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Abstract

In this paper we consider automorphisms of the domains of closed *-derivations of C*-algebras and show
that they extend to automorphisms of C*-algebras, so we call them diffeomorphisms. The diffeomorphisms
generate transformations of the sets of closed *-derivations of C*-algebras. In this paper we study the sub-
groups of diffeomorphisms that define “bounded” shifts of derivations and the subgroups of the stabilizers
of derivations.
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1. Introduction

Extensive development of non-commutative geometry requires elaborating of the theory of the
domains of closed *-derivations of C*-algebras whose properties in many respects are analogous
to the properties of algebras of differentiable functions. In this paper we consider automorphisms
of the domains of derivations and show that they extend to automorphisms of C*-algebras, so we
call them diffeomorphisms. The diffeomorphisms generate transformations of the sets of closed
*-derivations of C*-algebras. In this paper we study the subgroups of diffeomorphisms that define
“bounded” shifts of derivations and the subgroups of the stabilizers of derivations.
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Throughout the paper we denote by (2, || - ||) a C*-algebra. A closed linear map § from a
dense *-subalgebra D(8) of 2 into 2 is called a closed *-derivation if

5(AB)=A3(B)+8(A)B and §(A*)=5(A)* for A, B € D).

The subalgebra D(§) is called the domain of §; § is bounded if and only if D(§) = %.

Let A be a dense *-subalgebra of 2. Denote by Der(A) the set of all closed *-derivations
8 on A with A = D(§). We call A a domain if Der(A) # @. In Section 2 we show that all
*-automorphisms of a domain .4 of 2 extend to *-automorphisms of 2(. We call these extensions
diffeomorphisms of 2; they form a group that we denote by Dif(.4). Each diffeomorphism ¢
defines a transformation Ty of Der(A): for every 6 € Der(.A), the derivation Ty (8) = ¢~ '8¢ also
belongs to Der(A). The map T : ¢ — Ty is an antirepresentation of the group Dif(4) into the set
of all transformations of Der(A): Tyg = Ty Ty. We denote by Z(5) the stabilizer of &:

Z(8) = {¢ € Dif(A): § =Ty ()}
and by B(3) the subgroup of Dif(A) of diffeomorphisms that define bounded shifts of §:
B(8) = {¢ € Dif(A): the derivation Ty (8) — & is bounded on Ain || - ||}.

Denote by B(H) the algebra of all bounded operators on a Hilbert space H and by C(H) the
ideal of all compact operators. In this paper we study the structure of the groups Z(§) and B($),
for § € Der(.A), when A are domains of C*-subalgebras 2 of B(H) that contain C(H).

An operator F on H with the dense domain D (F) implements § € Der(A) if

AD(F) S D(F) and 8(A)|pwr) =ilF,Allpry=i(FA— AF)|pr) forallAe A (1.1)
Bratteli and Robinson proved in [2] that, if C(H) € 21 € B(H) and A is a domain of 2, then each
8 € Der(A) has a symmetric implementation: a closed symmetric operator S on H that imple-
ments 8. The operator S can be chosen (see [5, Theorem 27.21]) to be a minimal implementation,
that is, for each closed operator F' that implements &,

S+1tllps) € F  forsomet € C.
With each closed symmetric operator S on H, we associate a *-subalgebra
Ag = {A € B(H): AD(S) € D(S), A*D(S) C D(S) and [S, Al|pcs) is bounded} (1.2)
of B(H). It is the domain (see [5]) of a closed *-derivation &5 into B(H) defined by
3s(A) =i[S, A] for A € Ag,
where [S, A] is the closure of [S, Allp(s) = (SA — AS)|p(s). Furthermore, Ag = B(H) if and
only if S is bounded. If § is unbounded, &g is unbounded and Ag is a Hermitian semisimple

Banach *-algebra with respect to the norm

I Allss = AL+ | 85(A)]|  for A € As.
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Denote by Fg the closure in || - ||s¢ of the set of all finite rank operators in .Ag and set
Js={A e AsNC(H): §5(A) € C(H)}.
Then (see [5]) Fs and Js are domains of C(H) and closed *-ideals of Ag. The *-derivations
8?“’ =38s|Fs and 8¢ =85|Ts

of C(H) are closed; they are the minimal and the maximal closed *-derivations of C(H) with
minimal implementation S. It was proved in [6] that the closure of (Js)>in || - || ¢ coincides with
Fs and that Js = Fg if S is selfadjoint.

In Section 3 we establish a link between minimal symmetric implementations of two deriva-
tions from Der(.A). We prove that if S and 7 are such implementations, then the algebras Fg
and F7 coincide and the norms | - || and || - |[s, on them are equivalent. It was shown in [7]
that if these norms are equal then S — t1 = £UT U™ for some unitary operator U and ¢ € R.
In Section 3 we consider the general case and obtain some necessary conditions that S and 7
satisfy.

Denote by Us the group of all unitary operators in the algebra Ag and set

Zs = {U € Us: §s(U) = AU for some A E(C}.

We show in Section 4 that if C(H) C A C B(H) and A is a domain of %I, then each ¢ € Dif(A) is
implemented by a unitary operator Ug: ¢ (A) = Uy AU, ; for all A € 2(. Moreover, if § € Der(.A)
then ¢ € B(J) if and only if Uy € Us, and ¢ € Z(J) if and only if Uy € Zg, where S is a mini-
mal symmetric implementation of §. Identifying Dif(.A), B(§) and Z(8) with the corresponding
subgroups of unitary operators, we have

B(8) =Dif(A) NUs and Z(8) =Dif(A) N Zs.

Section 5 is devoted to the investigation of the structure of the groups Zg. In Section 6 we
study the problem of constructing domains of C*-algebras that extend the domains Js. Let A be
a domain of a C*-subalgebra 2 of B(H) and let C(H) Q 2. Assume that there is a derivation
in Der(A) implemented by a symmetric operator S. Then A 4+ Js is a dense *-subalgebra of the
C*-algebra A + C(H) and § = 85|(A + Js) is a *-derivation of A 4+ C(H). We provide some
sufficient conditions for § to be a closed derivation which implies that A+ Js is a domain of 20+
C(H). Numerous examples of such domains can be obtained by considering the *-commutant

Cs =Kerds ={A € As: §5(A) =0}
of S. It is a W*-algebra and we prove that, for each C*-subalgebra 2 of Cg satisfying some
simple conditions, the algebra 2{ 4+ Js is a domain of the C*-algebra 2 + C(H). In particular,
Cs + Js is a domain of the C*-algebra Cs + C(H). Finally, we show that, for each symmetric
operator S,

B(8T™) = B(3J™) =Us and Z(sP") = Z(ST™) = Z(5) = Z5 where 8 = 85|(Cs + Js)-

All symmetric operators in this paper are assumed to be closed.



