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Abstract

In this paper we consider automorphisms of the domains of closed *-derivations of C*-algebras and show
that they extend to automorphisms of C*-algebras, so we call them diffeomorphisms. The diffeomorphisms
generate transformations of the sets of closed *-derivations of C*-algebras. In this paper we study the sub-
groups of diffeomorphisms that define “bounded” shifts of derivations and the subgroups of the stabilizers
of derivations.
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1. Introduction

Extensive development of non-commutative geometry requires elaborating of the theory of the
domains of closed *-derivations of C*-algebras whose properties in many respects are analogous
to the properties of algebras of differentiable functions. In this paper we consider automorphisms
of the domains of derivations and show that they extend to automorphisms of C*-algebras, so we
call them diffeomorphisms. The diffeomorphisms generate transformations of the sets of closed
*-derivations of C*-algebras. In this paper we study the subgroups of diffeomorphisms that define
“bounded” shifts of derivations and the subgroups of the stabilizers of derivations.
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Throughout the paper we denote by (A,‖ · ‖) a C*-algebra. A closed linear map δ from a
dense *-subalgebra D(δ) of A into A is called a closed *-derivation if

δ(AB) = Aδ(B) + δ(A)B and δ
(
A∗) = δ(A)∗ for A,B ∈ D(δ).

The subalgebra D(δ) is called the domain of δ; δ is bounded if and only if D(δ) = A.
Let A be a dense *-subalgebra of A. Denote by Der(A) the set of all closed *-derivations

δ on A with A = D(δ). We call A a domain if Der(A) �= ∅. In Section 2 we show that all
*-automorphisms of a domain A of A extend to *-automorphisms of A. We call these extensions
diffeomorphisms of A; they form a group that we denote by Dif(A). Each diffeomorphism φ

defines a transformation Tφ of Der(A): for every δ ∈ Der(A), the derivation Tφ(δ) = φ−1δφ also
belongs to Der(A). The map T :φ → Tφ is an antirepresentation of the group Dif(A) into the set
of all transformations of Der(A): Tφθ = TθTφ . We denote by Z(δ) the stabilizer of δ:

Z(δ) = {
φ ∈ Dif(A): δ = Tφ(δ)

}
and by B(δ) the subgroup of Dif(A) of diffeomorphisms that define bounded shifts of δ:

B(δ) = {
φ ∈ Dif(A): the derivation Tφ(δ) − δ is bounded on A in ‖ · ‖}.

Denote by B(H) the algebra of all bounded operators on a Hilbert space H and by C(H) the
ideal of all compact operators. In this paper we study the structure of the groups Z(δ) and B(δ),
for δ ∈ Der(A), when A are domains of C*-subalgebras A of B(H) that contain C(H).

An operator F on H with the dense domain D(F) implements δ ∈ Der(A) if

AD(F) ⊆ D(F) and δ(A)|D(F) = i[F,A]|D(F) = i(FA − AF)|D(F) for all A ∈ A. (1.1)

Bratteli and Robinson proved in [2] that, if C(H) ⊆ A ⊆ B(H) and A is a domain of A, then each
δ ∈ Der(A) has a symmetric implementation: a closed symmetric operator S on H that imple-
ments δ. The operator S can be chosen (see [5, Theorem 27.21]) to be a minimal implementation,
that is, for each closed operator F that implements δ,

S + t1|D(S) ⊆ F for some t ∈ C.

With each closed symmetric operator S on H , we associate a *-subalgebra

AS = {
A ∈ B(H): AD(S) ⊆ D(S), A∗D(S) ⊆ D(S) and [S,A]|D(S) is bounded

}
(1.2)

of B(H). It is the domain (see [5]) of a closed *-derivation δS into B(H) defined by

δS(A) = i[S,A] for A ∈AS,

where [S,A] is the closure of [S,A]|D(S) = (SA − AS)|D(S). Furthermore, AS = B(H) if and
only if S is bounded. If S is unbounded, δS is unbounded and AS is a Hermitian semisimple
Banach *-algebra with respect to the norm

‖A‖δS
= ‖A‖ + ∥∥δS(A)

∥∥ for A ∈AS.
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Denote by FS the closure in ‖ · ‖δS
of the set of all finite rank operators in AS and set

JS = {
A ∈AS ∩ C(H): δS(A) ∈ C(H)

}
.

Then (see [5]) FS and JS are domains of C(H) and closed *-ideals of AS . The *-derivations

δmin
S = δS |FS and δmax

S = δS |JS

of C(H) are closed; they are the minimal and the maximal closed *-derivations of C(H) with
minimal implementation S. It was proved in [6] that the closure of (JS)2 in ‖ · ‖δS

coincides with
FS and that JS = FS if S is selfadjoint.

In Section 3 we establish a link between minimal symmetric implementations of two deriva-
tions from Der(A). We prove that if S and T are such implementations, then the algebras FS

and FT coincide and the norms ‖ · ‖δS
and ‖ · ‖δT

on them are equivalent. It was shown in [7]
that if these norms are equal then S − t1 = ±UT U∗ for some unitary operator U and t ∈ R.
In Section 3 we consider the general case and obtain some necessary conditions that S and T

satisfy.
Denote by US the group of all unitary operators in the algebra AS and set

ZS = {
U ∈ US : δS(U) = λU for some λ ∈ C

}
.

We show in Section 4 that if C(H) ⊆ A ⊆ B(H) and A is a domain of A, then each φ ∈ Dif(A) is
implemented by a unitary operator Uφ : φ(A) = UφAU∗

φ for all A ∈ A. Moreover, if δ ∈ Der(A)

then φ ∈ B(δ) if and only if Uφ ∈ US , and φ ∈ Z(δ) if and only if Uφ ∈ ZS , where S is a mini-
mal symmetric implementation of δ. Identifying Dif(A), B(δ) and Z(δ) with the corresponding
subgroups of unitary operators, we have

B(δ) = Dif(A) ∩ US and Z(δ) = Dif(A) ∩ZS.

Section 5 is devoted to the investigation of the structure of the groups ZS . In Section 6 we
study the problem of constructing domains of C*-algebras that extend the domains JS . Let A be
a domain of a C*-subalgebra A of B(H) and let C(H) � A. Assume that there is a derivation
in Der(A) implemented by a symmetric operator S. Then A+JS is a dense *-subalgebra of the
C*-algebra A + C(H) and δ = δS |(A + JS) is a *-derivation of A + C(H). We provide some
sufficient conditions for δ to be a closed derivation which implies that A+JS is a domain of A+
C(H). Numerous examples of such domains can be obtained by considering the *-commutant

CS = Ker δS = {
A ∈ AS : δS(A) = 0

}
of S. It is a W*-algebra and we prove that, for each C*-subalgebra A of CS satisfying some
simple conditions, the algebra A + JS is a domain of the C*-algebra A + C(H). In particular,
CS + JS is a domain of the C*-algebra CS + C(H). Finally, we show that, for each symmetric
operator S,

B
(
δmin
S

) = B
(
δmax
S

) = US and Z
(
δmin
S

) = Z
(
δmax
S

) = Z(δ) = ZS where δ = δS |(CS +JS).

All symmetric operators in this paper are assumed to be closed.
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2. Extension of automorphisms from subalgebras of C*-algebras

Let A be a dense *-subalgebra of a unital C*-algebra A. It is called a Q-subalgebra of A if

1 ∈A and SpA(A) = SpA(A) for all A ∈ A. (2.1)

If A is a dense *-subalgebra of a non-unital C*-algebra A, consider the unitizations Ã = A+ C1
of A and Ã = A+ C1 of A. The algebra A is a Q-subalgebra of A if

SpÃ(A) = SpÃ(A) for all A ∈A.

The domains of closed *-derivations of A are Q-subalgebras of A (see [2,5]).

Proposition 2.1. Let A be a Q-subalgebra of a C∗-algebra A and let φ be a ∗-automorphism
of A. Then ‖φ‖ = 1, so φ extends to a ∗-automorphism of A.

