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Abstract

A low cost and energy efficient wireless sensor mote platform for low data rate monitoring applications is presented. The new

platform, named DZ50, is based on the ATmega328P micro-controller and the RFM12b transceiver, which consume very low

energy in low-power mode. Considerable energy saving can be achieved by reducing the power consumption during inactive

(sleep) mode, notably in low data rate applications featured by long inactive periods. Without loss of generality, spot monitoring

in a Smart Parking System (SPS) and soil moisture in a Precision Irrigation System (PIS) are selected as typical representative of

low data rate applications. The performance of the new platform is investigated for typical scenarios of the selected applications

and compared with that of MicaZ and TelosB. Energy measurements have been carried out for different network operation states

and settings, where the results reveal that the proposed platform allows to multiply the battery lifetime up to 7 times compared to

MicaZ and TelosB motes in 10s sampling period scenarios.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

The advances in wireless communications and embedded systems have enabled the development of Wireless Sensor
Networks (WSN)1. These systems are composed of one or multiple base stations and a large number of miniature

wireless sensor nodes. Each sensor node is equipped with a low energy supply, a small storage capacity and a

short-range communication transceiver. Each sensor node can be equipped with one or more sensor devices that

allow it to probe its surroundings and sense its environment. The sensed data are routed through multi-hops wireless

communications to the base station for further analysis and use.

Environmental monitoring is a common application for WSN, where data are collected at specific rate and for-

warded to a control station2,3. The most compelling purpose for these applications is the capability to design opti-

mized platforms that extend the system lifetime at the order of years before battery/node replacement. The design of
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(a) Hardware architecture (b) Software architecture

Fig. 1. DZ50 architecture.

Table 1. DZ50, MicaZ and TelosB hardware specifications
DZ50 MicaZ TelosB

MCU Atmega328P Atmega128L MSP430F1611

Architecture Harvard 8 bits Harvard 8 bits Von Neumann 16 bits

Flash 32 KB 128 KB 48 KB

SRAM 2 KB 4 KB 10 KB

I/O pin count 23 53 48

Tranceiver RFM12b CC2420

Frequency band 433, 868, 915 MHz 2.4 GHz

Data rate 115.2 kbps 250 kbps

such systems is challenging and depends on the underlying software and hardware platform, as well as on the data

load of the application. In applications where low data sampling rate is sufficient, sensor nodes pass most of the time

in low-power mode and switch to active mode only when it is necessary. Timely switching to low-power mode during

node inactivity allows significant energy saving and can appreciably extend the system lifetime. Low data rate appli-

cations are targeted herein, where a low-cost and energy-efficient wireless mote platform, named DZ50, is developed.

The platform tends to extend the system lifetime to many years compared to well known wireless mote platforms,

namely MicaZ4 and TelosB5.

The remainder of the paper is organized as follows. The software and hardware architecture of DZ50 is presented

in section 2. In section 3, we provide two typical scenarios, a Smart Parking System (SPS) and a Precision Irrigation
System (PIS), to show the efficiency of DZ50 mote. The empirical results are discussed in section 4. Finally, the paper

is concluded in section 5.

2. Platform Architecture

The main design goal of DZ50 is to minimize energy consumption in low-power mode. For this purpose, DZ50

is composed of an ATmega328P micro-controller and a RFM12b radio transceiver, as depicted in Fig. 1(a). These

components are characterized by their very low energy consumption: ATmega328P consumes less than 1μA in power-

save mode, whereas RFM12b consumes less than 0.3μA in its standby mode. To allow the ATmega328P to enter the

asynchronous power-save mode, an RTC 32Khz crystal is used. DZ50 is a modular platform, which extends its

domain of applications. Moreover, DZ50 is designed as a self-contained battery-operating mote, which facilitates the

deployment.