612 E. Kissin / Journal of Functional Analysis 236 (2006) 609-629

2. Extension of automorphisms from subalgebras of C*-algebras
Let A be a dense *-subalgebra of a unital C*-algebra 2. It is called a Q-subalgebra of  if
1le A and Spy(A)=Spg(A) forall Aec A. 2.1

If A is a dense *-subalgebra of a non-unital C*-algebra 2, consider the unitizations A=2A+C1
of A and A=A+ C1 of A. The algebra A is a Q-subalgebra of 2 if

Sp 7(A) =Spg(A) forall A e A
The domains of closed *-derivations of 2l are Q-subalgebras of 2 (see [2,5]).

Proposition 2.1. Let A be a Q-subalgebra of a C*-algebra 24 and let ¢ be a *-automorphism
of A. Then ||p|| =1, so ¢ extends to a *-automorphism of 2.

Proof. Let A be unital. Since Sp 4(A) = Sp 4(¢(A)), for A € A, we have
Spa(A) =Sp 4(A) =Sp 4(#(A)) = Spy (¢(A))- (2.2)
If A= A* € Athen ¢ (A)* = ¢p(A*) = ¢ (A) and, by (2.2),

IAl= sup A= sup [Al=¢(A)].
A€Spy (A) L€Spy (¢(A))

Hence, for B € A,
1BI” = |8°B| = |¢(8"B)| = |oB)"¢ (B)| = o).
For non-unital 2(, we have the proof by replacing in the above argument .A by Aand A by A O

For a Q-subalgebra A of a C*-algebra 2(, denote by Der(.4) the set of all closed unbounded
*-derivations § on 2 with A = D(§). We call A a domain if Der(A) # . We call a
*-automorphism ¢ of 2 a diffeomorphism, if it preserves a domain A in [ and denote by Dif(.A)
the group of all diffeomorphisms of 2l that preserve .A. Proposition 2.1 yields

Corollary 2.2. ¢ — ¢| 4 is an isomorphism from Dif(A) onto the set of all *-automorphisms
of A.

Any domain A is a Hermitian semisimple Banach *-algebra (see [S]) with respect to each
norm

IAlls = lAll + ||8(A)| for A€ A, where§ € Der(A).

For each bounded derivation 8, on 2, § + 8 € Der(A). Johnson’s uniqueness of norm theorem
yields

Proposition 2.3. All norms || - ||s, 8 € Der(A), on a domain A are equivalent.
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Each ¢ € Dif(A) defines a transformation 7y of Der(A) by the formula
Ts(8) =85 =¢ '8¢|A, for§ € Der(A).

Then Tyy = Ty Ty, so T : ¢ — Ty is an antirepresentation of the group Dif(A) into the set of all
transformations of Der(.A). Denote by Z(§) the stabilizer of § in Dif(.A):

Z(8) = {¢ € Dif(A): 6§ =354}
and by B(8) the subgroup of Dif(.A) of diffeomorphisms which define bounded shifts of §:
B(8) = {¢ € Dif(A): the derivation 84 — § is bounded on A in | - ||}
If € B(8) then B(8) = B(8y). Denote by A* the dual space of 2.

Proposition 2.4. Let § € Der(A) and ¢ € Dif(A). If there exists A € Der(A) such that, for each
AeAand F e A", F(Agn (A)) = F(8(A)), as n — o0, then ¢ € Z(3).

Proof. Define Fy-1 by Fy-1(A) = F(¢~'(A)), for A € 2. Then Fy-1 € 2*, so, for A € A,
F(Ag1 (A)) = Fy1 (Agr ($(A)) = Fym1(8(¢(4)))
= F(¢7' (3(8(A)))) = F(85(4).

Since F(Agni1(A)) — F(3(A)), we have F(845(A)) = F(5(A)). Thus 85(A) = 8(A), so
peZ20). O

3. Domains of C*-algebras containing C(H)
For x, y € H, the rank one operator x ® y on H acts by the formula
(x®y)z=(z,x)y forze H, and [x®y|l=Ix|lyl.

Let F be an operator on H. For u,v € H,

x®Y)Uv)=(v,x)(u®y), xRy '=y®x,
AR =A(x®Y) =Ry,
Fx®y)=x®Fy, xQ)F=Fx®y, ifyeD(F),xeD(F*). (3.1

For an algebra of operators .4, denote by F(A) the subalgebra of all finite rank operators in .A.

Lemma 3.1. Let A be a domain of A and C(H) C 24 C B(H). For § € Der(A), let a symmetric
operator S be its minimal implementation. Then

(i) the set of all rank one operators in A consists of all y ® x with x,y € D(S);
(i) F(A) = (X7 5 ® yit xi, yi € D(S)} = F(As).
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Proof. First let us show that the set
Es={xcH: xQxcA)

is a dense linear subspace of H and each rank one operator in .4 has form y ® x, for x, y € Es.
Foreach x € H, |x|| = 1, the rank one projection x ® x belongs to 2. It follows from [9, Proposi-
tion 3.4.9] that, for every ¢ > 0, there is a projection p, € D(§) = A such that ||[x ® x — p,|| < e.
Hence there is x, € H, ||x.|| = 1, such that p, = x, ® x,, 80 X, € E5. As [x @ x — x, Q x.|| <&,
we have

[ = G, xe)xe | = [ (x ® x — xe @ xe)x]| <&

Thus the set E; is dense in H.

Forx e Esand A€ C, Ax e Es. If y € Es and o = (y,x) #0, then (x ® x)(y ® y) =
a(y®x)e A . Hence y@x € Aand x ® y = (y ® x)* € A. Therefore (x = y) ® (x £ y) € A,
sox+yekEs.

Let (y,x) =0. Since Ejs is dense in H, there is z in Es such that u = z — (x + y) satisfies
[Jull < }Tmin(||x||, lyI). Then (z,x) # 0 and (z, y) #0. Hence x +z € Es, y + z € E5 and

| +z,y+2)|=|@x+y+ux+2y+u)]
= [201x 1% + 20117 + el 4 e, x) + 2, y) +2(x, u) + (v, 0)|
> 20|x |1 4+ 20y 1> + llull® = 3(lx ] + 1y 1) llu]l > 0.
Therefore (x +z) — (y +z) = x — y € Es. Similarly, x + y € Es. Thus Ej is a linear space.

Ifx®yeAtheny®x e A, 50 (xQ@y)(y®x) = |[x|>(y®y) € A. Hence y € Ejs. Similarly,
x € Es. Conversely, let x, y € Es. Then x + y, x +iy € Eg, so, by (3.1),

] .
y@xz5[(x+y)®(x+y)—x®x—y®y]+l§[(x+iY)®(x+iY)—X®X—Y®y]

belongs to .A. Thus each rank one operator in .4 has form y ® x for x, y € E;.