Proof. Let A be unital. Since SpA(A) = SpA(φ(A)), for A ∈ A, we have

SpA(A) = SpA(A) = SpA
(
φ(A)

) = SpA

(
φ(A)

)
. (2.2)

If A = A∗ ∈A then φ(A)∗ = φ(A∗) = φ(A) and, by (2.2),

‖A‖ = sup
λ∈SpA(A)

|λ| = sup
λ∈SpA(φ(A))

|λ| = ∥∥φ(A)
∥∥.

Hence, for B ∈A,

‖B‖2 = ∥∥B∗B
∥∥ = ∥∥φ

(
B∗B

)∥∥ = ∥∥φ(B)∗φ(B)
∥∥ = ∥∥φ(B)

∥∥2
.

For non-unital A, we have the proof by replacing in the above argument A by Ã and A by Ã. �
For a Q-subalgebra A of a C∗-algebra A, denote by Der(A) the set of all closed unbounded

*-derivations δ on A with A = D(δ). We call A a domain if Der(A) �= ∅. We call a
∗-automorphism φ of A a diffeomorphism, if it preserves a domain A in A and denote by Dif(A)

the group of all diffeomorphisms of A that preserve A. Proposition 2.1 yields

Corollary 2.2. φ → φ|A is an isomorphism from Dif(A) onto the set of all ∗-automorphisms
of A.

Any domain A is a Hermitian semisimple Banach *-algebra (see [5]) with respect to each
norm

‖A‖δ = ‖A‖ + ∥∥δ(A)
∥∥ for A ∈A, where δ ∈ Der(A).

For each bounded derivation δb on A, δ + δb ∈ Der(A). Johnson’s uniqueness of norm theorem
yields

Proposition 2.3. All norms ‖ · ‖δ , δ ∈ Der(A), on a domain A are equivalent.



E. Kissin / Journal of Functional Analysis 236 (2006) 609–629 613
Each φ ∈ Dif(A) defines a transformation Tφ of Der(A) by the formula

Tφ(δ) = δφ = φ−1δφ|A, for δ ∈ Der(A).

Then Tφψ = TψTφ , so T :φ → Tφ is an antirepresentation of the group Dif(A) into the set of all
transformations of Der(A). Denote by Z(δ) the stabilizer of δ in Dif(A):

Z(δ) = {
φ ∈ Dif(A): δ = δφ

}
and by B(δ) the subgroup of Dif(A) of diffeomorphisms which define bounded shifts of δ:

B(δ) = {
φ ∈ Dif(A): the derivation δφ − δ is bounded on A in ‖ · ‖}.

If ψ ∈ B(δ) then B(δ) = B(δψ). Denote by A∗ the dual space of A.

Proposition 2.4. Let δ ∈ Der(A) and φ ∈ Dif(A). If there exists Δ ∈ Der(A) such that, for each
A ∈A and F ∈ A∗, F(Δφn(A)) → F(δ(A)), as n → ∞, then φ ∈ Z(δ).

Proof. Define Fφ−1 by Fφ−1(A) = F(φ−1(A)), for A ∈ A. Then Fφ−1 ∈ A∗, so, for A ∈A,

F
(
Δφn+1(A)

) = Fφ−1

(
Δφn

(
φ(A)

)) → Fφ−1

(
δ
(
φ(A)

))
= F

(
φ−1(δ(φ(A)

))) = F
(
δφ(A)

)
.

Since F(Δφn+1(A)) → F(δ(A)), we have F(δφ(A)) = F(δ(A)). Thus δφ(A) = δ(A), so
φ ∈Z(δ). �
3. Domains of C*-algebras containing C(H)

For x, y ∈ H , the rank one operator x ⊗ y on H acts by the formula

(x ⊗ y)z = (z, x)y for z ∈ H, and ‖x ⊗ y‖ = ‖x‖‖y‖.

Let F be an operator on H . For u,v ∈ H ,

(x ⊗ y)(u ⊗ v) = (v, x)(u ⊗ y), (x ⊗ y)∗ = y ⊗ x,

x ⊗ λy = λ(x ⊗ y) = λx ⊗ y,

F (x ⊗ y) = x ⊗ Fy, (x ⊗ y)F = F ∗x ⊗ y, if y ∈ D(F), x ∈ D
(
F ∗). (3.1)

For an algebra of operators A, denote by F(A) the subalgebra of all finite rank operators in A.

Lemma 3.1. Let A be a domain of A and C(H) ⊆ A ⊆ B(H). For δ ∈ Der(A), let a symmetric
operator S be its minimal implementation. Then

(i) the set of all rank one operators in A consists of all y ⊗ x with x, y ∈ D(S);
(ii) F(A) = {∑n

i=1 xi ⊗ yi : xi, yi ∈ D(S)} = F(AS).
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Proof. First let us show that the set

Eδ = {x ∈ H : x ⊗ x ∈A}

is a dense linear subspace of H and each rank one operator in A has form y ⊗ x, for x, y ∈ Eδ .
For each x ∈ H , ‖x‖ = 1, the rank one projection x ⊗x belongs to A. It follows from [9, Proposi-
tion 3.4.9] that, for every ε > 0, there is a projection pε ∈ D(δ) = A such that ‖x ⊗ x −pε‖ < ε.
Hence there is xε ∈ H , ‖xε‖ = 1, such that pε = xε ⊗ xε , so xε ∈ Eδ . As ‖x ⊗ x − xε ⊗ xε‖ < ε,
we have

∥∥x − (x, xε)xε

∥∥ = ∥∥(x ⊗ x − xε ⊗ xε)x
∥∥ < ε.

Thus the set Eδ is dense in H .
For x ∈ Eδ and λ ∈ C, λx ∈ Eδ . If y ∈ Eδ and α = (y, x) �= 0, then (x ⊗ x)(y ⊗ y) =

α(y ⊗ x) ∈ A. Hence y ⊗ x ∈ A and x ⊗ y = (y ⊗ x)∗ ∈ A. Therefore (x ± y) ⊗ (x ± y) ∈ A,
so x ± y ∈ Eδ .

Let (y, x) = 0. Since Eδ is dense in H , there is z in Eδ such that u = z − (x + y) satisfies
‖u‖ < 1

4 min(‖x‖,‖y‖). Then (z, x) �= 0 and (z, y) �= 0. Hence x + z ∈ Eδ , y + z ∈ Eδ and

∣∣(x + z, y + z)
∣∣ = ∣∣(2x + y + u,x + 2y + u)

∣∣
= ∣∣2‖x‖2 + 2‖y‖2 + ‖u‖2 + (u, x) + 2(u, y) + 2(x,u) + (y,u)

∣∣
� 2‖x‖2 + 2‖y‖2 + ‖u‖2 − 3

(‖x‖ + ‖y‖)‖u‖ > 0.

Therefore (x + z) − (y + z) = x − y ∈ Eδ . Similarly, x + y ∈ Eδ . Thus Eδ is a linear space.
If x ⊗ y ∈A then y ⊗ x ∈ A, so (x ⊗ y)(y ⊗ x) = ‖x‖2(y ⊗ y) ∈ A. Hence y ∈ Eδ . Similarly,

x ∈ Eδ . Conversely, let x, y ∈ Eδ . Then x + y, x + iy ∈ Eδ , so, by (3.1),

y ⊗ x = 1

2

[
(x + y) ⊗ (x + y) − x ⊗ x − y ⊗ y

] + i

2

[
(x + iy) ⊗ (x + iy) − x ⊗ x − y ⊗ y

]
belongs to A. Thus each rank one operator in A has form y ⊗ x for x, y ∈ Eδ .

We shall prove now that Eδ = D(S). Let x ∈ Eδ . By (1.1), for y ∈ D(S), we have (x ⊗ x)y =
(y, x)x ∈ D(S). Since D(S) is dense in H , x ∈ D(S). Thus Eδ ⊆ D(S).

