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KEYWORDS Abstract In the present analysis, the unsteady peristaltic flow of an incompressible Carreau fluid is

investigated in eccentric cylinders. The problem is measured in cylindrical coordinates. The govern-
ing equations are observed under the conditions of long wavelength and low Reynolds number
approximations. The resulting highly nonlinear second order partial differential equations are
solved by series solution technique. The relation for pressure rise is evaluated numerically by
built-in technique with the help of mathematics software. As a special case, the present results
are compared with the existing results given in the literature. The obtained results are then plotted
to see the influence of different physical parameters on the velocity, pressure gradient and pressure
rise expressions. The velocity profile is drawn for both two and three dimensions. The trapping
boluses are also discussed through streamlines.
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1. Introduction mechanics as this process remains vital in many biological
mechanism and biomedical industry. Specifically, it is
enormously applied in the pattern of swallowing food through
the esophagus, chyme motion in the gastrointestinal tract,
vasomotion of small blood vessels such as venules, capillaries
and arterioles, urine transport flow from kidney to bladder,
sanitary fluid transportation and transportation of corrosive

fluids and a toxic liquid flow in the nuclear industry. In the

In the history of fluid dynamics, the area of peristaltic trans-
portation has obtained significant attraction because of its
considerable contribution in the fields of engineering and bio-
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view of such immense contribution of peristaltic flows in engi-
neering and biomedical many researchers have focused on the
study of peristaltic mechanism. Naturally, the behavior of fre-
quently used fluids in such type of phenomena is mostly non-
Newtonian to intensive extent. Keeping in mind the complex-
ity of non-Newtonian fluids, many of the researchers have
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worked on the peristaltic flows of different non-Newtonian
models in the sense of constitutive relations. In the studies
[1-11], the researchers have obtained the various results
regarding peristaltic flows in different types of flow geometries.
A lot of literature is available on the topic of analytical and
numerical treatment of Newtonian and non-Newtonian fluids
[12-14].

Hydromagnetic flow of fluid with variable viscosity in a
uniform tube with peristalsis has been investigated by El Ha-
keem et al. [15]. Hariharan et al. [16] have presented the peri-
staltic transport of non-Newtonian fluid in a diverging tube
with different wave forms. Few years ago, Ebaid [17] has ana-
lyzed a new numerical solution for the MHD peristaltic flow of
a biofluid with variable viscosity in circular cylindrical tube via
Adomian decomposition method. The influence of heat and
mass transfer on MHD peristaltic flow through a porous space
with compliant walls has been manipulated by Srinivas and
Kothandapani [18]. Mekheimer [19] have shown the effect of
the induced magnetic field on peristaltic flow of a couple stress
fluid.

All the above mentioned problems have been discussed for
two dimensional geometries. Nowadays, the researchers are
going to concentrate on the three dimensional flows of differ-
ent non-Newtonian models for the fluids having different
physical behaviors. Subba Reddy et al. [20] have discussed
the influence of lateral walls on peristaltic flow in a rectangular
duct. They found the exact solutions for the flow problem and
shown the effects of various physical parameters. A mathemat-
ical model for the flow of micropolar fluid through catheter-
ized artery has been analyzed by Srinivasacharya and
Srikanth [21]. These three dimensional studies are considered
in Cartesian coordinate system. There are very rare cases
which deal with the three dimensional cylindrical coordinates
for peristaltic flow problem. Only a couple of articles [22.23]
have been reported which incorporate the peristaltic transport
in eccentric cylinders. However, the peristaltic flow of non-
Newtonian Carreau fluid model is not measured yet in eccen-
tric cylinders.

Keeping in mind the mechanical, physiological, and indus-
trial applications of peristaltic flows of non-Newtonian fluids,
the authors are motivated to work on the peristaltic flow of
Carreau fluid flowing between two eccentric cylinders. The
governing equations are modeled under the system of cylindri-
cal coordinates. The problem is simplified after the implemen-
tation of long wavelength and low Reynolds number
approximations. The analytical results are obtained by series
solution technique. The expression for pressure rise is calcu-
lated numerically. The present results for velocity and pressure
rise are also compared with that of the existing literature. The
effects of all observing parameters on the profile of velocity,
pressure gradient and pressure rise are shown graphically.
The streamlines are also drawn for physical quantities oc-
curred in the problem to observe the trapping bolus
phenomenon.