We shall prove now that Eg = D(S). Let x € Es. By (1.1), for y € D(S), we have (x ® x)y =
(v, x)x € D(S). Since D(S) isdense in H, x € D(S). Thus E5 C D(S).

ForeachAe A, A(x ® x) =x ® Ax € A. Hence Ax € Ejs, so Ejs is invariant for all operators
from A. Then the operator T = S|, is closable, densely defined and implements 8. Hence its
closure T also implements 8. Since S is a minimal implementation of §, T =S, that is, Ej is a
core of S. Therefore, for each y € D(S), there are y, in Es such that y, — y and Sy, — Sy.
Then

lY®Y =y @yl <Ily®@y —y®yull + 11y ® Yn — yu & yull
= lylllly = yall + Iy = yullllynll = O, (3.2)

SOy, ® y, > yQ® y.Forall x, y € Es, we have x ® y € A and it follows from (1.1) that

S(x®y)=i[S,x®yl=i(x® Sy — Sx®y). (3.3)
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Using it, we obtain as in (3.2) that
§(n ® yn) =i(yn ® Syn — Syn @ yn) > i(y ® Sy — Sy ® y).

Since § is a closed derivation, y® y € D(8) = .A. Hence y € Es, so Es = D(S). Part (i) is proved.

Clearly, all operators Z?:l x; ® yi, with x;, y; € D(S), belong to F(A). Conversely, each
A € F(A) has form A =) _"_, x; ® y;, where all x; are linearly independent and all y; are
linearly independent. Since S implements § and D(S) is dense in H,

n
Az= Z(z,xi)yi € D(S) forall z e D(S).

i=1

Hence all y; € D(S). As A* =Y " |y ® x; € F(A), all x; € D(S). Thus F(A) =
{371 xi ® yit xi,yi € D(S)}. From this and from [6, Lemma 3.1] it follows that F(A) =
.7:(.»45) O

For § € Der(A), denote by F (A, §) the closure of F(A) in || - ||s. Recall that Fy is the closure
of F(Ag) in || - [lss-

Corollary 3.2. Let A be a domain in A, C(H) CAC B(H). Let §,0 € Der(A) and let S, T be,
respectively, their minimal symmetric implementations. Then

(i) F(A, ) is an ideal of A isometrically isomorphic to the algebra (Fs, || - ||s5).
(ii) The algebras F (A, 8) and F (A, o) coincide and D(S) = D(T).

Proof. Since S implements 8, it follows from (1.1) that A = D(§) € Ag and § = §5|D(8). Hence
the norms || - ||s55 and || - ||5 coincide on A, so it follows from Lemma 3.1(ii) that F (A4, §) and F
are isometrically isomorphic. As Fy is an ideal of Ag (see [6]), F (A, 8) is an ideal of A.

By Proposition 2.3, the norms || - || and || - ||, on A are equivalent, so the algebras
F(A,8) and F(A, o) coincide. Since A = D(8) = D(o), we have from Lemma 3.1(i) that
D(S)=D(T). O

Let S, T be minimal symmetric implementations of §, o € Der(.A). It follows from Proposi-
tion 2.3 and Corollary 3.2 that the algebras Fs and Fr coincide and the norms || - ||sg and || - ||5;
on them are equivalent. It was shown in [7, Theorem 4.4] that these norms are equal if and only
if S —11==+UTU* for some ¢ € R and a unitary operator U. Below we consider the general
case and obtain some necessary conditions that S and T satisfy.

Theorem 3.3. Let A be a domain in 2, C(H) C 2 C B(H). Let symmetric operators S and T
be minimal implementations of 8, o € Der(A), respectively. Then

(i) S and T are either both selfadjoint or both non-selfadjoint;
(ii) there exist bounded invertible operators M from (S — i1)D(S) onto (T —il1)D(T) and N
from (S +i1)D(S) onto (T +i1)D(T) such that
T—-i1=M(S—il) and T+il=N(S+il);

(iii) the derivation o —§ is bounded if and only if T = S+ R where R is selfadjoint and bounded.
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Proof. It was shown in [6] that the algebra (Fg, || - ||s;) has a bounded approximate identity if
and only if § is selfadjoint. By Corollary 3.2, Fg = Fr and the norms | - ||sg and | - ||s, on them
are equivalent. This yields (i).

By Corollary 3.2(ii), D(S) = D(T). Fix x € D(S) with | x| = 1. By Proposition 2.3, there is
C > 0 such that, for all y € D(S),

Ix®@ylle =lx @yl +ox @[ <Clx@yls=Clx @yl +C[sCx ).

The operators T — i1 and S — i1 implement o and 6. As ||x ® y|| = ||x||||¥]|, we have from (3.3)

Iyl + [x ® (T =iy = (T +iDx) ® y|
SC(Ix iyl + |x ® (S =iy — ((S +iDx) @ v]).

Therefore

(T —iDy||=|x® (T —iDy|<[x® (T —iy— ((T+iDx)@y| + [((T +iDx) ® y||
SC(IIxllyll + [x ® (S =iy = ((S+iDx) @ y||) + | (T +iDx] Iyl
<CIyll+C| S —iy| + [(S+ibx|lIyll + [(T +iDx |yl
<Kyl +C| (s —iby].

Since S is symmetric, ||(S —i1)y||> = [ISy|I> + || y||*. Hence
(T —iy| <K +O)|(S—il)y| forye D(S). (3.4)

It is well known that (S £ i1) D(S) are closed subspaces of H and Ker(S £i1) = {0}. Define
an operator M from (S —i1)D(S) into (T —i1)D(T) by M(S—il)y = (T —il)y, for y € D(S).
By (3.4), M is bounded. Similarly, the operator R from (7' —i1) D(T) into (S —i1) D(S) defined
by R(T —il)y = (S —il)y, for y € D(T), is bounded. Hence R = M~!.

Similarly, there is a bounded invertible operator N from (S +i1)D(S) on (T 4+i1)D(T) such
that 7 + i1 = N(S 4 i1). Part (ii) is proved.

For R = R* € B(H), the *-derivation §g(A) = i[R, A], A € 2, is bounded. Hence § + 8¢ €
Der(.A) and S + R is its minimal implementation.

