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We describe a fully automated system for the classification of acral volar melanomas. We used a total of 213 acral
dermoscopy images (176 nevi and 37 melanomas). Our automatic tumor area extraction algorithm successfully
extracted the tumor in 199 cases (169 nevi and 30 melanomas), and we developed a diagnostic classifier using
these images. Our linear classifier achieved a sensitivity (SE) of 100%, a specificity (SP) of 95.9%, and an area
under the receiver operating characteristic curve (AUC) of 0.993 using a leave-one-out cross-validation strategy
(81.1% SE, 92.1% SP; considering 14 unsuccessful extraction cases as false classification). In addition, we
developed three pattern detectors for typical dermoscopic structures such as parallel ridge, parallel furrow, and
fibrillar patterns. These also achieved good detection accuracy as indicated by their AUC values: 0.985, 0.931, and
0.890, respectively. The features used in the melanoma–nevus classifier and the parallel ridge detector have
significant overlap.

Journal of Investigative Dermatology (2008) 128, 2049–2054; doi:10.1038/jid.2008.28; published online 6 March 2008

INTRODUCTION
In non-white populations, almost half of the melanomas are
found in acral volar areas and nearly 30% of melanomas
affect the sole of the foot (Saida et al., 2002). Melanocytic
nevi are also frequently found in their acral skin and
approximately 8% of Japanese have melanocytic nevi on
their soles (Saida et al., 2004). The authors reported that
about 90% of melanomas have the parallel ridge pattern and
70% of melanocytic nevi have the parallel furrow pattern.
They concluded that the parallel ridge pattern is the most
typical characteristic of acral volar melanomas.

Despite the use of dermoscopy, diagnosis is subjective and
the accuracy of expert dermatologists in diagnosing melano-
ma is still estimated to be 75–84% (Argenziano et al., 2003).

For the reasons cited above, several groups have developed
automated analysis procedures to overcome these problems

and reported high levels of diagnostic accuracy (Ercal et al.,
1994; Seidenari et al., 1998; Elbaum et al., 2001; Ganster
et al., 2001; Rubegni et al., 2002; Hoffmann et al., 2003; Blum
et al., 2004; Burroni et al., 2005; Celebi et al., 2007).
However, automatic detection of the parallel ridge and parallel
furrow patterns is often difficult because of the wide variety of
dermoscopy images, and there is no published method on
computerized classification of this diagnostic category.

We developed a new diagnostic classifier for acral volar
lesions and for our web-based melanoma diagnostic system
(Oka et al., 2004). Our method parameterizes the lesions
objectively and evaluates them instead of detecting the ridges
or furrows in the images directly.

RESULTS
Tumor area extraction and observed dermoscopic patterns
Our computer-based fully automated tumor area extraction
method (Iyatomi et al., 2006) successfully extracted tumor
area in 199 out of 213 cases (Table 1). Samples of dermo-
scopy images are shown in Figure 1.

Out of 169 nevi, parallel ridge, parallel furrow, and
fibrillar patterns were found in 5, 133, and 49 cases, respec-
tively. A total of 11 cases of nevi had no specific patterns and
28 nevi had both parallel furrow and fibrillar patterns. One
nevus had both parallel ridge and fibrillar pattern. In 30
melanomas, parallel ridge, parallel furrow, and fibrillar
patterns were found in 24, 2, and 1 cases, respectively. Five
melanomas had no specific patterns and one melanoma had
all three patterns.

Classifier and the performance

Using principal component analysis (PCA), a total of 428
image parameters were transformed into 198 orthogonal
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principal components (PCs) without information loss. From
these PCs, we selected the effective ones for each classifier.
Table 2 summarizes the number of selected PCs for each
classification model, the determination coefficient R2, the
standard deviation of mean estimated error E, and the order
number of the first 10 PCs lined by the selected sequence by
stepwise input selection method.

In the melanoma–nevus classifier, many significant (small
numbered) PCs were found in the first 10 selected features.

The parallel ridge and parallel furrow detectors were also
composed of significant PCs. On the other hand, the fibrillar
pattern detector showed a different trend.

The leave-one-out cross-validation results for these four
models are shown in Table 3.