2. Mathematical formulation of the problem

Let us observe the peristaltic flow of incompressible Carreau
fluid flowing between the two eccentric cylinders. The flow
geometry is arranged as the inner tube is rigid and sinusoidal

r
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Figure 1  The simplified model of geometry of the problem.

wave is propagating at the outer tube along its length. The in-
ner tube has radius é but we consider the fluid motion to the
center of the outer tube. The center of the inner tube is now
at the position r = €, z = 0, where r and z are coordinates in
the cross-section of the pipe as shown in Fig. 1. The boundary
of the inner tube is measured to order € by r; = 0 + ecosl ,
where e is the parameter that controls the eccentricity of the
inner tube position.
The equations for the walls are described as [22]

=0+ ecos0,
2n
rp=a+bcos |—(z—ct)|,
A

where 0 and a are the radii of the inner and outer
tubes, b is amplitude of the wave, 4 is the wavelength, ¢ is
the propagation velocity and ¢ is the time. The problem
has been considered in the system of cylindrical
coordinates (r,0,z) as radial, azimuthal and axial coordinates,
respectively.

The equations of mass and momentum for an incompress-
ible Carreau fluid are described as

divV =0, (1)
av .
P = —Vp + divr, (2)

where p is the density, d/dt is the material time derivative,
V is the velocity field, dp/dz is the pressure, T is the consti-
tutive relation for Carreau fluid. According to the nature of
the flow, the velocity field is taken as V = (v,w,u). Using
this velocity field, Eqs. (1) and (2) are respectively written
as
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Table 1 Comparison of velocity distribution of present work with Mekheimer et al. [22].

r Mekheimer et al. [22] Present work
u(r,0,z,1) u(r,0,z,t) for We = 0, n =0 u(r,0,z,t) for We = 0.5, n =2

0.20 0.1000 0.1000 0.1000
0.25 0.1093 0.1096 0.1103
0.30 0.1119 0.1119 0.1142
0.35 0.1119 0.1114 0.1137
0.40 0.1096 0.1098 0.1100
0.45 0.1054 0.1056 0.1041
0.50 0.0995 0.0992 0.0964
0.55 0.0919 0.0916 0.0873
0.60 0.0829 0.0827 0.0771
0.65 0.0724 0.0726 0.0659
0.70 0.0606 0.0601 0.0539
0.75 0.0474 0.0478 0.0412
0.80 0.0329 0.0337 0.0280
0.85 0.0171 0.0177 0.0142
0.90 0.0000 0.0000 0.0000

Table 2 Residue error for velocity profile u.

n 0 1) 0 z t 0 We Residue
2 0.1 0.17 50° 0 0.4 0.9 1.000 —0.246548
1.043 —0.226122
1.086 —0.204769
1.129 —0.182481
1.172 —0.159250
1.215 —0.135066
1.258 —0.109921
1.301 —0.083805
1.344 —0.056707
1.387 —0.028618
1.430 0.0004728
0.12 T T T T T T
0.1
0.08 |-
S 0.06
0.04 |
0021”6 present Work when We=0, n=0
—— Mekheimer et. al. [22]
“““ Present Work when We=0.5, n=2
0 T T T T : : L)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r -1 -0.5 0 0.5 1 1.5 2
Figure 2 Comparison of velocity distribution of present work

with [22] for fixed 6 = 0.1, 8 = 0.01, ¢ = 0.1, z=0, t = 0.5, Figure 3  Variation in pressure rise Ap with é and We for fixed
V' =0.1,e =0.1,and Q = 0.69. €=0.1,¢=01,7=01,0 =50°n =2 and V= 009.
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Figure 4  Variation in pressure rise Ap with ¢ and n for fixed
e=01 We=051:=0.1,0 =350 ¢ =02 and V = 1.

dp/dz

0.4 0.6 0.8 1 1.2

Figure 5  Variation in pressure gradient dp/dz with 6 and We for
fixed e=0.1, ¥=09, t =03, n=2, ¢ =01, Q =02, and
0 =0.2.
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Figure 6 Variation in pressure gradient dp/dz with n and ¢ for
fixed e = 0.01, 0 = 0.5, =0.3,0 = 50°, M = 0.5, ¢ = 0.1, and
Vv =0.3.
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Figure 7  Variation in velocity profile u with ¢ and We for fixed
€e=01,0=051=01,z=0,V=1,0=50 ¢ =0.1, and
n = 4, (a) for 2-dimensional and (b) for 3-dimensional.

where , w and u are the velocity components in r, § and
z-directions, respectively, u is the viscosity, T.. T.9, Tr= Too,
t9. and .. are stresses for Carreau fluid which can be
manipulated with the expression of following stress [9]

M
t=u(1+ %) 7 .