For each A ∈ A, A(x ⊗ x) = x ⊗Ax ∈ A. Hence Ax ∈ Eδ , so Eδ is invariant for all operators
from A. Then the operator T = S|Eδ is closable, densely defined and implements δ. Hence its
closure T also implements δ. Since S is a minimal implementation of δ, T = S, that is, Eδ is a
core of S. Therefore, for each y ∈ D(S), there are yn in Eδ such that yn → y and Syn → Sy.
Then

‖y ⊗ y − yn ⊗ yn‖ � ‖y ⊗ y − y ⊗ yn‖ + ‖y ⊗ yn − yn ⊗ yn‖
= ‖y‖‖y − yn‖ + ‖y − yn‖‖yn‖ → 0, (3.2)

so yn ⊗ yn → y ⊗ y. For all x, y ∈ Eδ , we have x ⊗ y ∈A and it follows from (1.1) that

δ(x ⊗ y) = i[S,x ⊗ y] = i(x ⊗ Sy − Sx ⊗ y). (3.3)
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Using it, we obtain as in (3.2) that

δ(yn ⊗ yn) = i(yn ⊗ Syn − Syn ⊗ yn) → i(y ⊗ Sy − Sy ⊗ y).

Since δ is a closed derivation, y ⊗y ∈ D(δ) = A. Hence y ∈ Eδ , so Eδ = D(S). Part (i) is proved.
Clearly, all operators

∑n
i=1 xi ⊗ yi , with xi , yi ∈ D(S), belong to F(A). Conversely, each

A ∈ F(A) has form A = ∑n
i=1 xi ⊗ yi , where all xi are linearly independent and all yi are

linearly independent. Since S implements δ and D(S) is dense in H ,

Az =
n∑

i=1

(z, xi)yi ∈ D(S) for all z ∈ D(S).

Hence all yi ∈ D(S). As A∗ = ∑n
i=1 yi ⊗ xi ∈ F(A), all xi ∈ D(S). Thus F(A) =

{∑n
i=1 xi ⊗ yi : xi, yi ∈ D(S)}. From this and from [6, Lemma 3.1] it follows that F(A) =

F(AS). �
For δ ∈ Der(A), denote by F(A, δ) the closure of F(A) in ‖ · ‖δ . Recall that FS is the closure

of F(AS) in ‖ · ‖δS
.

Corollary 3.2. Let A be a domain in A, C(H) ⊆ A ⊆ B(H). Let δ, σ ∈ Der(A) and let S,T be,
respectively, their minimal symmetric implementations. Then

(i) F(A, δ) is an ideal of A isometrically isomorphic to the algebra (FS,‖ · ‖δS
).

(ii) The algebras F(A, δ) and F(A, σ ) coincide and D(S) = D(T ).

Proof. Since S implements δ, it follows from (1.1) that A = D(δ) ⊆ AS and δ = δS |D(δ). Hence
the norms ‖ · ‖δS

and ‖ · ‖δ coincide on A, so it follows from Lemma 3.1(ii) that F(A, δ) and FS

are isometrically isomorphic. As FS is an ideal of AS (see [6]), F(A, δ) is an ideal of A.
By Proposition 2.3, the norms ‖ · ‖δ and ‖ · ‖σ on A are equivalent, so the algebras

F(A, δ) and F(A, σ ) coincide. Since A = D(δ) = D(σ), we have from Lemma 3.1(i) that
D(S) = D(T ). �

Let S,T be minimal symmetric implementations of δ, σ ∈ Der(A). It follows from Proposi-
tion 2.3 and Corollary 3.2 that the algebras FS and FT coincide and the norms ‖ · ‖δS

and ‖ · ‖δT

on them are equivalent. It was shown in [7, Theorem 4.4] that these norms are equal if and only
if S − t1 = ±UT U∗ for some t ∈ R and a unitary operator U . Below we consider the general
case and obtain some necessary conditions that S and T satisfy.

Theorem 3.3. Let A be a domain in A, C(H) ⊆ A ⊆ B(H). Let symmetric operators S and T

be minimal implementations of δ, σ ∈ Der(A), respectively. Then

(i) S and T are either both selfadjoint or both non-selfadjoint;
(ii) there exist bounded invertible operators M from (S − i1)D(S) onto (T − i1)D(T ) and N

from (S + i1)D(S) onto (T + i1)D(T ) such that

T − i1 =M(S − i1) and T + i1 = N(S + i1);
(iii) the derivation σ −δ is bounded if and only if T = S+R where R is selfadjoint and bounded.
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Proof. It was shown in [6] that the algebra (FS,‖ · ‖δS
) has a bounded approximate identity if

and only if S is selfadjoint. By Corollary 3.2, FS = FT and the norms ‖ · ‖δS
and ‖ · ‖δT

on them
are equivalent. This yields (i).

By Corollary 3.2(ii), D(S) = D(T ). Fix x ∈ D(S) with ‖x‖ = 1. By Proposition 2.3, there is
C > 0 such that, for all y ∈ D(S),

‖x ⊗ y‖σ = ‖x ⊗ y‖ + ∥∥σ(x ⊗ y)
∥∥ � C‖x ⊗ y‖δ = C‖x ⊗ y‖ + C

∥∥δ(x ⊗ y)
∥∥.

The operators T − i1 and S − i1 implement σ and δ. As ‖x ⊗ y‖ = ‖x‖‖y‖, we have from (3.3)

‖x‖‖y‖ + ∥∥x ⊗ (T − i1)y − (
(T + i1)x

) ⊗ y
∥∥

� C
(‖x‖‖y‖ + ∥∥x ⊗ (S − i1)y − (

(S + i1)x
) ⊗ y

∥∥)
.

Therefore

∥∥(T − i1)y
∥∥ = ∥∥x ⊗ (T − i1)y

∥∥ �
∥∥x ⊗ (T − i1)y − (

(T + i1)x
) ⊗ y

∥∥ + ∥∥(
(T + i1)x

) ⊗ y
∥∥

� C
(‖x‖‖y‖ + ∥∥x ⊗ (S − i1)y − (

(S + i1)x
) ⊗ y

∥∥) + ∥∥(T + i1)x
∥∥‖y‖

� C‖y‖ + C
∥∥(S − i1)y

∥∥ + ∥∥(S + i1)x
∥∥‖y‖ + ∥∥(T + i1)x

∥∥‖y‖
� K‖y‖ + C

∥∥(S − i1)y
∥∥.

Since S is symmetric, ‖(S − i1)y‖2 = ‖Sy‖2 + ‖y‖2. Hence

∥∥(T − i1)y
∥∥ � (K + C)

∥∥(S − i1)y
∥∥ for y ∈ D(S). (3.4)

It is well known that (S ± i1)D(S) are closed subspaces of H and Ker(S ± i1) = {0}. Define
an operator M from (S − i1)D(S) into (T − i1)D(T ) by M(S − i1)y = (T − i1)y, for y ∈ D(S).
By (3.4), M is bounded. Similarly, the operator R from (T − i1)D(T ) into (S − i1)D(S) defined
by R(T − i1)y = (S − i1)y, for y ∈ D(T ), is bounded. Hence R = M−1.

Similarly, there is a bounded invertible operator N from (S + i1)D(S) on (T + i1)D(T ) such
that T + i1 = N(S + i1). Part (ii) is proved.

For R = R∗ ∈ B(H), the *-derivation δR(A) = i[R,A], A ∈ A, is bounded. Hence δ + δR ∈
Der(A) and S + R is its minimal implementation.

Conversely, let σ − δ be bounded. As D(S) = D(T ), the operator R = T − S is symmetric
on D(S). There is C > 0 such that ‖σ(A) − δ(A)‖ � C‖A‖ for all A ∈ A. Hence, for all x, y ∈
D(S), we have from (3.3) that x ⊗ y ∈ A and

∥∥σ(x ⊗ y) − δ(x ⊗ y)
∥∥ = ∥∥i[T − S,x ⊗ y]∥∥ = ‖x ⊗ Ry − Rx ⊗ y‖ � C‖x ⊗ y‖ = C‖x‖‖y‖.