Despite the advantages cited above, DZ50 has some limitations related to its performance. In terms of memory,

DZ50 has a lower Flash and SRAM capacity than MicaZ and TelosB. Moreover, the RFM12b transceiver in DZ50

allows only a data rate of 115.2 kbps, whereas CC2420 found in MicaZ and TelosB can reach 250 kbps. A summary

of the hardware specification of the three platforms is given in Table 1. Nevertheless, these limitations do not represent

a real hurdle in using DZ50 in low rate applications targeted in this work, but in fact they make it less eager in terms

of energy consumtion.
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(a) Floor layout of a Smart Parking System (b) Soil moisture collection in a Precision Irrigation System

Fig. 2. Low data rate application scenarios.

We have ported all device drivers of DZ50 to TinyOS 2.x, which eases the programming of the platform and

allows using many protocols already developed for TinyOS platform. As depicted in Fig. 1(b), we have developed

six modules for Atmega328P driver part: ADC, SPI, I2C, I/O, Timer and Power. The four first components are used

to establish communication between the micro-controller and external components. The Timer module manages the

asynchronous hardware timer Timer2. The Power module encapsulates the access to the Sleep Mode Control Register
(SMCR) to switch the mote in different modes (i.e., active, sleep) to save the energy consumption.

To simplify access to the functions of the RFM12b chip, we have developed five modules for its driver. The Active
Message module allows the application to transmit and receive packets via an abstract interface. The Control module

manages the different configurations of the chip, such as the frequency and the rate. The Tx and Rx components

implement the low-level mechanisms to transmit and receive packets, respectively. The communication between

the Control, Tx and Rx components, from one side, and the RFM12b hardware, from the other side, is established

via an SPI serial communication. Control, Tx and Rx components send commands and receive events from the SPI
component, which is located at RFM12b part. The latter communicates with RFM12b hardware via SPI component

located in the micro-controller.

3. Illustrative System Scenarios

For illustration, a typical scenario of a Smart Parking System (SPS) and a Precision Irrigation System (PIS) have

been considered in this work as representative of low rate (low data sampling) applications. These scenarios have

been chosen to exemplify the application of the platform to a monitoring system, and to show its effectiveness in

extending the system lifetime. Many WSN-based solutions have been proposed in the literature,6,7,8,9, and system

architecture of such solutions is out of the scope of this work. The focus here is to investigate the effectiveness of the

proposed platform in this class of applications from the energy-consumption perspective. For the sake of simplicity,

a star topology (single-hop network) is adopted in both applications where data samples are sent periodically to the

central station for analysis. In the following, we give a brief description of each application.

3.1. Smart Parking System

Places in most of parking locations tend to be full, especially during the peak hours when drivers waste precious

time looking for a free parking spot. The considered parking system periodically provides information concerning

the number and locations of free spaces. Low data sampling rate is assumed, which is sufficient to detect and report

the presence of vehicles. Referring to the layout in Fig. 2(a), sensor motes placed in different parking spots gather

information about spots occupancy and report notifications to the base station. The base station on the other hand,
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(a) (b)

Fig. 3. Hardware setup for the SPS application using the MAG3110 magnetometer with (a) DZ50 and (b) MicaZ +MDA300.

(a) (b)

Fig. 4. Hardware setup for the PIS application using the EC-5 sensor with (a) DZ50 and (b) TelosB.

located at the parking entrance, collects report messages from deployed motes and sends them to a central server via

a serial connection. The gathered information can be analyzed and presented to drivers using display panels, and they

can be used through the internet to provide customers with a variety of services in the context of internet of things.

3.2. Precision Irrigation System

The use of traditional irrigation techniques considerably reduces water preservation. More than %50 of water

would be lost in the irrigation use10. Moreover, the use of traditional irrigation techniques have a negative effect

on the environment, such as the salinization, intrusion of brackish water, ... etc. For this purpose, the use of an

efficient irrigation control system becomes essential. An efficient irrigation control using a wireless sensor network is

considered as the second target application. The sensors are deployed in the agriculture area, where every sensors is

equipped with a set of soil moisture sensors as depicted in Fig. 2(b). The sensor nodes detect the amount of water in

the soil via the soil moisture sondes. To give an accurate detection, the soil moisture sondes may be placed on different

levels of the ground. Periodically, the sensor nodes measure the amount of water in the soil and then communicate the

measured results to a control station (i.e., the base station). The collected report messages can be used for automatic

control of solenoid valves, or saved in a database for post-analysis.