Conversely, let o — § be bounded. As D(S) = D(T), the operator R =T — § is symmetric
on D(S). There is C > 0 such that ||o (A) — §(A)|| < C||A| for all A € A. Hence, forall x,y €
D(S), we have from (3.3) that x ® y € A and

[ex®y)—s(x@y)|=ilT —S.x®yl|=lx® Ry — Rx ® yll < Cllx ® yll = Clix|[|¥]l.
Fix x with ||x|| = 1. Then
IRyl =llx ® Ry < llx ® Ry — Rx @ || + |Rx @ y|| < Cllx ||yl + IRx |||yl

Hence R is bounded on D(S), so it extends to a selfadjoint bounded operator. 0O
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4. Diffeomorphisms of C*-algebras containing C (H)

Each *-automorphism ¢ of C(H) is implemented by a unitary operator U: ¢ (B) = UBU*,
for B € C(H) (see [8]). This is also true for all *-automorphisms ¢ of C*-subalgebras 2 of
B(H) containing C(H). Indeed, for x,y,e H,set R=¢(x ® y). By (3.1), forall z,u € H,

R2®Ru=RE®uWR=¢(x @ 'cQu(x®y)=(¢"'z@u)y, x)R.

Hence R is a rank one operator, so ¢ and ¢~ map finite rank operators into finite rank operators.
Thus ¢ (C(H)) = C(H) and there is a unitary U such that ¢ (B) = UBU*, for B € C(H). For
AeAandallx,ye H,

Ux@UAy=U(x® AU =¢(A(x ®y)) =¢(A)p(x ® y)
=AU QR NWU*=¢p(A)UxQ@Uy)=Ux Q@ ¢p(A)Uy.

Hence ¢ (A)Uy =U Ay forall y € H,s0 ¢(A) =UAU* for all A €.
Recall that we denote by Us the group of all unitary operators in the algebra Ag:

Us ={U € B(H): U is unitary, UD(S) = D(S) and [S, Ul|p(s) is bounded}
and set
Zg={U eUs: 85(U) =AU for some A € C}.

Theorem 4.1. Let A be a domain in 2, C(H) C 2 C B(H), and let ¢ € Dif(A). Let, as above,
a unitary U € B(H) implements ¢: ¢ (A) = UAU™ for all A € . Then

(1) if a symmetric operator S is a minimal implementation of § € Der(A), then U D(S) = D(S)
and U*SU is a minimal implementation of the *-derivation éy;
(i) ¢ € B(§) if and only if U € Us;
(i) ¢ € Z(8) ifand only if U € Z5.

Proof. By Lemma 3.1, x ® x € A for x € D(S). Hence
PxRx)=UCxRx)U*=UxQ@Ux € A,

so Ux € D(S). Thus UD(S) € D(S). Since ¢! € Dif(A) and implemented by U*, we have
U*D(S) € D(S). Therefore UD(S) = D(S).
Let T implement §. For all A € A, we have UAU* € A, so UAU*D(T) C D(T). By (1.1),

8¢ (Mlu*n(r) = ¢_1(6(¢(A))) |U*D(T) = U*S(UAU*)UNU*D(T)

=U*S(UAU*)| ;= U%i[T, UAU"] U*TU, A] (4.1)

|D(T) |D(T) = i[ |U*D(T)‘

Thus U*TU implements 84. Similarly, if R implements 84, U RU* implements §. Hence T —
U*TU is a one-to-one correspondence between the sets of implementations of 6 and 4. Since S
is a minimal implementation of §, U*SU is a minimal implementation of é4. Part (i) is proved.
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It follows from (i) and from Theorem 3.3(iii) that §, — & is a bounded derivation if and only
if K =U*SU — S is a bounded operator on D(S). Hence ¢ € B(§), if and only if the operator
[S,U]= UK is bounded on D(S). Since U D(S) = D(S), we have that ¢ € B(8) if and only if
U € Us. Part (ii) is proved.

Let ¢ € Z(8). Then U € Us and, by (i), U*SU is a minimal implementation of §4 and
DU*SU) = D(S). Since 84 = 6 and S is a minimal implementation of &, there is A € C
such that U*SU = S + Al1|p(s). Hence 85(U) = iAU, so U € Zg. Conversely, if U € Zg then
U*SU =5+ A1|p(s). As U*SU is a minimal implementation of 84, we have §, =6. O

Let A be a domain in 2, C(H) C 2 C B(H). It follows from Theorem 4.1 that one can iden-
tify (modulo scalars from the unit circle) the group Dif(4) with the group of all unitary operators
U on H whose action A — UAU™ preserve A. For § € Der(A), we will also identify the sub-
groups B(§) and Z(8) with the corresponding subgroups of unitary operators. By Theorem 4.1,
if § is a minimal implementation of § then

B(§) ={U eUs: UAU* = A} =Dif(A) NUs,
Z(8)={U € Zg: UAU* = A} =Dif(A) N Zs. 4.2)

Proposition 4.2. Let A be a domainin A, C(H) C 24 C B(H), and let S be a minimal symmetric
implementation of § € Der(A). Then

(i) B(8) is closed in (As, || - llss) and Z(8) is closed in (B(H), || - |1);
(1) if A is an ideal of As, then B(§) =Us and Z(8) = Zs.

Proof. Let a sequence {U,} of unitaries in B(8) converge to U in (As,| - ll55). Then
U — Uyl — 0 and ||85(U) — 8s(Uy,)|| — 0. Hence U is unitary. For each A € A, we have
U, AU € A,UAU* € As and ||[UAU* — U, AU, || — 0. Hence

Js5(vAU") - 5(UnAU;)|
= |8s(U)AU* + US(A)U* + UAS5(U*) — 85(Upn) AU,Y — Up8(AU,f — U, ASs(U;) |
< |8s(U)AU* = 85(U) AU | + |US(AHU* — U, 8(A US|
+|UASs(U*) — U, ASs(U}) | = O.

Since 8 is closed, UAU™* € A. Thus U € Dif(A). As U € Us, it follows from (4.2) that U € B(9).

Let U, € Z(3), 6s(U,) = A,U,, and let U € B(H) and |U — U,|| — 0. If A,, — oo, then
Uy/Ay — 0 and 65(U,/A,) = U, — U. Since dg is a closed derivation, U = 0. This contradic-
tion shows that {A,} is bounded. Choose a subsequence converging to some A and denote it also
by {A,}. Then 65(U,) = A,U,, — AU. Since &5 is a closed derivation, U € Us and §s(U) = LU.
Hence U, converge to U in | - ||sy and, as above, U € Dif(A). By (4.2), U € Z($). Part (i) is
proved.

If A is an ideal of Ag then, for each U in Uy, the map A — UAU™ preserves A. Hence
Dif(A) D Us D Zg and (ii) follows from (4.2). O
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5. Structure of the group Zg
Let U € Zg and 85(U) = AU, for > € C. Then U* € Us and 85(U*) =85(U)* = AU*. As
0=238s(1) =385(U*U) = U*85(U) + 85(U*)U = (A + WU*U = (A + M1,
we have Re(L) =0. For each r € R, set
Zs(t)={U € Z5: §5(U)=itU} and Ts={reR: Zs(1) #0}.