The sensitivity (SE) and specificity (SP) values shown
are those that have the maximum product. The positive
predictive value and negative predictive value shown are at
the same diagnosis threshold. The numbers in parentheses
represent the performance when 14 unsuccessful extraction
cases are considered as false classification. The correspond-
ing receiver operating characteristic (ROC) curve is shown in
Figure 2.

On the other hand, the identification performance for
melanoma and three typical structures using a 10-fold
cross-validation was 0.991, 0.982, 0.921, and 0.883 in area
under the ROC curve (AUC), respectively, and the perfor-
mance by a half-and-half test was 0.991, 0.971, 0.889, and
0.839 in AUC, respectively.

Table 4 summarizes the major constituting image features
(top five in magnitudes: note that each feature was normal-
ized to N(0, 1)) of typical significant PCs, their linguistic
expression, their contribution ratio (ratio of the corresponding
eigenvalue to the total eigenvalues: li/Sli), and their
classification performance using a linear model. (y¼ axþ b;

Table 1. Dermoscopy images used in this experiment

Lesion
type

No. of images correctly
extracted1 (in Japanese)

No. of patients correctly
extracted2 (in Japanese)

Nevus 169/176 (144/151) 166/170 (141/145)

Melanoma 30/37 (29/36) 18/20 (17/19)

Total 199/213 (174/188) 184/189 (159/164)

1The number of images that were used to correctly extract their tumor
areas by computer-based tumor area extraction algorithm (Iyatomi et al.,
2006). Numbers in parenthesis represent those of Japanese.
2The number of patients whose images were used to correctly extract their
tumor areas by extraction algorithm.

a b

c d

Figure 1. Samples of acral volar dermoscopy images. (a) Nevus, (b) melanoma,

(c) nevus (could not be extracted by our tumor extraction algorithm),

(d) melanoma (could not be extracted by our tumor extraction algorithm).

Table 2. Modeling performance of developed classifiers and their constituting PCs

Classifier type No. of inputs R2 E Selected PCs (first 10)1

Melanoma 45 0.807 0.315 2, 9, 6, 1, 3, 15, 91, 40, 20, 98

Parallel ridge pattern 40 0.736 0.363 2, 9, 1, 6, 3, 59, 20, 88, 77, 33

Parallel furrow pattern 35 0.571 0.614 6, 2, 145, 15, 3, 98, 70, 24, 59, 179

Fibrillar pattern 24 0.434 0.654 106, 66, 56, 145, 137, 94, 111, 169, 131, 5

PC, principal component.
R2 is the determination coefficient adjusted by degree of freedom between average of physician and the computer-based results.
E is the standard deviation of the average estimated error between the training signal and the computer-based results.
1The first 10 selected PCs by incremental stepwise method in selected sequence. The number represents the order of PCs. The smaller values indicate the
more significant component.

Table 3. Identification performance of acral volar
melanoma and three typical structures using
leave-one-out cross-validation strategy

Classifier type SE (%)1 SP (%)1 PPV (%)1 NPV (%)1 AUC

Melanoma 100 (81.12) 95.9 (92.12) 81.1 95.9 0.993

Parallel ridge

pattern

93.1 97.7 87.1 98.8 0.985

Parallel furrow
pattern

90.4 85.9 93.1 80.9 0.931

Fibrillar pattern 88.0 77.9 57.1 95.1 0.890

AUC, area under the receiver operating characteristic curve; NPV,
negative predictive value; PPV, positive predictive value; SE, sensitivity;
SP, specificity.
1At which SE� SP is maximum value.
2When 14 unsuccessful extraction cases are treated as false classification.
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y is target value, x is the corresponding PC, a is the
coefficient, and b is the constant bias value.)

Note that in Table 4 the image features are abbreviated. For
example, ‘‘diffX_T80’’ represents the difference of center of
mass in the x direction (diffX) between the original tumor area
and the area with intensity lower than a threshold of 80 (T80).
Similarly, ‘‘corr90_d1/2’’ represents the texture correlation
(corr) in the tumor area in the vertical direction (90 degree) as
measured by a co-occurrence matrix with distance parameter
d, the half of the major axis length of the tumor object. R, G,
and B indicate red, green, and blue channel values, respec-
tively. H, S, and V represent the hue, saturation, and intensity
in the HSV color space, respectively.