In above relation, I and n are material coefficients. Accord-
ing to the present geometry, the boundary conditions are de-
fined as
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Figure 8 Variation in velocity profile u with § and »n for fixed
Q=05 We=151=02¢€=01,z=0.1,0=50°¢=0.1,
and V' = 1, (a) for 2-dimensional and (b) for 3-dimensional.

u=>0,
u=1V,

at r=r, (7)
at r =ry, (8)

where V' stands for the velocity of inner tube. The velocity
component in the azimuthal direction is assumed to be unal-
tered, so the velocity field is found as (v,0,u). The governing
equations are non-dimensionalized by using the following
dimensionless quantities

u A c r b o
W=—,vV="v 1=+t r'lz—l, p=—, 8 =—,
c ac A a a a
€ . a z
El*;v bO 172/217
. a. r ca I'c a
”/'=*”/, iéziaRe:p aWé:iv 7’277
c u a uc
2
a V
0’:071)/: D, =
el ¢

where ¢ is the amplitude ratio, Re is the Reynolds number, J,
is the dimensionless wave number, € is the eccentricity param-
eter, We is the Weissenberg number and t is on stress coeffi-
cients. Making use of above dimensionless parameters, the
governing equations (after neglecting primes) gain to the sub-
sequent form

Réi{%*“%”%} _% @g(”"”éo aae(”‘”)
£ (1) 00, (10)

0 f%% (1269(21,—0)+7%(100)+53%(102)v (1)

Reéo{g¢+u%+ %} = %ﬂLi%(’TV:)JF}%(W:)
+50%(T;:)~ (12)

The components of non-dimensional stresses for Carreau
fluid are evaluated as

1,
,250(1 +TW6 y2> o

or’

. -1 L)\ 10
T,0 = 0 (1 +n— Wezy'> - Q‘

2 r a0’
n—1_,,\(o0v 0u
z,.:7<1+TWe/><() 82+0r>’
—ao (147 L)
Tgo = 200 > ey pE
_ n—1_,,\10u
T{):—<1+ 3 We ">78_6’

o
oz’

.= 250<1 +% Wezwgz)

o a0 B (N (L0 du\ 2832 1 (O ou

reai(g) E () < (355) R () ()
(13)

Using the assumptions of long wavelength (dy — 0) and low
Reynolds number (Re — 0), the governing Egs. (10)—(12) are
simplified to the following form
9 _
o~

op
56= (15)

(14)

oz o7 ror ra T 2 S ar\or
n—1 , 0 (1 Ou(0Ou
T e a;«(ﬂ w(ae))
(n—10)we [ (ou\’ 1 0u (0u\’
=) +5 ==
2r or r2 Or \00
(n=1)we* 0 (u (0u 19 (o’
o0 90\00\or +r2 ao\ag) - (9
Eqgs. (14) and (15) show that dp/dz is not a function of r and

0. The corresponding boundary conditions in non-dimensional
form are

op Pu lou 10u n—1 28(814)3

u=0, atr=ry =1+ ¢cos[2n(z — 1)], (17)
u=V,atr=r =0+ecosb. (18)

3. Solution of the problem

Solution of the above boundary value problem is obtained by
series solution method [24]. The deformation equation for the
given problem is defined as

H(u,f) = (1 =L@ — L[io])
1ou 18u n—1_,0 (0u\’
*f< RS N A Wea(a)
n— 20 (1 0u(Ou :
T e ar (26r<80) )
+(n—l) Bu 1 8u
2r 81 ,2 8r
n=1)we* [0 (Ou (0u 1.0 (0u dp\ _
e <39 (09 (m) > AT (oe) ) dz> =0, (19)
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Figure 9  Stream lines for different values of We, (a) for We = 0.1, (b) for We = 0.5, (c) for We = 0.9, (d) for We = 1.2. The other
parameters are e = 0.3, 0 = 0.2, V= 0.1, 1= 0.2, 0 = 50°, ¢ = 0.05,6 = 0.2, and n = 5.