Then Zs(t)Zs(s) € Zs(t + s), for t,s € I's, so UZ5(0) C Zg5(¢t) and U*Z5(t) C Z5(0), for
U € Zg5(t). Hence

Zs(t) =UZs(0) = Z5(0O)U foreach U € Zg(t),
Zs(=1) = Zs(1)", Zs(t+s5)=Z5(t)Zs(s) and Zs=UZs(t)- (5.1

telg
All sets Zg(¢) are norm closed and Zg(0) is a selfadjoint normal subgroup of the group Zg; I's is
a subgroup of R by addition, isomorphic to the quotient group Zs/Zs(0).

Denote by A(S) and A(S*) the sets of all eigenvalues of operators S and S* and by H, (S)
and H, (S*) the corresponding eigenspaces of S and S*. For a selfadjoint S, let Eg(A) be the
spectral resolution of the identity of S. Then

Es_n() =Es(A +1). (5.2)
Letr € R — {0}. We say that a unitary operator U on H is an (S, t)-shift if
UD(S)=D(S) and UEs(\)U*=Es(A+1t) forall xeR.
Theorem 5.1.

() If Zs(t) # {0} then the map A — A +t is an isomorphism of the sets Sp(S), A(S), Sp(S*),
A(S*). For U € Z5(t) and all A € A(S) and 1 € A(S*),

Hy(S)=UH;(S) and Hyu4(S*) =UH,(S").
(i) If S is selfadjoint then U € Zg(t), t # 0, if and only if U is an (S, t)-shift.
Proof. We have UD(S) = D(S), U*D(S) = D(S) and
(SU -US)Ipsy=tUlps) and (SU* — U*S)|D(S) =—tU"|p(s)- (5.3)
Hence
U*(S = - +D1)U| g = (S = ADIpcs) foreachreC.

Therefore A € Sp(S) if and only if A + ¢ € Sp(S). Hence A — XA + ¢ is an isomorphism of Sp(S).
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By (5.3), for x € D(S) and y € D(S*),
(Sx,Uy)=(U*Sx,y) = (SU*x,y) + (tU*x,y) = (x, (US* +1U)y).

Hence Uy € D(S*) and (S*U —U S*)y =tUy. Similarly, U*y € D(S*) and (S*U*—U*S*)y =
—tU*y. Therefore U D(S*) = D(§*), U*D(S*) = D(S*) and

(S*U ~US*)| ps»y =tUlpss and  (S*U* = U*S*)| gy = —1U%ID(sn).  (54)

Hence, as above, we have that A — A 4 ¢ is an isomorphism of Sp(S*).
For A € A(S), we have from (5.3) that U H; C H,,; and U*H) C H,_;. Therefore

UH), C Hy4 =UU"H)1; CUH,.
Hence U H) = H, 4, and A — X+t is an isomorphism of A(S). Using (5.4), we obtain that the
same is true for A(S*). Part (i) is proved.
For any unitary U, the operator U SU* is selfadjoint,

D(USU*)=UD(S) and Eysy+(A)=UEg(M\)U* forallxeR. (5.5)

Let U € Z5(1). By (5.3), UD(S) = U*D(S) = D(S) and USU*|p(s) = S — t1|ps). Hence it
follows from (5.2) that

Eysys(A) =Eg_ (M) =Es(A+1t) forall L e R.
Taking into account (5.5), we have UEg(A)U* = Eg(A +t). Thus U is an (S, t)-shift.
Conversely, let U be an (S, t)-shift. Then UD(S) = D(S) and UEs(A\)U* = Eg(A + t) for
all A € R. Hence it follows from (5.2) and (5.5) that
Eysy+(\) =UEs(MU* = Es_1(}),
N¢J USU*|D(S) =5-— t1|D(S)- Thus
3s(W)Ips) =i(SU = US)Ips) =itU]|ps)-
Therefore U € Z5(¢t). O

Theorem 5.1 has an especially simple form when S is diagonal, thatis, H = D, Acs) Ha-

Corollary 5.2. Let S be a diagonal selfadjoint operator. Then t € I's if and only if A — L+t is
an isomorphism of A(S) and dim H, = dim H) 1, for all A € A(S).

From Corollary 5.2 it follows that, for any subgroup I" of R, there is a diagonal S with
I's=T.

If for each t € Is, there is U; € Zg(t) such that U= {U;: t € I's} is a group, then U is called
a resolving subgroup of Zg. It is commutative and consists of unitary operators U;, t € I,
satisfying

U/D(S)=D(S) and (SU; —U;S)Ips)=1tUlpcs).
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This relation is called the infinitesimal Weyl relation for the group U and the operator S (see [4]).
It follows from (5.1) that Zg is the semi-direct product of U and the normal subgroup Z5(0).

Proposition 5.3. If I's has a minimal positive element |, then I's = {nu: n € Z} and, for each
Ue Zs(n), U={U": n €Z}is aresolving subgroup of Zs.

Proof. We only need to show that I's = {nu: n € Z}. If there is A € I's such that A # nu, for
allneZ,then mu <A <(@m+ 1) forsomem € Z. Thena =21 —mpu e I'sand 0 < o < wu;
a contradiction. O

Example 5.4.

(1) Let {e,}nez be a basis in H and let Se, = ne,. Then Z(0) consists of all unitary diago-
nal operators, I's = Z, the unitary U :e, — e,4+1 belongs to Zg(1) and {U": n € Z} is a
resolving subgroup of Zg.

(2) Let T be the operator of multiplication by ¢ on L, (R). The subgroup Z7(0) consists of all
multiplication operators by functions g € Lo (R) such that |g(¢)| = 1; I'T = R, the shift
operators U, :h(t) — h(t — r) belong to Zr(r) and {U,: r € R} is a resolving subgroup
of ZT.

fUeZg(t)and V € Zr(t) then U & V € Zsq7(t). Hence if {U;: t € R} and {V;: t e R}
are resolving subgroups of Zg and Zr, then {U; @ V;: t € R} is a resolving subgroup of Zsg7.
We also have that I's N I'T C I'sgr. The group I'sgr is often larger than the groups I's and 7.
Indeed, let S and T be diagonal operators on H and K, Sp(S) = Sp(T) =Z and

H:EBH,,, K:@Kn, dimHy=dimK; =1, dimH;=dimKo=2 fork #0.

nez nez

Then I's = I'T = {0} and ['sg7 = Z.