Fix x with ‖x‖ = 1. Then

‖Ry‖ = ‖x ⊗ Ry‖ � ‖x ⊗ Ry − Rx ⊗ y‖ + ‖Rx ⊗ y‖ � C‖x‖‖y‖ + ‖Rx‖‖y‖.

Hence R is bounded on D(S), so it extends to a selfadjoint bounded operator. �
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4. Diffeomorphisms of C*-algebras containing C(H)

Each *-automorphism φ of C(H) is implemented by a unitary operator U : φ(B) = UBU∗,
for B ∈ C(H) (see [8]). This is also true for all *-automorphisms φ of C*-subalgebras A of
B(H) containing C(H). Indeed, for x, y,∈ H , set R = φ(x ⊗ y). By (3.1), for all z,u ∈ H ,

R∗z ⊗ Ru = R(z ⊗ u)R = φ
(
(x ⊗ y)φ−1(z ⊗ u)(x ⊗ y)

) = (
φ−1(z ⊗ u)y, x

)
R.

Hence R is a rank one operator, so φ and φ−1 map finite rank operators into finite rank operators.
Thus φ(C(H)) = C(H) and there is a unitary U such that φ(B) = UBU∗, for B ∈ C(H). For
A ∈ A and all x, y ∈ H ,

Ux ⊗ UAy = U(x ⊗ Ay)U∗ = φ
(
A(x ⊗ y)

) = φ(A)φ(x ⊗ y)

= φ(A)U(x ⊗ y)U∗ = φ(A)(Ux ⊗ Uy) = Ux ⊗ φ(A)Uy.

Hence φ(A)Uy = UAy for all y ∈ H , so φ(A) = UAU∗ for all A ∈ A.
Recall that we denote by US the group of all unitary operators in the algebra AS :

US = {
U ∈ B(H): U is unitary, UD(S) = D(S) and [S,U ]|D(S) is bounded

}
and set

ZS = {
U ∈ US : δS(U) = λU for some λ ∈ C

}
.

Theorem 4.1. Let A be a domain in A, C(H) ⊆ A ⊆ B(H), and let φ ∈ Dif(A). Let, as above,
a unitary U ∈ B(H) implements φ: φ(A) = UAU∗ for all A ∈ A. Then

(i) if a symmetric operator S is a minimal implementation of δ ∈ Der(A), then UD(S) = D(S)

and U∗SU is a minimal implementation of the ∗-derivation δφ ;
(ii) φ ∈ B(δ) if and only if U ∈ US ;

(iii) φ ∈ Z(δ) if and only if U ∈ZS .

Proof. By Lemma 3.1, x ⊗ x ∈ A for x ∈ D(S). Hence

φ(x ⊗ x) = U(x ⊗ x)U∗ = Ux ⊗ Ux ∈A,

so Ux ∈ D(S). Thus UD(S) ⊆ D(S). Since φ−1 ∈ Dif(A) and implemented by U∗, we have
U∗D(S) ⊆ D(S). Therefore UD(S) = D(S).

Let T implement δ. For all A ∈ A, we have UAU∗ ∈A, so UAU∗D(T ) ⊆ D(T ). By (1.1),

δφ(A)|U∗D(T ) = φ−1(δ(φ(A)
))∣∣

U∗D(T )
= U∗δ

(
UAU∗)U ∣∣

U∗D(T )

= U∗δ
(
UAU∗)∣∣

D(T )
= U∗i

[
T ,UAU∗]∣∣

D(T )
= i

[
U∗T U,A

]∣∣
U∗D(T )

. (4.1)

Thus U∗T U implements δφ . Similarly, if R implements δφ , URU∗ implements δ. Hence T →
U∗T U is a one-to-one correspondence between the sets of implementations of δ and δφ . Since S

is a minimal implementation of δ, U∗SU is a minimal implementation of δφ . Part (i) is proved.
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It follows from (i) and from Theorem 3.3(iii) that δφ − δ is a bounded derivation if and only
if K = U∗SU − S is a bounded operator on D(S). Hence φ ∈ B(δ), if and only if the operator
[S,U ] = UK is bounded on D(S). Since UD(S) = D(S), we have that φ ∈ B(δ) if and only if
U ∈ US . Part (ii) is proved.

Let φ ∈ Z(δ). Then U ∈ US and, by (i), U∗SU is a minimal implementation of δφ and
D(U∗SU) = D(S). Since δφ = δ and S is a minimal implementation of δ, there is λ ∈ C
such that U∗SU = S + λ1|D(S). Hence δS(U) = iλU , so U ∈ ZS . Conversely, if U ∈ ZS then
U∗SU = S + λ1|D(S). As U∗SU is a minimal implementation of δφ , we have δφ = δ. �

Let A be a domain in A, C(H) ⊆ A ⊆ B(H). It follows from Theorem 4.1 that one can iden-
tify (modulo scalars from the unit circle) the group Dif(A) with the group of all unitary operators
U on H whose action A → UAU∗ preserve A. For δ ∈ Der(A), we will also identify the sub-
groups B(δ) and Z(δ) with the corresponding subgroups of unitary operators. By Theorem 4.1,
if S is a minimal implementation of δ then

B(δ) = {
U ∈ US : UAU∗ = A

} = Dif(A) ∩ US,

Z(δ) = {
U ∈ ZS : UAU∗ = A

} = Dif(A) ∩ZS. (4.2)

Proposition 4.2. Let A be a domain in A, C(H) ⊆ A ⊆ B(H), and let S be a minimal symmetric
implementation of δ ∈ Der(A). Then

(i) B(δ) is closed in (AS,‖ · ‖δS
) and Z(δ) is closed in (B(H),‖ · ‖);

(ii) if A is an ideal of AS , then B(δ) = US and Z(δ) = ZS .

Proof. Let a sequence {Un} of unitaries in B(δ) converge to U in (AS,‖ · ‖δS
). Then

‖U − Un‖ → 0 and ‖δS(U) − δS(Un)‖ → 0. Hence U is unitary. For each A ∈ A, we have
UnAU∗

n ∈A, UAU∗ ∈AS and ‖UAU∗ − UnAU∗
n‖ → 0. Hence

∥∥δS

(
UAU∗) − δ

(
UnAU∗

n

)∥∥
= ∥∥δS(U)AU∗ + Uδ(A)U∗ + UAδS

(
U∗) − δS(Un)AU∗

n − Unδ(A)U∗
n − UnAδS

(
U∗

n

)∥∥
�

∥∥δS(U)AU∗ − δS(Un)AU∗
n

∥∥ + ∥∥Uδ(A)U∗ − Unδ(A)U∗
n

∥∥
+ ∥∥UAδS

(
U∗) − UnAδS

(
U∗

n

)∥∥ → 0.

Since δ is closed, UAU∗ ∈A. Thus U ∈ Dif(A). As U ∈ US , it follows from (4.2) that U ∈ B(δ).
Let Un ∈ Z(δ), δS(Un) = λnUn, and let U ∈ B(H) and ‖U − Un‖ → 0. If λn → ∞, then

Un/λn → 0 and δS(Un/λn) = Un → U . Since δS is a closed derivation, U = 0. This contradic-
tion shows that {λn} is bounded. Choose a subsequence converging to some λ and denote it also
by {λn}. Then δS(Un) = λnUn → λU . Since δS is a closed derivation, U ∈ US and δS(U) = λU .
Hence Un converge to U in ‖ · ‖δS

and, as above, U ∈ Dif(A). By (4.2), U ∈ Z(δ). Part (i) is
proved.