where £, the linear operator is assumed to be £ = 5’% We de- Zeroth order system
fine the following initial guess satisfying the boundar .
o g g ying Yo L) — Lliig) =0, (22)
conditions
_ V(r—r) up =0, atr=r, (23)
iy =——=. (20)
rL—=r uy="V, atr=r. (24)

Now we describe The solution of the above zeroth order system can be obtained

i(r,0,2,1,q) = uo + fit, + fus + ... (21) by using Eq. (20) and is simply found as

Using the above equation into Eq. (19) and then finding the
terms of first two orders of embedding parameter f, we get the uo(r,0,z,1,f) = ii, = V(r—r) . (25)

following problems including boundary conditions o —r
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Figure 10  Stream lines for different values of Q, (a) for Q = 0.2, (b) for Q = 0.3, (c) for Q = 0.4, and (d) for Q = 0.5. The other

parameters are € = 0.3, 7 = 0.2, 0 = 50°,

First order system
1 (’)zuo n—1 0 Buo
Rt " (a)
n—1 0 (1 duy (Ouy
5y <r2 ar (ao) )
n (n—1)we* % l Oug 6140
2r or r2 or
0

L)W (0 (0w (o) 10 (0w dp_
22 00\ 00 \ or 2 90 \ 90 dz

0 uy +1 01/10
o2 T or

0, (26)

V=02 We=03n=

2,8 =02, and ¢ = 0.05.

u1:07
141:07

at r =r, (27)
atr=ry. (28)
The solution of the above linear ordinary differential equa-

tion is given in appendix. Finally, for f— 1, we approach the
final solution. So from Eq. (21), we get

u(r, 972> l) =uy +up, (29)

where 1o and u; are defined in Eq. (25) and appendix, respec-
tively. The instantaneous volume flow rate Q(z,1) is given by

O(z,t) =2=n /"z rudr, (30)

r
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The mean volume flow rate O over one period is given as
[22]

Di=n=2_
01 =2

Now pressure gradient dp/dz will be evaluated by using Egs.
(30) and (31) and is defined in appendix. The pressure rise Ap
(#) in non-dimensional form is defined as

%2+ 2¢ cos2n(z — )] + ¢* cos*[2n(z — 1)), (31)

Ap(1) = /0 %dz. (32)

4. Results and discussion

In this section, we have discussed the effects of all the
pertinent parameters on pressure rise, pressure gradient,
velocity profile and streamlines with the help of graphs.
As a special case of this problem, the comparison of the
present work with that of Mekheimer et al. [22] is also
manipulated through table and graph as well. The residue
error is also presented to see the solution validity by vary-
ing certain quantities.

Table 1 shows the comparison of velocity variation in
this article with the values obtained in [22]. In Table 2,
the residue error analysis for velocity by varying different
parameters is observed. Fig. 2 contains the graphs showing
the velocity profile variation with emerging parameters for
the present analysis and the old one. Figs. 3 and 4 tell us
the variation in pressure rise Ap with the flow rate Q. We
can observe the behavior of pressure gradient dp/dz with
space coordinate z from Figs. 5 and 6. The graphs for
the velocity profile u are displayed in Figs. 7 and 8. From
Figs. 9 and 10, the trapping bolus phenomenon is dis-
cussed through streamlines for different effective
parameters.

If we look at the Table 1, we can easily conclude that
when we omit the effects of Carreau fluid parameters
(We = n = 0), the present results are very much similar to
that of given in Ref. [22]. From Fig. 2, it is clear that the
present results for neglecting the effects of Carreau fluid
overlaps the already produced results. It is also observed
from Table 1 and Fig. 2 that when we include the Carreau
fluid parameters (We = 0.5, n = 2), the velocity profile in-
creases in the region 0.2 < r < 0.4 but in the rest of the do-
main velocity decreases.