DISCUSSION
Automatic tumor area extraction

In 14 cases (7 nevi and 7 melanomas), our automated tumor
area extraction algorithm failed. This was due to the size of

the tumor being larger than about 70% of the dermoscope
field. Our algorithm is mainly for early melanomas that
usually fit in the frame. As larger lesions are relatively easy
to diagnose, we deem that computer-based screening is not
necessary. The false extraction rate for melanomas was
higher (19%) than that of nevi (4%). However, our algorithm
successfully extracted 93.4% of the tumor areas.

Analyzing results for each dermoscopic pattern

Our method achieved high detection rate for melanoma and
parallel ridge pattern. Almost equivalent results were
obtained using leave-one-out cross-validation, 10-fold cross-
validation, and half-and-half test, and therefore the results
can be considered as reasonable. We think that the accurate
recognition of parallel ridge pattern is important for the
accurate detection of melanoma.

The melanoma classifier and the parallel ridge detector
have many common PCs. In particular, the top five PCs for
the two were completely the same. Note that parameters
chosen early in the stepwise feature selection were thought to
be more important for the classification because the statis-
tically most significant parameters were selected in each step.

Important features

The common PCs are mainly related to asymmetry and
structural properties rather than color (Table 4).

The linear classifier using only these five components
achieved 0.933 AUC, 93.3% SE, and 91.1% SP using a leave-
one-out cross-validation strategy. Dermatologists evaluate
parallel patterns using the intensity distribution of the images,
and they consider the peripheral area of the lesion as
important.

We confirmed that our computer-based results, like those
of the dermatologists, also focus on similar characteristics.

From Table 4, the linear classifier using only one PC could
discriminate between melanomas and nevi with a high accu-
racy. Global texture properties used in the 2nd component
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Figure 2. ROC curve for classification of acral volar melanomas.

Table 4. Interpretation of typical PCs and their diagnostic performance

Numerical expression by top five constituting image features

PC Interpretation ki/Rki (%)1 SE (%)2 SP (%)2 AUC

2nd D0.32 diffX_T80+0.15 corr90_d1/2�0.14 corr135_d1/2.8–0.14 sX_180–0.13 circ_T180

Asymmetry+global texture 12.8 93.3 65.1 0.833

9th D0.21 diffX_80+0.14 skewX_30–0.14 Brate_L1/40–0.14 Brate_L1/35–0.13 corr135_d1/4

Peripheral+asymmetry+border 4.3 80.0 65.7 0.763

6th D0.25 skewS_tumor-norm+0.24 aveR_peri-norm+0.20 maxV_peri–0.20 maxR_tumor+0.15sS_tumor-peri

Color (difference between tumor and skin) 7.0 66.7 70.4 0.711

1st D0.23 maxV_peri�0.19 corr90_d1/4+0.19 maxR_peri+0.19 minR_peri+0.18 sH_peri

Peripheral+color 33.8 53.3 78.1 0.581

3rd D�0.18 minH_peri+0.17 circ_T180–0.15 sY_T230+0.14 sY_T155 –0.13 ratio_T80

Asymmetry+peripheral 10.5 66.7 65.1 0.645

AUC, area under the receiver operating characteristic curve; PC, principal component; SE, sensitivity; SP, specificity.
1Contribution ratio of the PC: ratio of eigenvalue li to the total eigenvalues Sli.
2At which SE� SP is maximum value.
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illustrate the periodicity of the structures present in the image.
This meets our intuition, and it is considered that they
contributed to discriminate effectively between ridges and
furrows.

On the other hand, for the fibrillar pattern detector, most
of the selected components were not significant; that is, they
were low ranked (Table 2). Global texture features often used
as a component of the parallel ridge detector were hardly
selected by the fibrillar pattern detector, which seems not to
extract the parallel patterns observed in ridges or furrows.

These results confirm that the features selected by acral
volar classifiers showed a different trend. Our previous linear
classifier, which was built on 1,258 non-acral dermoscopy
images (1,050 melanocytic nevi and 198 melanomas) using
the same method, achieved 0.914 AUC, 83.3% SE, and
85.8% SP using leave-one-out cross-validation. On the other
hand, it achieved only 0.766 AUC, 70.0% SE, and 63.9% SP
on the set of 199 acral volar images. We confirmed again
from this experiment that discriminating acral volar melano-
mas by computer-based methods requires a specifically
designed classifier that focuses more on asymmetry and
textural properties of the image rather than only color.