Assume that I's = R and the resolving group U = {U;: ¢ € R} is strongly continuous: for all
x € H, |Ux — x| = 0 as t — 0. Let a selfadjoint operator 7 be the generator of U. Repeating
the argument in [5, p. 497], we obtain that there is a linear manifold D in D(S) N D(T) dense in
H such that the operators S and T satisfy the canonical commutation relation:

(ST = TS)lp =1Ip.
For a symmetric operator S, define the *-commutant of S by the formula
Cs =Kerds ={A € As: 85(A) =0}, so Z5(0) =Us NCs. (5.6)
For selfadjoint S, Cg is the set of all bounded operators commuting with all projections Eg(1),
A € R.If S is non-selfadjoint, Cg is often trivial: Cg = C1, so Z5(0) = {z1: |z| =1}.

For some selfadjoint operators S, the algebras .Ag and Cs coincide modulo compact operators.
Let H=@:° . H; and S|y, = A; 1y, with all distinct A;. Set

i=—o00

—1
ds(k) = (inf [2igx = il)  fork #0.
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It was proved in [7] that Ag = Cg + (As N C(H)) if all dim(H;) < oo,

lim (Aj41 —Aj) =00 and E ds(k) converges. 6.7
|i|]—o0
keZ\ (0}

In particular, (5.7) holds if A; = sgn(i)|i|' T for any & > 0.

For A € A(S), let P, be the projection on the eigenspace H, of S. If A # u, P, P, =0. Let
A € C(H). Each sequence {x;,}, x;, € Hy, with |lx;, || = 1 and distinct 4,,, weakly converges
to 0. Hence ||Axy, || — 0. This implies that A4 = {A € A(S): AP, # 0} is a finite or countable
set: Ag ={A;},and ||[A Py, || = 0 asi — oo. Thus the series Z)\iEAA P;, A P;, converges in norm,
SO

p:A— > PAP = ) PLAP, (5.8)
rEA(S) AE€AA

is amap from C(H) into C(H) and |p||=1.Let 0 =1 — erA(S) P;, and set
Ds = {A €eC(H): AQ=QA=0and P, A= AP, forall A € A(S)}.

Then Dy is a C*-subalgebra of C(H). For each A € C(H), p(A) € Ds and, for each A € Dg,

A=<Q+ > PA)A:p(A), so Dsg={p(A): AeC(H)}.
rEA(S)

Lemma 5.5.

(i) Cs is a W*-algebra and

Cs={A e B(H): AD(S) € D(S), A*D(S) € D(S), IS, Allpcs) =0}

={A e B(H): AD(S) € D(S), AD(S*) € D(S*), [S. Allpes) =[S, A]|D(S*) =0}.
(ii) All P, € CsNCy, for A € A(S), and Ds =Cs N C(H).
Proof. The first equality in (i) follows from (1.2) and (5.6). For A € Cg, A* € Ag and §5(A*) =
8s(A)* =0. Thus A* € Cg, so Cg is a *-algebra. Denote by IT the last set in (i). Let A € Cg. For
all x € D(S*) and y € D(S),

(Ax, Sy) = (x, A*Sy) = (x, SA*y) = (AS*x, y).

Hence AD(S*) C D(S*) and AS*|D(S*) = S*A|D(5*), so [S*, Allp(sx) =0. Thus Cs C I1.
Conversely, let A € 1. Then, for all x € D(S*) and y € D(S),

(S*x, A*y) = (AS*x,y) = (§*Ax, y) = (x, A*Sy).

Hence A*y € D(8*) = D(S), so A*D(S) C D(S). Thus IT CCg, so IT =Cs.
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LetCs > A;, — A in the weak operator topology (wot). Then A} Y A*. As §*F = S, we have,
for all x € D(§*) and y € D(S),

(S*x, Ay) = (A*S*x,y) = li{n(AiS*x, y) = li{n(S*Aix, y)
= li/{n(Aj‘{x, Sy) = (A*x, Sy) = (x, ASy).

Hence Ay € D(S*) = D(S) and SAy = ASy. Thus AD(S) € D(S) and [S, Al|lps)y = 0. Simi-
larly, A*D(S) € D(S). Therefore A € Cg, so Cs is a W*-algebra. Part (i) is proved.
Since P, D(S) C H,, € D(S) and

Py.SIps)y = SPilpcs)y =APilpes). (5.9

we have 85(Py) =0, so P, € Cs. Let A € Cg. For x € H), we have SAx = ASx = AAx, so
Ax € H;. Hence P, AP, = AP,. Since Cs is a *-algebra, P,A = AP, so0 P, € CsNC.
Let Ae C(H).Foreach A € A(S), P, AP, € C(H) and P,AP, D(S) € H, € D(S).By (5.9),

3s(PyAP)|ps)y =i(SPLAPy|ps) — PAAP,.S|p(s)) =0.

Hence Py AP, € CsNC(H). As p(A) is the norm limit of sums of the operators P, AP, A € A4,
we have p(A) e CsNC(H). Thus Ds CCs N C(H).

Conversely, let A = A* € Cs N C(H). Then A =), o; P;, where P; are finite-dimensional
mutually orthogonal projections from Cs N C(H) and |«;| — 0. Each subspace P; H lies in D(S)
and the operator S|p, g is selfadjoint. Hence P, H = P j K;j, where S| Kij = Aij PK,-,-- Therefore
Aij € A(S). As P; € Cg, each P; commutes with all P;, so Pk, = Py PiPy; € Ds. Hence
P = Zj Pk,; € Ds. As Dy is norm closed, A € Dg. Thus Dg =Cs NC(H). O

Recall that a closed subspace L of H (the projection Q on L) reduces a symmetric operator
S if

OD(S) € D(S) and  SQIpes) = QSIp(s)- (5.10)

The operator S is called simple if it has no reducing subspaces where it induces a selfadjoint
operator; it is called irreducible if it has no reducing subspaces.

Denote by H™, 1 < n < oo, the orthogonal sum of n copies of H and by S™ the orthogonal
sum of n copies of S. Lemma 5.5(i) and (5.10) yield

Lemma 5.6.

(1) A projection Q reduces a symmetric operator S if and only Q € Cg.
(i1) S is irreducible if and only if Cs = C1.
(iii) If S is irreducible, Cqw consists of all block-matrix bounded operators (Ajj1p) on H ()
with )\ij eC.