Fig. 3 has the variation in pressure rise Ap with 6 and
We. From this figure, it is measured that pressure rise A p
is varying directly with the increase in the values of ¢ in
the retrograde pumping region (Ap > 0,0 < 0) and peri-
staltic pumping region (Ap > 0,Q > 0) but different obser-
vations are made for the augmented pumping region
(Ap < 0,0 > 0). It is also revealed from this figure that
pressure rise is reduced with the increase in We. It is ob-

served from Fig. 4 that peristaltic pressure rise Ap is vary-
ing directly with the rising the magnitude of radius o in
retrograde pumping region and peristaltic pumping but
reducing when observed in the augmented pumping region
but decreasing with the power law index n.

Fig. 5 shows the effects of fand We on the expression of
pressure gradient dp/dz. It is noted here that dp/dz is decreasing
with the increase in We and 0. Fig. 6 is drawn to see the effect
of dand n on the pressure gradient dp/dz against the coordinate
z. We can say that pressure gradient gets inverse attitude when
someone increases the magnitude of n but reverse behavior is
reported when J gets larger.

The velocity profile u with 6 and We is sketched in Fig. 7
both for two and three dimensions. It is noted from this fig-
ure that u gets lessened with the increase in We in the part
0.6 < r < 0.9 but in the remaining part u rises with We but
in the whole region, velocity enlarges when J gains larger
values. When we look at Fig. 8, we can describe that it gives
the similar behavior with the parameter 6 and n as that of
observed for ¢ and We in Fig. 7.

Fig. 9 gives the streamlines for the parameter We. t is
noted from this figure that increasing the magnitude of
We results in decreasing the number of bolus in both the
parts of the geometry but size of the bolus is enlarged.
Fig. 10 shows that the number of bolus is decreased but vol-
ume of the bolus expands when someone increases the
numerical values of flow rate Q.

5. Concluding remarks

In the present investigation, analytical series solutions are
presented for the peristaltic flow of Carreau fluid in gap be-
tween two eccentric tubes. The problem is measured under
the assumptions of long wave length and low Reynolds
number. The comparison of present analysis is also made
with the existing literature. The main findings of the above
work are as listed below

1. It is measured that in peristaltic pumping, the pressure rise
curves rise up with ¢ but fall down with We and n.

2. It is observed that pressure rise is a decreasing
function of We, n and 6 while increasing function of
radius J .

3. From graphical results, we have seen that velocity
profile is decreasing with the increase in We and n in left
half of the domain but reverse attitude is measured in
the right half while it increases with ¢ throughout the
region.

4. It is depicted that number of bolus is changing inversely
with We and Q but dimensions of the bolus increase.

5. Tt is also concluded that if we put We = n = 0 in the pres-
ent analysis we get the results of previous work done by
Mekheimer et al. [22].
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Appendix A
7 E— (2881 P(r =) (r — r)V(r, — 0)e(8(rs — 8)* +20(r, — 8)°€ + 5€¢*) cos 0