Classification model

In this study, we used orthogonalized image features calcu-
lated by PCA. Because features extracted from the images are
potentially correlated, PCA might reveal composite features
that are more effective than their individual constituents.

In addition, it is well known that building a classifier with
highly correlated parameters might result in poor classifica-
tion accuracy for unseen data. On the other hand, we used
linear models to classify acral melanomas and to identify
specific dermoscopic structures. Although various sophisti-
cated classifiers, such as artificial neural networks, logistic
regression models, support vector machine classifiers, and so
on, have been successfully used in the literature, using a
linear model enables us to examine the relationship between
input parameters and each class more clearly. From this point
of view, the architecture of the classifier should be simple,
taking into account the system generality, and we should
focus more on finding effective input features rather than
searching for the optimal classification model. The developed
linear models achieved sufficiently high accuracy, and we
consider that the extracted features were appropriate for
classification.

Other issues

In this study, some images were from the same patients;
however, as each image was from a different lesion and
several evaluation methods provide almost equivalent results,
we can ignore intrasubject correlation. On the other hand,
our melanoma source was heavily concentrated in the
Japanese population. Our classifier identified both Japanese
and other cases accurately without significant difference, and
therefore we can conclude that the diagnostic results did not
depend on the source of images.

The presented system would classify the benign lesions
with parallel ridge pattern such as Peutz-Jeghers syndrome as

malignant. However, we do not consider this to be a critical
issue, as this system would be used primarily for screening.

On the other hand, we have to be careful not to miss
melanomas that do not contain the parallel ridge pattern.
Also, subcorneal hematoma and the like sometimes exhibit a
similar appearance as the parallel ridge pattern. If clinical
history is taken into account, the system could be made more
accurate.

Our acral volar classifier successfully diagnosed 11 nevi
and 5 melanomas that have no parallel pattern. We plan to
investigate the issue of whether or not these lesions should be
handled by an acral volar classifier. We will also continue
collecting acral volar lesions to improve the generalization
capability of the classifier.

The classifier described here will be available on our web-
based screening system in the near future.

MATERIALS AND METHODS
Materials

Digital dermoscopy images of pigmented skin lesions (PSLs) were

collected from four Japanese hospitals (Keio University Hospital,

Tokyo; Toranomon Hospital, Tokyo; Shinshu University Hospital,

Matsumoto; Inagi Hospital, Tokyo) and two European university

hospitals (University of Naples, Italy; University of Graz, Austria) as

part of the EDRA-CDROM (Argenziano et al., 2000).

These were 24-bit color RGB images in JPEG (Joint Photographic

Experts Group) format. A total of 213 acral volar dermoscopy

images, 176 clinically equivocal nevi and 37 melanomas from 189

patients (75 male patients, 105 female patients, and 9 unknown),

average and standard deviation of age of the patients 28.6±22.2

years (max¼ 87, min¼ 0), were prepared. Note that the age

information of 26 patients and 27 images was lost and these were

not included in the above statistics. This experiment does not require

intuitional approval or patient consent.

In this study, we used those images on which our tumor area

extraction algorithm (Iyatomi et al., 2006) was successful (169

benign nevi and 30 melanomas from 184 patients) (Table 1).

All cases were histopathologically or clinically diagnosed

materials, and these results were used as the gold standard (training

data) for building the classifier. We used all acral volar materials

with established diagnosis stored in the above Japanese hospitals and

CD resources (European cases).

Classification of acral lesions

We developed acral melanoma–nevus classifier and three detectors

for typical patterns of acral volar lesions: parallel ridge pattern,

parallel furrow pattern, and fibrillar pattern.

For melanoma–nevus classifier, the training signal of 1 or �1 was

assigned to each melanoma and nevus case, respectively. Similarly,

a training signal of 1 (positive) or �1 (negative) was assigned to each

dermoscopic pattern.

The dermoscopic patterns were identified by three experienced

dermatologists, and only those patterns on which at least two

dermatologists agreed were considered.

Note that dermoscopic patterns were assessed independently of each

other, and therefore some cases received multiple or no assignments.

We extracted tumor area with our tumor extraction algorithm and

rotated the tumor object to align its major axis with the Cartesian x axis.
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Then, we calculated a total of 428 image-related objective

features. They can be roughly categorized into color, symmetry,

border, and texture properties.