4. Experiments

To evaluate the performance of the DZ50 platform, we have implemented both applications in TinyOS 2.x and we

have conducted experimental measurements of the energy consumption using an oscilloscope. The same measure-

ments have been also performed on two other sensor platforms: MicaZ (for the SPS application) and TelosB (for the

PIS application).

The hardware setup for the SPS application is shown in Fig. 3. We have employed the MAG3110 magnetometer11

to measure the magnetic field around a parking spot which gives an indication about its occupancy. This chip gives

measurements on the three axes and needs the establishment of an I2C bus. Note that we needed to use the MDA300

extension board to get access to the I2C pins of MicaZ and connect the MAG3110 chip. Fig. 4 shows the hardware
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Fig. 5. Oscilloscope snapshot during one sampling period for both (a) DZ50 and (b) MicaZ in the SPS, and (c) DZ50 and (d) TelosB in the PIS.

The different states are: S 1: sensor activation, S 2: data reading, S 3: radio starting, S 4: radio sending, S 5: sleep and S 6: timer interrupt.

setup for the PIS application. We have connected DZ50 and TelosB to the EC-5 soil moisture sensor12 which deter-

mines the volumetric water content of the soil by measuring its dielectric constant. This equipment needs an excitation

between 2.5V and 3.6V for a short duration (about 10ms) and responds with an analog signal corresponding to the

measured value. Since this device does not provide a sleep mode, we used a simple NPN transistor as a switch to turn

it on when necessary.

Both applications share the same execution pattern, with some differences related to the actual need of the applica-

tion. Basically, each mote periodically checks its sensing device and then sends the captured data to the base station

for processing. Between two sampling periods, the mote is inactive and switches off its active hardware components,

such as the sensors and the transceiver. Typically, this period (sampling period) would be at the order of no less than

few seconds in such applications.

The execution snapshot of one sampling period (for both applications) is illustrated in Fig. 5. Six energy levels

can be distinguished, which correspond to the different states of the application {S 1, . . . , S 6}. Only the two first states

differs between the two applications. The description of the execution is as follows. First, the mote is woken-up from

its inactivity period and requests its sensing device to obtain a measurement (S 1). In the case of the SPS application,

the application interacts with the MAG3110 magnetometer to sense the magnetic field. The sensor performs 16

samples, computes their average before returning to standby mode. However, in the PIS application, the EC-5 sensor

is just turned-on with a 3.3V excitation during a period of 10ms.

After the sensing period, the program retrieves the measured data (S 2). For SPS, the result is in a digital format

and six bytes (2 bytes per axis) are retrieved using an I2C serial communication. For PIS, the data offered by the

EC-5 sensor is analogical and thus the micro-controller uses its ADC to read it. After the second step, the application

turns on the transceiver (S 3) and sends the data to the base station (S 4). Finally, the mote stops its transceiver and

enters in sleep state (S 5). Since the asynchronous timer in both ATmega328P and ATmega128L are 8 bits registers,

an overflow occurs every 225ms, which explains the short interrupt activities indicated by the state S 6. However, the

MSP430 micro-controller used in TelosB has a 16 bits timer register that allows it to overflow every 2s.

We have measured the current consumption, ci, and the duration, δi, of each state, S i. The obtained results are

summarized in Table 2. To estimate the application lifetime, we first define an approximation of the consumed energy
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Table 2. Energy consumption levels of DZ50, MicaZ, and TelosB platforms.
S 1 S 2 S 3 S 4 S 5 S 6

Sensing Reading Radio on Radio tx Sleep Timer intrpt.