If A is an ideal of AS then, for each U in US , the map A → UAU∗ preserves A. Hence
Dif(A) ⊇ US ⊇ ZS and (ii) follows from (4.2). �
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5. Structure of the group ZS

Let U ∈ZS and δS(U) = λU , for λ ∈ C. Then U∗ ∈ US and δS(U∗) = δS(U)∗ = λU∗. As

0 = δS(1) = δS

(
U∗U

) = U∗δS(U) + δS

(
U∗)U = (λ + λ)U∗U = (λ + λ)1,

we have Re(λ) = 0. For each t ∈ R, set

ZS(t) = {
U ∈ ZS : δS(U) = itU

}
and ΓS = {

t ∈ R: ZS(t) �= ∅}
.

Then ZS(t)ZS(s) ⊆ ZS(t + s), for t, s ∈ ΓS , so UZS(0) ⊆ ZS(t) and U∗ZS(t) ⊆ ZS(0), for
U ∈ZS(t). Hence

ZS(t) = UZS(0) = ZS(0)U for each U ∈ ZS(t),

ZS(−t) = ZS(t)∗, ZS(t + s) = ZS(t)ZS(s) and ZS =
⋃
t∈ΓS

ZS(t). (5.1)

All sets ZS(t) are norm closed and ZS(0) is a selfadjoint normal subgroup of the group ZS ; ΓS is
a subgroup of R by addition, isomorphic to the quotient group ZS/ZS(0).

Denote by Λ(S) and Λ(S∗) the sets of all eigenvalues of operators S and S∗ and by Hλ(S)

and Hλ(S
∗) the corresponding eigenspaces of S and S∗. For a selfadjoint S, let ES(λ) be the

spectral resolution of the identity of S. Then

ES−t1(λ) = ES(λ + t). (5.2)

Let t ∈ R − {0}. We say that a unitary operator U on H is an (S, t)-shift if

UD(S) = D(S) and UES(λ)U∗ = ES(λ + t) for all λ ∈ R.

Theorem 5.1.

(i) If ZS(t) �= {0} then the map λ → λ + t is an isomorphism of the sets Sp(S), Λ(S), Sp(S∗),
Λ(S∗). For U ∈ ZS(t) and all λ ∈ Λ(S) and μ ∈ Λ(S∗),

Hλ+t (S) = UHλ(S) and Hμ+t

(
S∗) = UHμ

(
S∗).

(ii) If S is selfadjoint then U ∈ZS(t), t �= 0, if and only if U is an (S, t)-shift.

Proof. We have UD(S) = D(S), U∗D(S) = D(S) and

(SU − US)|D(S) = tU |D(S) and
(
SU∗ − U∗S

)∣∣
D(S)

= −tU∗|D(S). (5.3)

Hence

U∗(S − (λ + t)1
)
U

∣∣
D(S)

= (S − λ1)|D(S) for each λ ∈ C.

Therefore λ ∈ Sp(S) if and only if λ + t ∈ Sp(S). Hence λ → λ + t is an isomorphism of Sp(S).
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By (5.3), for x ∈ D(S) and y ∈ D(S∗),

(Sx,Uy) = (
U∗Sx, y

) = (
SU∗x, y

) + (
tU∗x, y

) = (
x,

(
US∗ + tU

)
y
)
.

Hence Uy ∈ D(S∗) and (S∗U −US∗)y = tUy. Similarly, U∗y ∈ D(S∗) and (S∗U∗ −U∗S∗)y =
−tU∗y. Therefore UD(S∗) = D(S∗), U∗D(S∗) = D(S∗) and(

S∗U − US∗)∣∣
D(S∗) = tU |D(S∗) and

(
S∗U∗ − U∗S∗)∣∣

D(S∗) = −tU∗|D(S∗). (5.4)

Hence, as above, we have that λ → λ + t is an isomorphism of Sp(S∗).
For λ ∈ Λ(S), we have from (5.3) that UHλ ⊆ Hλ+t and U∗Hλ ⊆ Hλ−t . Therefore

UHλ ⊆ Hλ+t = UU∗Hλ+t ⊆ UHλ.

Hence UHλ = Hλ+t and λ → λ + t is an isomorphism of Λ(S). Using (5.4), we obtain that the
same is true for Λ(S∗). Part (i) is proved.

For any unitary U , the operator USU∗ is selfadjoint,

D
(
USU∗) = UD(S) and EUSU∗(λ) = UES(λ)U∗ for all λ ∈ R. (5.5)

Let U ∈ ZS(t). By (5.3), UD(S) = U∗D(S) = D(S) and USU∗|D(S) = S − t1|D(S). Hence it
follows from (5.2) that

EUSU∗(λ) = ES−t1(λ) = ES(λ + t) for all λ ∈ R.

Taking into account (5.5), we have UES(λ)U∗ = ES(λ + t). Thus U is an (S, t)-shift.
Conversely, let U be an (S, t)-shift. Then UD(S) = D(S) and UES(λ)U∗ = ES(λ + t) for

all λ ∈ R. Hence it follows from (5.2) and (5.5) that

EUSU∗(λ) = UES(λ)U∗ = ES−t1(λ),

so USU∗|D(S) = S − t1|D(S). Thus

δS(U)|D(S) = i(SU − US)|D(S) = itU |D(S).

Therefore U ∈ZS(t). �
Theorem 5.1 has an especially simple form when S is diagonal, that is, H = ⊕

λ∈Λ(S) Hλ.

Corollary 5.2. Let S be a diagonal selfadjoint operator. Then t ∈ ΓS if and only if λ → λ + t is
an isomorphism of Λ(S) and dimHλ = dimHλ+t for all λ ∈ Λ(S).

From Corollary 5.2 it follows that, for any subgroup Γ of R, there is a diagonal S with
ΓS = Γ .

If for each t ∈ ΓS , there is Ut ∈ ZS(t) such that U = {Ut : t ∈ ΓS} is a group, then U is called
a resolving subgroup of ZS . It is commutative and consists of unitary operators Ut , t ∈ ΓS ,
satisfying

UtD(S) = D(S) and (SUt − UtS)|D(S) = tUt |D(S).
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This relation is called the infinitesimal Weyl relation for the group U and the operator S (see [4]).
It follows from (5.1) that ZS is the semi-direct product of U and the normal subgroup ZS(0).

Proposition 5.3. If ΓS has a minimal positive element μ, then ΓS = {nμ: n ∈ Z} and, for each
U ∈ZS(μ), U = {Un: n ∈ Z} is a resolving subgroup of ZS .

Proof. We only need to show that ΓS = {nμ: n ∈ Z}. If there is λ ∈ ΓS such that λ �= nμ, for
all n ∈ Z, then mμ < λ < (m + 1)μ for some m ∈ Z. Then α = λ − mμ ∈ ΓS and 0 < α < μ;
a contradiction. �
Example 5.4.

(1) Let {en}n∈Z be a basis in H and let Sen = nen. Then Z
S
(0) consists of all unitary diago-

nal operators, ΓS = Z, the unitary U : en → en+1 belongs to ZS(1) and {Un: n ∈ Z} is a
resolving subgroup of ZS .

(2) Let T be the operator of multiplication by t on L2(R). The subgroup ZT (0) consists of all
multiplication operators by functions g ∈ L∞(R) such that |g(t)| = 1; ΓT = R, the shift
operators Ur :h(t) → h(t − r) belong to ZT (r) and {Ur : r ∈ R} is a resolving subgroup
of ZT .

If U ∈ ZS(t) and V ∈ ZT (t) then U ⊕ V ∈ ZS⊕T (t). Hence if {Ut : t ∈ R} and {Vt : t ∈ R}
are resolving subgroups of ZS and ZT , then {Ut ⊕ Vt : t ∈ R} is a resolving subgroup of ZS⊕T .
We also have that ΓS ∩ ΓT ⊆ ΓS⊕T . The group ΓS⊕T is often larger than the groups ΓS and ΓT .

Indeed, let S and T be diagonal operators on H and K , Sp(S) = Sp(T ) = Z and

H =
⊕
n∈Z

Hn, K =
⊕
n∈Z

Kn, dimH0 = dimKk = 1, dimHk = dimK0 = 2 for k �= 0.