As color-related features, a total of 140 parameters were calcu-

lated: minimum (min), average (ave), maximum (max), standard

deviation (s), and skewness (skew) values in the RGB and HSV color

space, respectively (subtotal 30), for the whole tumor area (tumor),

periphery of the tumor area (peri), differences between the tumor

area and the surrounding skin (tumor�skin), and differences

between peripheral and surrounding skin (peri�skin).

In addition, a total of 20 color-related features were calculated:

the number of colors (#color) in the tumor area and peripheral tumor

area in the RGB and HSV color spaces quantized to 83 (¼ 512) and

163 (¼ 4,096) colors, respectively (subtotal 8), the average color of

surrounding skin (R, G, B, H, S, V: subtotal 6), and average color

differences between the peripheral tumor area and the inside of the

tumor area (R, G, B, H, S, V: subtotal 6). Note that the peripheral part

of the tumor is defined as the region inside the border that has an

area equal to 30% of the tumor area.

In the symmetry category, a total of 80 features were calculated.

We designed 10 intensity threshold values (T) from 5 to 230 with a

step size of 25. In the extracted tumor area, thresholding was

performed and the areas whose intensity was lower than the

threshold were determined.

From each such area, we calculated eight features as follows:

area ratio to original tumor size (ratio), circularity, differences of the

center of gravity between original tumor (diffX, diffY), standard

deviation of the distribution (sx, sy), and skewness of the distribution

(skewX, skewY).

To quantify the border structure, a total of 32 features were

calculated. The tumor areas are divided into eight equiangular

regions. In each region, we defined a window whose size is S� S

and center is on the border of the tumor. In each window, a ratio of

color intensity between the inside and outside of the tumor and a

gradient of color intensity were calculated in the blue and luminance

channels (Bratio, Vratio, Bgrad, Vgrad), respectively. These were

averaged over eight equiangular regions. We calculated four features

for each of the eight window sizes (L): 1/5, 1/10, 1/15, 1/20, 1/25,

1/30, 1/35, and 1/40 of the length of the major axis of the

dermoscopy image.

As for the texture features, a total of 176 parameters were

calculated. We prepared 11 different-sized co-occurrence matrices

with distance value d ranging from 1/2 to 1/64 of the length of the

major axis of the dermoscopy image. On the basis of each co-

occurrence, the matrix, energy, moment, entropy, and correlation

(corr) were calculated in four directions (0, 45, 90, and 135 degrees).

These 428 image features were transformed into N(0,1) (zero

mean and unit variance) and then orthogonalized using PCA.

Feature selection

From these orthogonalized features (¼ PCs), the parameters

used in each classifier and detector were selected by an incremental

stepwise method with a hypothesis test of Wilk’s lambda (Everitt

and Dunn, 1991). This method searches appropriate input

parameters one after the other according to the statistical rule.

In each step, a statistical F-test is performed and the parameter with

the highest partial correlation efficient under Po0.05 is selected.

During this selection step, inefficient (statistically negligible;

P40.10) parameters are rejected from already selected parameters,

if they exist. For each classifier and detector, this process was

repeated until no further input satisfied the above-mentioned

criteria.

Evaluation criteria

For melanoma–nevus classifier and three pattern detectors, the

following evaluation criteria were used.

First, we calculated the standard deviation of mean estimated

error (E) and a determination coefficient adjusted by degree of

freedom (R2) between the training signal and the developed linear

model to evaluate the fitness of the developed classifier. Next, we

evaluated the performance of the built classifiers using leave-one-out

cross-validation, 10-fold cross-validation, and half-and-half tests,

which split all data into training and evaluation in halves, and the

performance was evaluated by averaging both combinations. Note

that feature selection was performed using only the training set in

each combination.

We used SE and SP measures and also plotted the ROC curve. In

addition, positive predictive value and negative predictive value

measures were also calculated. On the basis of the ROC curve, AUC

was calculated. The AUC ranges from 0 to 1 and the greater its value

the higher is the classification accuracy.

Analysis and evaluation tools

The PCA and evaluation of linear classifiers were performed using

Matlab 13 with statistical toolbox software (MathWorks Inc., Natick,

MA). The incremental stepwise input selection was performed using

SPSS 14 software (SPSS Inc., Chicago, IL).
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