Let S* be the adjoint of S. The deficiency subspaces N.(S) = {x € D(§*): §*x = +ix} of §
are closed in H and ny (S) = dim N1 (S) are called the deficiency indices of S. The operator S
is selfadjoint if n_(S) = n(S) = 0; it is maximal symmetric if either n_(S) =0 or n4(S) =0.
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Recall that symmetric operators R on K and S on H are isomorphic if
UD(R)=D(S) and UR|pwr) =SUlpwr), (5.11)

for some unitary operator U from K on H.If S and R are isomorphic, Zg = Zg and I's = I'g.
The operator 7 =i 4 on H = L,(0, 00) with

D(T) = {h € H: h are absolutely continuous, ' € H and h(0) =0}

is simple and maximal symmetric withn_(T) = 1, n4 (T) = 0. For each r € R, the multiplication
operator

Voh(t) = e " h(t) (5.12)

on H is unitary. It is easy to check that V., € Ur and §7(V,) =irV, forallr eR, so V. € Z7(r).
It is well known (see [1]) that each simple maximal symmetric operator S is isomorphic

eitherto T® ifn_(S)=k, n4(S)=0; orto —T® ifn_(S)=0, np(S)=k. (5.13)

Using Lemma 5.6, we have the following description of Zg for simple maximal symmetric op-
erators.

Theorem 5.7. Let S be a simple maximal symmetric operator satisfying (5.13), for some k, and
let V., r € R, be the unitary operators defined in (5.12). Then I's = R, {V(r)(k): reR}isa
resolving subgroup of Zs and Zs(0) consists of all unitary block-matrix operators (A;jjly) on
H® with 3;; € C.
We consider now the following criteria for a symmetric operator to be irreducible.

Lemma 5.8. Let S be a symmetric operator. Let {A,} be eigenvalues of S* with one-dimensional
eigenspaces: H,, = Ch, and let the linear span of all h, be dense in H. Suppose that all
hy, ¢ D(S). If there are u, € C such that h,, — u,hy € D(S), for all n, then S is irreducible.

Proof. Let a projection Q belong to Cg. It commutes with S*, so $*Qh,, = OQS*h, = A, Qh,,.
Since H,, are one-dimensional, Qh, = oy,h,, where o, =0 or 1. Since Q preserves D(S),

Q(hn - ,U«nhl) =ayh, — Mnalhl =ay(h, — ,U«nhl) + (ay — Ol])anhl € D(S).
Hence (o, —a1)uh1 € D(S) for all n. Since all i, # 0, all @, = 1. Thus Q iseitherlor0. O

We shall now consider an irreducible non-maximal symmetric operator with a resolving sub-
group. The symmetric operator S =i j—t on H = L,(0, 2m) with

D(S) = {h € H: h is absolutely continuous, »’ € H and 1(0) = h(27) =0}
has n_(S) =n(S) =1 (see [1]). It is irreducible. Indeed, S* :i% and

D(8*) ={h € H: h is absolutely continuous and " € H}.
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The functions A, () = ¢™, —co < n < 0o, form an orthonormal basis in H, h, € D(S*) and
h, ¢ D(S). Moreover, S*h, = —nh, and h, — hy € D(S) for all n. Hence, by Lemma 5.8,
S is irreducible. For each real r, the multiplication operator U, h(t) = e~'""h(t) on H is unitary,
U, eUs and é5(U,) = irU,. This yields

Proposition 5.9. I's =R, Z5(0) = {z1: |z]| = 1} and {U,: r € R} is a resolving subgroup of Zs.

All selfadjoint extensions of the operator S above can be parametrized by w € [0, 27)

(see [1]):

.d
Sw:lE,

D(Sy) = {h € H: h are absolutely continuous, 4’ € H and h(27) = ¢'*h(0)} and

Sp(Sy) = {)»,,:n— %: neZ]

with the eigenvectors £, (1) = e~"*!. Each operator S, + 5=-1 is isomorphic to the diagonal
selfadjoint operator in Example 5.4(1). Hence I's, = Z, the groups Zg, have resolving subgroups

and large subgroups Zg_ (0).
6. Extension of domains

Recall (see Introduction) that, for each symmetric operator S, the algebra Fg and the algebra
Js={Ae AsNC(H): 85(A) € C(H)}

are domains of C(H) and 83‘““ = 85| Fs and 8¢ = 85| Js are closed *-derivations of C(H)
with minimal implementation S. If S is selfadjoint then Js = Fs. If A is a domain in C(H),
then Fg € A C Js for some symmetric operator S on H. Indeed, let § € Der(.4) and let S be
a minimal implementation of §. Since 87" and 87** are the minimal and the maximal closed
*-derivations of C(H) with minimal implementation S, SIS“i“ C 6 C6¢™. Thus Fg CAC Js.

In this section we construct a variety of domains of C*-algebras that contain Js. We will
consider C*-subalgebras of B(H) that do not contain C(H). Let 2 be such a C*-subalgebra of
B(H) and let A be a domain of 2. Assume that there is a derivation in Der(A) implemented
by S: A C Ag and §5|.A € Der(A). It follows from [3, Corollary 1.8.4] that 2 + C(H) is a C*-
algebra. Since Js is an ideal of Ag, A + Js is a dense *-subalgebra of 2 + C(H) and 85 maps
A+ TJs into A+ C(H), so §s|(A+ Ts) is a *-derivation of [ + C (H ). Below we consider some
conditions for §s|(A + Js) to be closed. These conditions will imply that A + Js is a domain
of A+ C(H).

Let § be the maximal closed *-derivation of 2l implemented by S, that is,

GB)=G@Bs)NADA), where G6) ={A®S(A): Ae D)} 6.1)
is the graph of 8. In particular, 65" is the maximal derivation of C(H) implemented by S.

Theorem 6.1. Let A be a domain of 2, C(H) ¢ 2 € B(H), and let 85| A € Der(A). Suppose
that
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(1) 8s|A is the maximal closed *-derivation of 2 implemented by S, that is, (6.1) holds;
(1) there exists a bounded linear map 6 from C(H) onto AN C(H) such that

0(A)=A forallAecANC(H), 6.2)
and 6 commutes with 55

0(A)eJs and §§*(6(A)) = Q(S?aX(A)) forall A e Js. 6.3)
Then B = A+ Js is a domain of A+ C(H), 85|B € Der(B) and S is its minimal implementation.
Proof. Set§ = §g|B. Since S implements § and Fs C Js C B, itis easy to see that S is a minimal

implementation of §. Thus we only need to prove that § is closed.
By (6.2), C(H) = (AN C(H)) + Ker(#) and Ker(0) is a closed subspace of C(H). Therefore
A+ C(H) =2A+ Ker(9) 6.4)
is the direct sum of 2 and Ker(6). Let A € Js. Since 6(A) € AN C(H), we have from (6.3) that
0(A) eANJs and ds (Q(A)) = S?aX(Q(A)) = Q(S?aX(A)) e ANC(H). (6.5)

Hence 6(A) @ 85(0(A)) belongs to 2 @ 2 and to G(8s). Since §g|.A satisfies (6.1), we have
0(A) € A. Therefore A =6(A) + (A —6(A)) and A — 6(A) € Js NKer(0). Thus, by (6.4),

B=A+Js=A+ (JsNKer(®)).