Then ΓS = ΓT = {0} and ΓS⊕T = Z.
Assume that ΓS = R and the resolving group U = {Ut : t ∈ R} is strongly continuous: for all

x ∈ H , ‖Utx − x‖ → 0 as t → 0. Let a selfadjoint operator T be the generator of U. Repeating
the argument in [5, p. 497], we obtain that there is a linear manifold D in D(S) ∩ D(T ) dense in
H such that the operators S and T satisfy the canonical commutation relation:

(ST − T S)|D = 1|D.

For a symmetric operator S, define the *-commutant of S by the formula

CS = Ker δS = {
A ∈AS : δS(A) = 0

}
, so ZS(0) = US ∩ CS. (5.6)

For selfadjoint S, CS is the set of all bounded operators commuting with all projections ES(λ),
λ ∈ R. If S is non-selfadjoint, CS is often trivial: CS = C1, so ZS(0) = {z1: |z| = 1}.

For some selfadjoint operators S, the algebras AS and CS coincide modulo compact operators.
Let H = ⊕∞

i=−∞ Hi and S|Hi
= λi1Hi

with all distinct λi . Set

dS(k) =
(

inf |λi+k − λi |
)−1

for k �= 0.

i∈Z
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It was proved in [7] that AS = CS + (AS ∩ C(H)) if all dim(Hi) < ∞,

lim|i|→∞(λi+1 − λi) = ∞ and
∑

k∈Z\{0}
dS(k) converges. (5.7)

In particular, (5.7) holds if λi = sgn(i)|i|1+α for any α > 0.
For λ ∈ Λ(S), let Pλ be the projection on the eigenspace Hλ of S. If λ �= μ, PλPμ = 0. Let

A ∈ C(H). Each sequence {xλn}, xλn ∈ Hλn with ‖xλn‖ = 1 and distinct λn, weakly converges
to 0. Hence ‖Axλn‖ → 0. This implies that ΛA = {λ ∈ Λ(S): APλ �= 0} is a finite or countable
set: ΛA = {λi}, and ‖APλi

‖ → 0 as i → ∞. Thus the series
∑

λi∈ΛA
Pλi

APλi
converges in norm,

so

ρ :A →
∑

λ∈Λ(S)

PλAPλ =
∑

λi∈ΛA

Pλi
APλi

(5.8)

is a map from C(H) into C(H) and ‖ρ‖ = 1. Let Q = 1 − ∑
λ∈Λ(S) Pλ and set

DS = {
A ∈ C(H): AQ = QA = 0 and PλA = APλ for all λ ∈ Λ(S)

}
.

Then DS is a C*-subalgebra of C(H). For each A ∈ C(H), ρ(A) ∈DS and, for each A ∈ DS ,

A =
(

Q +
∑

λ∈Λ(S)

Pλ

)
A = ρ(A), so DS = {

ρ(A): A ∈ C(H)
}
.

Lemma 5.5.

(i) CS is a W∗-algebra and

CS = {
A ∈ B(H): AD(S) ⊆ D(S), A∗D(S) ⊆ D(S), [S,A]|D(S) = 0

}
= {

A ∈ B(H): AD(S) ⊆ D(S), AD
(
S∗) ⊆ D

(
S∗), [S,A]|D(S) = [

S∗,A
]∣∣

D(S∗) = 0
}
.

(ii) All Pλ ∈ CS ∩ C′
S , for λ ∈ Λ(S), and DS = CS ∩ C(H).

Proof. The first equality in (i) follows from (1.2) and (5.6). For A ∈ CS , A∗ ∈ AS and δS(A∗) =
δS(A)∗ = 0. Thus A∗ ∈ CS , so CS is a *-algebra. Denote by Π the last set in (i). Let A ∈ CS . For
all x ∈ D(S∗) and y ∈ D(S),

(Ax,Sy) = (
x,A∗Sy

) = (
x,SA∗y

) = (
AS∗x, y

)
.

Hence AD(S∗) ⊆ D(S∗) and AS∗|D(S∗) = S∗A|D(S∗), so [S∗,A]|D(S∗) = 0. Thus CS ⊆ Π .
Conversely, let A ∈ Π . Then, for all x ∈ D(S∗) and y ∈ D(S),

(
S∗x,A∗y

) = (
AS∗x, y

) = (
S∗Ax,y

) = (
x,A∗Sy

)
.

Hence A∗y ∈ D(S∗∗) = D(S), so A∗D(S) ⊆ D(S). Thus Π ⊆ CS , so Π = CS .
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Let CS � Aλ → A in the weak operator topology (wot). Then A∗
λ

wot→ A∗. As S∗∗ = S, we have,
for all x ∈ D(S∗) and y ∈ D(S),

(
S∗x,Ay

) = (
A∗S∗x, y

) = lim
λ

(
A∗

λS
∗x, y

) = lim
λ

(
S∗A∗

λx, y
)

= lim
λ

(
A∗

λx,Sy
) = (

A∗x,Sy
) = (x,ASy).

Hence Ay ∈ D(S∗∗) = D(S) and SAy = ASy. Thus AD(S) ⊆ D(S) and [S,A]|D(S) = 0. Simi-
larly, A∗D(S) ⊆ D(S). Therefore A ∈ CS , so CS is a W*-algebra. Part (i) is proved.

Since PλD(S) ⊆ Hλ ⊆ D(S) and

PλS|D(S) = SPλ|D(S) = λPλ|D(S), (5.9)

we have δS(Pλ) = 0, so Pλ ∈ CS . Let A ∈ CS . For x ∈ Hλ, we have SAx = ASx = λAx, so
Ax ∈ Hλ. Hence PλAPλ = APλ. Since CS is a *-algebra, PλA = APλ, so Pλ ∈ CS ∩ C′

S .
Let A ∈ C(H). For each λ ∈ Λ(S), PλAPλ ∈ C(H) and PλAPλD(S) ⊆ Hλ ⊆ D(S). By (5.9),

δS(PλAPλ)|D(S) = i(SPλAPλ|D(S) − PλAPλS|D(S)) = 0.

Hence PλAPλ ∈ CS ∩C(H). As ρ(A) is the norm limit of sums of the operators PλAPλ, λ ∈ ΛA,
we have ρ(A) ∈ CS ∩ C(H). Thus DS ⊆ CS ∩ C(H).

Conversely, let A = A∗ ∈ CS ∩ C(H). Then A = ∑
i αiPi , where Pi are finite-dimensional

mutually orthogonal projections from CS ∩C(H) and |αi | → 0. Each subspace PiH lies in D(S)

and the operator S|PiH is selfadjoint. Hence PiH = ⊕
j Kij , where S|Kij

= λijPKij
. Therefore

λij ∈ Λ(S). As Pλ ∈ C′
S , each Pi commutes with all Pλ, so PKij

= Pλij
PiPλij

∈ DS . Hence
Pi = ∑

j PKij
∈ DS . As DS is norm closed, A ∈ DS . Thus DS = CS ∩ C(H). �

Recall that a closed subspace L of H (the projection Q on L) reduces a symmetric operator
S if

QD(S) ⊆ D(S) and SQ|D(S) = QS|D(S). (5.10)

The operator S is called simple if it has no reducing subspaces where it induces a selfadjoint
operator; it is called irreducible if it has no reducing subspaces.

Denote by H(n), 1 � n � ∞, the orthogonal sum of n copies of H and by S(n) the orthogonal
sum of n copies of S. Lemma 5.5(i) and (5.10) yield

Lemma 5.6.

(i) A projection Q reduces a symmetric operator S if and only Q ∈ CS .
(ii) S is irreducible if and only if CS = C1.

(iii) If S is irreducible, CS(n) consists of all block-matrix bounded operators (λij 1H ) on H(n)

with λij ∈ C.