DZ50 SPS
Duration δi 13.5ms 7ms 0.312ms 4.2ms 225ms 0.14ms

Avg current ci 2.2mA 3.25mA 14mA 26.5mA 3.3μA 3mA
MicaZ SPS
Duration δi 13.5ms 6ms 2.5ms 2.5ms 225ms 0.27ms

Avg current ci 1.2mA 4.6mA 10.2mA 18.5mA 170μA 4mA
DZ50 PIS
Duration δi 9.762ms 0.696ms 0.312ms 4.62ms 225ms 0.14ms

Avg current ci 2.25mA 4.35mA 9.86mA 24.23mA 1.3μA 3mA
TelosB PIS
Duration δi 9.74ms 17.38ms 2.65ms 2ms 2s 0.14ms

Avg current ci 1.39mA 1.72mA 3.98mA 19.12mA 13μA 2mA

S 1 S 2 S 3 S 4 S 5 S 6 S 5 S 6
...

T

Activity Inactivity

Fig. 6. Timeline of the different application steps.

E(T ) during one sampling period of duration T as follows:

E(T ) =

4∑

i=1

ciδi +
T −∑4

i=1 δi

δ5 + δ6
(c5δ5 + c6δ6) (1)

The intuition behind this approximation is depicted in Fig. 4 which describes the time division of a sampling

period T . We can distinguish between two parts. The first part, starting from state S 1 to S 4, represents the activity

period during which the mote retrieves the measurements and send them to the base station. During this period, the

total amount of electric charge consumed is
∑4

i=1 ciδi, which represents the first part of E(T ). During the inactivity

period, the mote enters in sleep mode and is activated periodically by the timer interrupt until reaching the end of the

sampling period T . An approximation of the number of activations is given by
T −∑4

i=1 δi

δ5 + δ6
, and for each activation

period the mote consumes (c5δ5 + c6δ6), which explains the second part of E(T ).

Therefore, given a battery charge, μ, the mote lifetime, say Φ(T ), for an application with period, T , can be written

as follows:

Φ(T ) =
μT
E(T )

=
μT

aT + b

where the linear model parameters (a, b) are empirically estimated using (1) and Table 2. The obtained values are

as follows, depending on the target application:

• SPS:

– (a, b) = (5.16 × 10−6, 1.67 × 10−4) for DZ50,

– (a, b) = (1.75 × 10−4, 1.11 × 10−4) for MicaZ.

• PIS:

– (a, b) = (3.16 × 10−6, 1.42 × 10−4) for DZ50,

– (a, b) = (1.3 × 10−4, 8.81 × 10−5) for TelosB.

Based on this formula, the different system lifetimes are plotted in Fig. 7 as a function of the sampling period,

when they are powered with battery of 1500mAH. The results demonstrate the superiority of DZ50 platform over



195 Abdelraouf Ouadjaout et al.  /  Procedia Computer Science   37  ( 2014 )  189 – 195 

0

2.5

5

7.5

10

0 2 4 6 8 10

M
o
te

li
fe
ti
m
e
(y
ea
r)

Sampling period (sec)

DZ50
MicaZ

(a)

0

2.5

5

7.5

10

0 2 4 6 8 10

M
o
te

li
fe
ti
m
e
(y
ea
r)

Sampling period (sec)

DZ50
TelosB

(b)

Fig. 7. Variation of the mote lifetime vs. the sampling period for (a) the SPS and (b) the PIS.

MicaZ and TelosB, starting from as a low sampling period as 1s. DZ50 can extend the mote lifetime to more than 7

years for a 10s sampling period, while that of MicaZ and TelosB does not exceed 1 year.

5. Conclusion

In this paper we have presented DZ50, a wireless mote characterized by its very low energy consumption during

inactivity periods. This important feature allows DZ50 to be a good platform for low sampling monitoring applications

such as Smart Parking and Precision Irrigation Systems. The proposed platform have been empirically evaluated and

compared with two platforms largely used by the research community, TelosB, and MicaZ. The comparison evolves

typical settings of the two representative low sampling applications. Experimental results demonstrate its efficiency

compared to both motes in terms of augmenting the battery lifetime where an a gain of more than 700% has been

obtained making the system available for more than 7 years.
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