector Xk at time tk, that is, the observation model at 
time tk, can be defined as[1] 

k k k kZ A X e              (4) 

where Ak is an n×m design matrix (observation matrix), 
and ek the observation noise vector whose mathemati-
cal expectation value is zero and covariance matrix is 

0k i

k k i
k ie e            (5) 

Apparently, ek is a Gaussian white noise vector. When 
i=k, the covariance matrices of Wk and ek are 

kW

and k, respectively. Here, Wk, Wi, ek and ei are inde-
pendent of each other. 

The state predicted vector can be written as  

, 1 1
ˆ

k k k k kX X W            (6) 

Its solution may be written as  
ˆ ( )k k k k k kX X Z A X         (7) 
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The residual vector and the innovation vector may 
be written as 

ˆ
k k k kV A X Z             (10) 

and

k k k kV A X Z               (11) 

In order to control the influence of residual vector Vk

and innovation vector kV  on the accuracy of naviga-
tion system, under the conditions of satisfying the 
Dirichlet distribution, the random weighting factor is 

chosen according to the values of Vk and kV . The lar-
ger/smaller the value of Vk, the smaller/larger the 
weighting factor. The same process can also be applied 
to kV . The covariance matrices of Vk and kV  are 

T
ˆk kk k kV XA A           (12)

and
T

k kk k kV XA A          (13) 

According to Eq.(10), residual vector Vk can be ob-
tained by state parameter ˆ

kX  at time tk, which contains 
the information of observation vector Zk at time tk. In-
novation vector kV  can be calculated from predicted 
state vector kX  at time tk. Since Vk is related to the 
state modified by Zk and kV  is related to the state un-
modified by Zk, it is readily known that innovation 
vector kV  is better than Vk in reflecting the disturbance 
of the dynamic system[1].

4. Random Weighting Estimation of Observation    
Noise Covariance Matrix by Windowing 

This paper adopts the concept of random weighting 
estimation to the windowing filtering process, and fur-
ther establishes the random weighting estimation fil-
tering method. Similar to the windowing filtering 
process, the random weighting estimation filtering 
method estimates the current observation residual co-
variance matrix based on the m epochs of either inno-
vation vectors or residual vectors. The former is called 
the innovation-based random weighting estimation 
(IRWE) filtering, and the latter is called the resid-
ual-based random weighting estimation (RRWE) fil-
tering.

4.1. IRWE filtering by windowing 

Assume that the observation error approximately 
obeys the normal distribution and the calculating win-
dow is m. Then, according to Ref.[5], we can define 

T
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where ˆ
kV  is the IAE estimation value of 

kV .

Correspondingly, the IRWE of 
kV  can be written as 
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where wj is random weighting factor.  
Substituting Eq.(15) into Eq.(12), the random 

weighting estimation for the covariance matrix of the 
observation vector k  at tk may be written as 

* * Tˆ ˆ
k k kk kV XA A          (16) 
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4.2. RRWE by windowing  

Similar to Eq.(14), the covariance matrix 
kV  of 

observation residual vector Vk can be defined as  

T
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k j k j
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Correspondingly, the IRWE of 
kV  can be written as 
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From Eq.(13), the random weighting estimation for 
the covariance matrix of observation vector k at time 
tk is obtained as 

* * T
ˆ

ˆ ˆ
kk k kkV XA A          (19) 

Note that, in Eq.(19), residual vector Vk and ˆ
kX

 at 
time tk are used to calculate the random weighting es-
timation *ˆ

k  adaptively. However, *ˆ
k  must be ob-

tained before solving ˆ
kX

 and Vk. Thus, the covari-

ance matrix of observation vector k can be obtained 
by using the information at m epochs before time tk 1,
i.e.,

1
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Correspondingly, Eq.(19) can be written as 

1 1
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5. Experimental Results and Analysis  

A prototype system has been developed for dynamic 
navigation positioning by using the proposed random 
weighting estimation method. Experiments have been 
conducted to comprehensively evaluate and analyze the 
performance of the proposed method. The comparison 
with the existing methods is also discussed in this sec-
tion. 

Trials are conducted to observe a glacier at the 
Alps[2]. A Trimble 4000 SSI GPS receiver is installed at 
the base station, and a NovAtel Millenium GPS re-
ceiver is mounted to the aircraft. The aircraft takes off 
after the initialization of 8 min, and the flight time is 
about 100 min. The state equation is described as a 
constant velocity model. The variances of position, 
velocity and C/A code are 0.2 m2, 9.0 10 5 m2/s2 and 
1 m2, respectively. The spectral density of velocity is 
0.2 m2/s2. The models reported in Ref.[2] are adopted 
as the variance and the covariance matrix of the state 
vector. When the aircraft is encountering atmospheric 
interference or conducting high-flexibility maneuvers, 
oscillation occurs, resulting in noise to the kinematic 
state of the aircraft. 

For the comparison purpose, experiments are con-

ducted to estimate the dynamic positioning error of the 
aircraft under the same conditions by the proposed 
random weighting estimation filtering method as well 
as the existing methods such as the classical Kalman 
filtering, the extended Kalman filtering and the adap-
tive windowing  filtering[5], respectively. Fig.1 shows 
the filtering result obtained by the classical Kalman 
filtering. It can be seen that there are obvious oscilla-
tions in the filtering curve, and the positioning error is 
within 8 m. This shows that the classical Kalman fil-
tering is significantly influenced by the disturbances of 
the kinematic model error and observation model error.  