Let S∗ be the adjoint of S. The deficiency subspaces N±(S) = {x ∈ D(S∗): S∗x = ±ix} of S

are closed in H and n±(S) = dimN±(S) are called the deficiency indices of S. The operator S

is selfadjoint if n−(S) = n+(S) = 0; it is maximal symmetric if either n−(S) = 0 or n+(S) = 0.
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Recall that symmetric operators R on K and S on H are isomorphic if

UD(R) = D(S) and UR|D(R) = SU |D(R), (5.11)

for some unitary operator U from K on H . If S and R are isomorphic, ZS = ZR and ΓS = ΓR .
The operator T = i d

dt
on H = L2(0,∞) with

D(T ) = {
h ∈ H : h are absolutely continuous, h′ ∈ H and h(0) = 0

}
is simple and maximal symmetric with n−(T ) = 1, n+(T ) = 0. For each r ∈ R, the multiplication
operator

Vrh(t) = e−irth(t) (5.12)

on H is unitary. It is easy to check that Vr ∈ UT and δT (Vr) = irVr for all r ∈ R, so Vr ∈ZT (r).
It is well known (see [1]) that each simple maximal symmetric operator S is isomorphic

either to T (k) if n−(S) = k, n+(S) = 0; or to − T (k) if n−(S) = 0, n+(S) = k. (5.13)

Using Lemma 5.6, we have the following description of ZS for simple maximal symmetric op-
erators.

Theorem 5.7. Let S be a simple maximal symmetric operator satisfying (5.13), for some k, and
let Vr , r ∈ R, be the unitary operators defined in (5.12). Then ΓS = R, {V (r)(k): r ∈ R} is a
resolving subgroup of ZS and ZS(0) consists of all unitary block-matrix operators (λij 1H ) on
H(k) with λij ∈ C.

We consider now the following criteria for a symmetric operator to be irreducible.

Lemma 5.8. Let S be a symmetric operator. Let {λn} be eigenvalues of S∗ with one-dimensional
eigenspaces: Hn = Chn and let the linear span of all hn be dense in H . Suppose that all
hn /∈ D(S). If there are μn ∈ C such that hn − μnh1 ∈ D(S), for all n, then S is irreducible.

Proof. Let a projection Q belong to CS . It commutes with S∗, so S∗Qhn = QS∗hn = λnQhn.
Since Hn are one-dimensional, Qhn = αnhn, where αn = 0 or 1. Since Q preserves D(S),

Q(hn − μnh1) = αnhn − μnα1h1 = αn(hn − μnh1) + (αn − α1)μnh1 ∈ D(S).

Hence (αn −α1)μnh1 ∈ D(S) for all n. Since all μn �= 0, all αn = α1. Thus Q is either 1 or 0. �
We shall now consider an irreducible non-maximal symmetric operator with a resolving sub-

group. The symmetric operator S = i d
dt

on H = L2(0,2π) with

D(S) = {
h ∈ H : h is absolutely continuous, h′ ∈ H and h(0) = h(2π) = 0

}
has n−(S) = n+(S) = 1 (see [1]). It is irreducible. Indeed, S∗ = i d

dt
and

D(S∗) = {h ∈ H : h is absolutely continuous and h′ ∈ H }.
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The functions hn(t) = eint , −∞ < n < ∞, form an orthonormal basis in H , hn ∈ D(S∗) and
hn /∈ D(S). Moreover, S∗hn = −nhn and hn − h0 ∈ D(S) for all n. Hence, by Lemma 5.8,
S is irreducible. For each real r , the multiplication operator Urh(t) = e−irth(t) on H is unitary,
Ur ∈ US and δS(Ur) = irUr . This yields

Proposition 5.9. ΓS = R, ZS(0) = {z1: |z| = 1} and {Ur : r ∈ R} is a resolving subgroup of ZS .

All selfadjoint extensions of the operator S above can be parametrized by ω ∈ [0,2π)

(see [1]):

Sω = i
d

dt
,

D(Sω) = {
h ∈ H : h are absolutely continuous, h′ ∈ H and h(2π) = eiωh(0)

}
and

Sp(Sω) =
{
λn = n − ω

2π
: n ∈ Z

}

with the eigenvectors hn(t) = e−iλnt . Each operator Sω + ω
2π

1 is isomorphic to the diagonal
selfadjoint operator in Example 5.4(1). Hence ΓSω = Z, the groups ZSω have resolving subgroups
and large subgroups ZSω(0).

6. Extension of domains

Recall (see Introduction) that, for each symmetric operator S, the algebra FS and the algebra

JS = {
A ∈ AS ∩ C(H): δS(A) ∈ C(H)

}
are domains of C(H) and δmin

S = δS |FS and δmax
S = δS |JS are closed *-derivations of C(H)

with minimal implementation S. If S is selfadjoint then JS = FS . If A is a domain in C(H),
then FS ⊆ A ⊆ JS for some symmetric operator S on H . Indeed, let δ ∈ Der(A) and let S be
a minimal implementation of δ. Since δmin

S and δmax
S are the minimal and the maximal closed

*-derivations of C(H) with minimal implementation S, δmin
S ⊆ δ ⊆ δmax

S . Thus FS ⊆ A ⊆ JS .
In this section we construct a variety of domains of C*-algebras that contain JS . We will

consider C*-subalgebras of B(H) that do not contain C(H). Let A be such a C*-subalgebra of
B(H) and let A be a domain of A. Assume that there is a derivation in Der(A) implemented
by S: A ⊆ AS and δS |A ∈ Der(A). It follows from [3, Corollary 1.8.4] that A + C(H) is a C*-
algebra. Since JS is an ideal of AS , A+JS is a dense *-subalgebra of A + C(H) and δS maps
A+JS into A+C(H), so δS |(A+JS) is a *-derivation of A+C(H). Below we consider some
conditions for δS |(A + JS) to be closed. These conditions will imply that A + JS is a domain
of A + C(H).

Let δ be the maximal closed *-derivation of A implemented by S, that is,

G(δ) = G(δS) ∩ (A ⊕ A), where G(δ) = {
A ⊕ δ(A): A ∈ D(δ)

}
(6.1)

is the graph of δ. In particular, δmax
S is the maximal derivation of C(H) implemented by S.

Theorem 6.1. Let A be a domain of A, C(H) � A ⊆ B(H), and let δS |A ∈ Der(A). Suppose
that
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(i) δS |A is the maximal closed ∗-derivation of A implemented by S, that is, (6.1) holds;
(ii) there exists a bounded linear map θ from C(H) onto A ∩ C(H) such that

θ(A) = A for all A ∈ A ∩ C(H), (6.2)

and θ commutes with δmax
S :

θ(A) ∈ JS and δmax
S

(
θ(A)

) = θ
(
δmax
S (A)

)
for all A ∈ JS. (6.3)

Then B = A+JS is a domain of A+C(H), δS |B ∈ Der(B) and S is its minimal implementation.

Proof. Set δ = δS |B. Since S implements δ and FS ⊆ JS ⊆ B, it is easy to see that S is a minimal
implementation of δ. Thus we only need to prove that δ is closed.

By (6.2), C(H) = (A∩C(H))� Ker(θ) and Ker(θ) is a closed subspace of C(H). Therefore

A + C(H) = A � Ker(θ) (6.4)

is the direct sum of A and Ker(θ). Let A ∈ JS . Since θ(A) ∈ A ∩ C(H), we have from (6.3) that

θ(A) ∈ A ∩JS and δS

(
θ(A)

) = δmax
S

(
θ(A)

) = θ
(
δmax
S (A)

) ∈ A ∩ C(H). (6.5)

Hence θ(A) ⊕ δS(θ(A)) belongs to A ⊕ A and to G(δS). Since δS |A satisfies (6.1), we have
θ(A) ∈ A. Therefore A = θ(A) + (A − θ(A)) and A − θ(A) ∈ JS ∩ Ker(θ). Thus, by (6.4),

B = A+JS = A�
(
JS ∩ Ker(θ)

)
.