Let A, € A, B, € Js NKer(@), A, T €2 and B, R € Ker(9), let A, + B, > A+ B €
2+ C(H) and let 6(A, + B,) — T + R. By (6.5), 0(85**(B,)) = 83*(9(B,)) = 0. Hence
89%(By) € Ker(). Thus

8(An + By) =85(A) +87%(B,) - T + R, where 85(A,) € 2 and 87 (B,) € Ker(0).

If a sequence in the direct sum of closed subspaces converges, the components of its ele-
ments also converge. Hence, by (6.4), A, — A, B, — B, 8s5(A,;) — T and §§**(B,) — R. As
8s|A is a closed derivation, we have A € A and §5(A) = T. As 8¢ is a closed derivation,
B € JsNKer(f) and §§**(B) = R. Thus A+ B e Band §(A+ B)=T + R, s0 § is a closed
*-derivation. O

Corollary 6.2. Let A be a domain of A C B(H) and 85| A € Der(A) satisfy (6.1). If
AN C(H) = {0}, then B= A+ Js is a domain of A + C(H), 85|B € Der(B) and S is its
minimal implementation.

Let 2 be a C*-subalgebra of Cs. Then 5|2 = 0 and it satisfies (6.1). For A € A(S), let P, be
the projection on the eigenspace H, of S. By Lemma 5.5(ii), P,Cs P, € Cs. Assume also that

P.(ANCH))P, CA forall L € A(S). (6.6)
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Then all P, (AN C(H)) P, are C*-algebras. Since §5(A) =0, for A e Cs NC(H),
CsNC(H)CCsN Js. 6.7)

Let A € C(H). Recall (see (5.8)) that AP, # 0 for a finite or countable subset A4 = {A;} of
A(S),

|AP,||—0 and p(A)= Z P, AP, = Z P AP, €CsNC(H) CCsN Js,
LEA(S) Ai€AL

where the series converges in norm.

We will now construct a bounded linear map 6 from C (H) onto AN C (H) satisfying (6.2) and
(6.3). We will use for this the well-known result that, for each C*-subalgebra 5 of C (H), there is
a conditional expectation from C (H) onto 8. Thus, for each A € A(S), there is a conditional ex-
pectation 6, from the algebra P, C (H) P, which is isomorphic to C(H, ) onto the C*-subalgebra
P,ANC(H))Py, of P,C(H)P,. Set

0(A)= Y O.(PAP)= Y 6,(P,AP,) forall AeC(H). (6.8)
AEA(S) Ai€AA

Since ||6;, (P, APy)|| < [|[APy;|| — 0 and since 6, (Py;APy,;) belong to Py,C(H)P,; and,
hence, mutually orthogonal, the series in (6.8) is norm convergent. Hence we have from (6.7)
that

0(A)eANC(H)CSCsNC(H)CCsNJs forall Ae C(H), (6.9)

so 8 maps C(H) into 2 N C(H). Moreover, 6 is linear and bounded, since

|16(A)| = sup |61, (P, AP;,)

| <sup || Py AP, || < Al

Since projections Py, A € A(S), are mutually orthogonal, P, p(A)P, = P,AP; (see (5.8)).
Hence

0(p(A) = Y 6i(Pip(AP) = Y 6,,(PLAPL) =0(A).

LEA(S) rMi€EAA

Since 0, (P, APy) € P,(AINC(H)) Py, we have P,0(A)P,, =0, (PyAPy), so (see (5.8))

p(O(A) = Y POAP =Y 6,,(Py,AP,)=0(A).

AEA(S) ri€da

Thus

0(p(A)) = p(6(A)) =0(A) forall A C(H). (6.10)
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Let AcANC(H). Then A € Cs N C(H) and we have from Lemma 5.5(ii) that A = p(B)
for some B € C(H). Since P, AP, € P,(A N C(H))P, and 6, are conditional expectations,
G)L(PAAP)\) = P)LAP)L = P)J)(B)P)L = P)LBP)L. Thus (62) hOldS, since

0(A)= ) 6(PAP)= ) PiBP =p(A)=A.
reA(S) reA(S)

Let now A € Js. Since Py H C D(S), forall A € A(S), we have from (5.9)
P8¢ (A) P, = P\8s(A) Py, = Pi[S, AP, =i(P,SAP, — PLASP,) =0.
Hence

p (87 (A)) = Z P8I (A) P, = 0.
LEA(S)

As 85" (A) € C(H), we have from (6.10) that
B (53 (4)) = 6(p (0 (4))) = 0.
By (6.9), 6(C(H)) € Cs N Js, so that §§**(9(A)) = 0. Thus
sg™ (Q(A)) =0= 9(8‘Snax(A)) forall A € Js.
Therefore (6.3) holds and Theorem 6.1 yields
Theorem 6.3. Let a C*-subalgebra 2 of Cs satisfy (6.6). Then B =2+ Js is a domain of the
C*-algebra A + C(H), 8s|B is a closed *-derivation of A + C(H) with minimal implementa-
tion S.
Finally, we consider derivations § with Z(§) = Zg, where S is a minimal implementation of §.
Proposition 6.4.
(1) Let T be a minimal symmetric implementation of § € Der(Fs). Then B(§) = Ur and
Z(8) = Z7.
(i) B(6§™) =Us and Z(6§%) = Zs.
(iii) Let 8§ =85|(Cs + Js). Then Z(8) = Zs.
Proof. As (Sglin, 8 € Der(Fy), it follows from Corollary 3.2 that
Fs = F(Fs, 87" = F(Fs, 8) = Fr.
Since Fr is an ideal of A7, Proposition 4.2(ii) yields (i).
As TJs is an ideal of Ag, Proposition 4.2(ii) also yields (ii).
Let U € Zg(t) and A € Cg. Since Zg(t) € Ag and Cg C Ag, we have UAU* € Ayg. Further

8s(UAU*) =85(U)AU* + Uss(A)U* + UASs(U*) =itUAU* + UA(—itU*) =0.
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Hence UAU* € Cg, so UCsU* =Cg. As Js is an ideal of Ag,
UD@U*=U(Cs+ Ts)U* C D(9).

Thus U € Z(8), so Zs C Z(§). Since always Z(5) € Zg, we have Z(6) = Z5. O

o0

Let S be a selfadjoint operator on H = ;- _, H; and let S|, = A;1y, with all distinct ;.
The group I's is described in Corollary 5.2 and Cg consists of bounded operators commuting
with all P;;. By Theorem 6.3 and Proposition 6.4, § = §5|(Cs + Js) is a closed *-derivation of
the C*-algebra Cs + C(H) and Z(8) = Zg.
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