Fig.1  Classical Kalman filtering. 

Fig.2 shows the filtering result generated by the ex-
tended Kalman filtering. The positioning error is within 

5 m, which is much smaller than that by the classical 
Kalman filtering. This demonstrates that the extended 
Kalman filtering has a better performance than the 
classical Kalman filtering.  

Fig.2  Extended Kalman filtering. 

As shows in Fig.3, the filtering curve generated by 
the adaptive windowing filtering involves small oscil-
lations. The positioning error is within 2.5 m, which is 
much smaller than those by the classical Kalman fil-
tering and extended Kalman filtering. This demon-
strates that the adaptive windowing filtering has the 
capability to restrain the disturbances of the kinematic  

Fig.3  Adaptive windowing filtering. 
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model error and observation model error and the filter-
ing performance is much better in comparison with the 
classical Kalman filtering and extended Kalman filter-
ing.  

Fig.4 shows the filtering result obtained by the pro-
posed random weighting estimation method. It can be 
seen that there is no obvious oscillation in the filtering 
curve, and the curve is almost in the stable state during 
the flight time. The positioning error is within 1 m, 
which is much smaller than that obtained by the adap-
tive windowing filtering. This demonstrates that the 
proposed method outperforms the adaptive windowing 
filtering, and it can effectively resist the disturbances 
caused by the kinematic model error and observation 
model error.  

Fig.4  Random weighting adaptive filtering. 

Comparison between Fig.4 and Figs.1-2 reveals that 
the proposed method has much higher positioning ac-
curacy than the classical Kalman and extended Kalman 
filtering.  

Table 1 shows the detailed error analysis by com-
paring the proposed random weighting estimation 
method with the classical Kalman filtering, extended 
Kalman filtering and adaptive windowing filtering 
methods. 

Table 1  Error analysis of filtering output 

Filtering method 
Mean 
error 
/m 

Standard 
deviation 

/m 

Range of the 
positioning

error/m 
Kalman filtering 0.855 1.161 8.0 

Extended Kalman filtering 0.742 0.879 ±5.0 
Adaptive windowing 

filtering 0.623 0.714 ±2.5 

Random weighting adap-
tive filtering 0.501 0.622 ±1.0 

From the above experiments, it can be seen that the 
classical Kalman filtering and extended Kalman filter-
ing cannot resist the disturbances of the kinematic 
model error and observation model error. The adaptive 
windowing filtering estimates the covariance matrix of 
observation noise by using the IAE and RAE methods. 
Since it provides the ability for resisting the distur-
bances of the kinematic model error and observation 
model error and the observation noise, the filtering 
performance is better than the classical Kalman and 
extended kalman filtering. However, the adaptive win-
dowing filtering does not only require the information 
on the dynamic body at each epoch be in the same type 
and identical dimension and distribution, but also re-

quires that the observation noise at the current epoch be 
close to the average observation noise at each epoch in 
the window. In contrast, the random weighting adaptive 
filtering proposed in this paper is much more effective 
than the adaptive windowing filtering in terms of re-
sisting the disturbances of the kinematic model error 
and observation model error. It also has much higher 
positioning accuracy for dynamic navigation than the 
classical Kalman filtering and the extended Kalman 
filtering. Further more, it is simple in computation. 

Experiments are also conducted to evaluate the pro-
posed random weighting estimation filtering method in 
terms of the positioning accuracy for a strap-down in-
ertial navigation system/synthetic aperture radar 
(SINS/SAR) integrated navigation system. 

Suppose the aircraft initial position is 34.2  in lati-
tude, 108  in longitude; its height is 10 000 m and ini-
tial velocity 800 m/s. The gyro constant drift is 
0.01 ( )/h, and the white noise 0.001 ( ) / h . The 
accelerometer’s zero bias is 10 4g, and the random drift 
10 5g · s . The SAR computing time for image match-
ing is 5 s, the discretization period of the system state 
1 s, and the update time of the filtering observation 5 s. 
The accuracy of the altimeter is 10 m, the SINS’s initial 
position error is 10 m, initial velocity error 2 m/s, 
initial alignment error zero, and simulation time 
1 500 s. 

Experiments are conducted to estimate the position 
errors of the aircraft under the same conditions by the 
windowing filtering and the proposed random weight-
ing estimation filtering method, respectively. Fig.5 
shows the position error obtained by the windowing 
filtering. After 150 s, the longitude error is within 

6 m, the latitude error within 5 m, and the height 
error within 4 m. Instead, Fig.6 shows the position 
error obtained by the random weighting adaptive fil-
tering. After 150 s, the longitude error is within 1 m, 
the latitude error 1 m, and the height error 1 m. The 
experiments and comparison analysis have demon-
strated that the proposed method is much more effec-
tive for improving the performance of SINS/SAR inte-
grated navigation system than the windowing filtering. 

Fig.5  Position error obtained by windowing filtering. 
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Fig.6  Position error obtained by random weighting adaptive 
filtering.

6. Conclusions 

This paper presents a new random weighting estima-
tion method for dynamic navigation positioning. This 
random weighting estimation method provides an ef-
fective solution for improving the positioning accuracy 
in dynamic navigation. Experimental results and com-
parison analysis demonstrate that the proposed method 
can not only adaptively determine the covariance ma-
trices of observation noise and state noise, but also 
effectively resist the disturbances of singular observa-
tions and kinematic model noises. The proposed 
method is also simple in computation. 
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