Let An ∈ A, Bn ∈ JS ∩ Ker(θ), A,T ∈ A and B,R ∈ Ker(θ), let An + Bn → A + B ∈
A + C(H) and let δ(An + Bn) → T + R. By (6.5), θ(δmax

S (Bn)) = δmax
S (θ(Bn)) = 0. Hence

δmax
S (Bn) ∈ Ker(θ). Thus

δ(An + Bn) = δS(An) + δmax
S (Bn) → T + R, where δS(An) ∈ A and δmax

S (Bn) ∈ Ker(θ).

If a sequence in the direct sum of closed subspaces converges, the components of its ele-
ments also converge. Hence, by (6.4), An → A, Bn → B , δS(An) → T and δmax

S (Bn) → R. As
δS |A is a closed derivation, we have A ∈ A and δS(A) = T . As δmax

S is a closed derivation,
B ∈ JS ∩ Ker(θ) and δmax

S (B) = R. Thus A + B ∈ B and δ(A + B) = T + R, so δ is a closed
*-derivation. �
Corollary 6.2. Let A be a domain of A ⊆ B(H) and δS |A ∈ Der(A) satisfy (6.1). If
A ∩ C(H) = {0}, then B = A + JS is a domain of A + C(H), δS |B ∈ Der(B) and S is its
minimal implementation.

Let A be a C*-subalgebra of CS . Then δS |A = 0 and it satisfies (6.1). For λ ∈ Λ(S), let Pλ be
the projection on the eigenspace Hλ of S. By Lemma 5.5(ii), PλCSPλ ⊆ CS . Assume also that

Pλ

(
A ∩ C(H)

)
Pλ ⊂ A for all λ ∈ Λ(S). (6.6)
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Then all Pλ(A ∩ C(H))Pλ are C*-algebras. Since δS(A) = 0, for A ∈ CS ∩ C(H),

CS ∩ C(H) ⊆ CS ∩JS. (6.7)

Let A ∈ C(H). Recall (see (5.8)) that APλ �= 0 for a finite or countable subset ΛA = {λi} of
Λ(S),

‖APλi
‖ → 0 and ρ(A) =

∑
λ∈Λ(S)

PλAPλ =
∑

λi∈ΛA

Pλi
APλi

∈ CS ∩ C(H) ⊆ CS ∩JS,

where the series converges in norm.
We will now construct a bounded linear map θ from C(H) onto A∩C(H) satisfying (6.2) and

(6.3). We will use for this the well-known result that, for each C∗-subalgebra B of C(H), there is
a conditional expectation from C(H) onto B. Thus, for each λ ∈ Λ(S), there is a conditional ex-
pectation θλ from the algebra PλC(H)Pλ which is isomorphic to C(Hλ) onto the C*-subalgebra
Pλ(A ∩ C(H))Pλ of PλC(H)Pλ. Set

θ(A) =
∑

λ∈Λ(S)

θλ(PλAPλ) =
∑

λi∈ΛA

θλi
(Pλi

APλi
) for all A ∈ C(H). (6.8)

Since ‖θλi
(Pλi

APλi
)‖ � ‖APλi

‖ → 0 and since θλi
(Pλi

APλi
) belong to Pλi

C(H)Pλi
and,

hence, mutually orthogonal, the series in (6.8) is norm convergent. Hence we have from (6.7)
that

θ(A) ∈ A ∩ C(H) ⊆ CS ∩ C(H) ⊆ CS ∩JS for all A ∈ C(H), (6.9)

so θ maps C(H) into A ∩ C(H). Moreover, θ is linear and bounded, since

∥∥θ(A)
∥∥ = sup

∥∥θλi
(Pλi

APλi
)
∥∥ � sup‖Pλi

APλi
‖ � ‖A‖.

Since projections Pλ, λ ∈ Λ(S), are mutually orthogonal, Pλρ(A)Pλ = PλAPλ (see (5.8)).
Hence

θ
(
ρ(A)

) =
∑

λ∈Λ(S)

θλ

(
Pλρ(A)Pλ

) =
∑

λi∈ΛA

θλi
(Pλi

APλi
) = θ(A).

Since θλ(PλAPλ) ∈ Pλ(A ∩ C(H))Pλ, we have Pλθ(A)Pλ = θλ(PλAPλ), so (see (5.8))

ρ
(
θ(A)

) =
∑

λ∈Λ(S)

Pλθ(A)Pλ =
∑

λi∈ΛA

θλi
(Pλi

APλi
) = θ(A).

Thus

θ
(
ρ(A)

) = ρ
(
θ(A)

) = θ(A) for all A ∈ C(H). (6.10)
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Let A ∈ A ∩ C(H). Then A ∈ CS ∩ C(H) and we have from Lemma 5.5(ii) that A = ρ(B)

for some B ∈ C(H). Since PλAPλ ∈ Pλ(A ∩ C(H))Pλ and θλ are conditional expectations,
θλ(PλAPλ) = PλAPλ = Pλρ(B)Pλ = PλBPλ. Thus (6.2) holds, since

θ(A) =
∑

λ∈Λ(S)

θλ(PλAPλ) =
∑

λ∈Λ(S)

PλBPλ = ρ(A) = A.

Let now A ∈ JS . Since PλH ⊂ D(S), for all λ ∈ Λ(S), we have from (5.9)

Pλδ
max
S (A)Pλ = PλδS(A)Pλ = Pλi[S,A]Pλ = i(PλSAPλ − PλASPλ) = 0.

Hence

ρ
(
δmax
S (A)

) =
∑

λ∈Λ(S)

Pλδ
max
S (A)Pλ = 0.

As δmax
S (A) ∈ C(H), we have from (6.10) that

θ
(
δmax
S (A)

) = θ
(
ρ
(
δmax
S (A)

)) = 0.

By (6.9), θ(C(H)) ⊆ CS ∩JS , so that δmax
S (θ(A)) = 0. Thus

δmax
S

(
θ(A)

) = 0 = θ
(
δmax
S (A)

)
for all A ∈ JS.

Therefore (6.3) holds and Theorem 6.1 yields

Theorem 6.3. Let a C∗-subalgebra A of CS satisfy (6.6). Then B = A + JS is a domain of the
C∗-algebra A + C(H), δS |B is a closed ∗-derivation of A + C(H) with minimal implementa-
tion S.

Finally, we consider derivations δ with Z(δ) = ZS , where S is a minimal implementation of δ.

Proposition 6.4.

(i) Let T be a minimal symmetric implementation of δ ∈ Der(FS). Then B(δ) = UT and
Z(δ) = ZT .

(ii) B(δmax
S ) = US and Z(δmax

S ) = ZS .
(iii) Let δ = δS |(CS +JS). Then Z(δ) = ZS .

Proof. As δmin
S , δ ∈ Der(FS), it follows from Corollary 3.2 that

FS = F
(
FS, δmin

S

) = F(FS, δ) = FT .

Since FT is an ideal of AT , Proposition 4.2(ii) yields (i).
As JS is an ideal of AS , Proposition 4.2(ii) also yields (ii).
Let U ∈ZS(t) and A ∈ CS . Since ZS(t) ⊆ AS and CS ⊆ AS , we have UAU∗ ∈AS . Further

δS

(
UAU∗) = δS(U)AU∗ + UδS(A)U∗ + UAδS

(
U∗) = itUAU∗ + UA

(−itU∗) = 0.
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Hence UAU∗ ∈ CS , so UCSU∗ = CS . As JS is an ideal of AS ,

UD(δ)U∗ = U(CS +JS)U∗ ⊆ D(δ).

Thus U ∈Z(δ), so ZS ⊆ Z(δ). Since always Z(δ) ⊆ ZS , we have Z(δ) = ZS . �
Let S be a selfadjoint operator on H = ⊕∞

i=−∞ Hi and let S|Hi
= λi1Hi

with all distinct λi .
The group ΓS is described in Corollary 5.2 and CS consists of bounded operators commuting
with all Pλi

. By Theorem 6.3 and Proposition 6.4, δ = δS |(CS + JS) is a closed *-derivation of
the C*-algebra CS + C(H) and Z(δ) = ZS .
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