3841212 (r —r3) (ry—0—ccos 0)
=3L 2 (r — )P (r —r2)(r1 — r2)€’ €08 70 + 31273 (r — r2) X (=11 + r2)€® cos 50(48V (—r» + J)
HTL(r = r)(12(rs = 8)° + €) 4 24V (12 — 5)(log(r) — log(r1))) + 6r7r1e" cos 60((r — r2)(ri = 12) (=2V + T4 (r = r1)(r2 — 9))
21 V((=ry + r7) log(r) + (r — r2) log(r) + (=r +r1) log(ry))) + 4€* cos 40((1‘ —r)(r — )(21 By (r— )i (ry — 0)
x(10(r2 = 8)* +3€2) + V((=1 + n)riry(1+ 3r) V2 We? — 5(—=1 +n) x 11 (1 + 6r,) V2 We* + 18
x13(10(r> — 9)* + 62)>)> + 622 V(11 — 12)(26r(rs — 0)° + dré + 1y (8(—1 +n) V2 We* — 4
X (ry = 8) + ) log(r) — (r — 1) (2611 (r; — 8)* + 4r X € + 1,(8(—=1 + n) V> We* — 4(r, — 5)°
+e))log(ry) + (r — r)r(8(=1 4+ n)V2We* +22(r, — 8)* + 56) log(rg))) + 262 cos 20
x((r—r)(ri —ry) (21 B2 — )13 (r — 8) X (48(r2 — 8)* 4 80(r, — 0)°€® + 15€*) + 2V
X (—4(=1 + n)rP2V2We (5 + 6r2) (ry — 8) — 48r262) + 4(—1 + )21 V2 We ((ry — 0)° — 6r2€%)
—P2(G(=1 4+ 1) VW ((ry — 8)" — 6r26?) + 4(—1 + n)r V2We (—(5 + 6r2)(ry — 8)° + 48r,€2)
+4512(16(r, — 0)* + 16(r, — 0)°E + 64)))) — 6122V (—(ry — 1) (8(=5(=1 + n) V2 We?
12 (=1 + ) V2 x Wed +6(ry — 0))))(r2 — 0)* + 8(— (=1 + n) V2 We? + ry(=17(—1 + n) V> We?
420 X (ry — 8)*))E + 176" + 8r((=(=1 + n) V2 We* +36(ry — 8)")(r, — 8)* + 5(—(—1 +n)
X V2We* +10(r, — 8)%)é + 4¢*)) log(r) + (r —1)(8(=5(=1+ n)V*We* + r((—1 + n) x We?
+6(ry — 0)))(r2 — 8)° + 8(=(=1 +n)V2We* + ry(—=17(=1 + n) V2 We? 4 20(r, — 6)7))e® + 17rp¢*
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d 1 i
67127 - 487‘[’%(”1 — VZ)S(h + Vz)(rz — 0 — €cos 9)7 (2(36Ql‘%(r2 N 5)(16(1‘2 N b)6

+168(ry — 8)'€ 4+ 210(ry — 8)’¢* 4 35€°) — (1 — 1) V((—1 + n)3V2We e (4(ry — 8)* + (1 — 21r)é?)

+ (=1 + )2V WeE (=82 + 3r) (r, — 8)” + (=4 + 141r)é)

+ 4r4(64(ry — 0)° + 4(T(=1 + n)V2We* 4+ 134(ry — 8)°)(r2 — 0)°E + 4(7(—1 +n)

V2We? + 111(ry — 0))e* + 27€%) + 12ry(—=8(9(—1 4 n) V2 We* + 4ry(r, — 8)*) (ry — 0)*

+4(=49(=1 + n)VPWe? + 1, (85(=1 + n) V2We? +122(r, — 6)%))(r, — 8)7€ +2(—11

(=1 4+ n)V2We? + 2, (79(—1 + n) V2 We 4 228(ry — 5)7))€* + 81r2€%) + 13 (=8(9(—1 + n) V2 We?

+ 41y (ry — 8)7)(ry — 8)* + 4(—68(—1 + n) V2 We* + 1y (67(—1 4 n) V2 We?

+122(ry — 0)7))(r2 — 8)°E + (=41 (=1 + n) V2 We? + 21, (443 (=1 + n) V2 We* + 456(r, — 8)°))e* + 81r,¢%)))

+2304m12 ¢ cos 2n(z — 1)(r, — & — ecos 0) — 912" (2Q + ng’

cos4n(z — 1)) cos 70 + 3ri€’ cos 50(2(m(2813 — 45171, + 17r3)V — 252Q(ry — §))

(ry — 8) — 420 + 3n(=T7(12(ry — 0)" + €)p* cosdn(z — 1) + 43V x (ry — 9)

(log(ry) — log(r)))) + €cos O(2(630r2 (—64(r, — 6)° — 240(ry — 8)*e® — 120(r, — )

e — 568 4+ 2n(r) — ) V(s — 8) (= (=1 +n)r3 (=2 + 3r) V2 We* + (=1 +n)r 13

(=8 4+ 9r) VW + 4t (4((—1 + n)V2We? + 50(ry — 8)7)(r2 — 8)" + 4(5(—1 +n)

V2We 4+ 139(ry — 8)7)€ + 153¢*) + 12y (4(=36(—1 + n) V2 We* 4+ r,(13 x (=1 +n)

V2We2(ry — 8)7))(ry — 0)* 4 2(—49(—1 + n) V2 We? 4+ 11r,(11(—1 4+ n) V2 We* + 34

(ry = 0)7))€ + 369r2€*) + 13 (4(=36(—1 + n) V2 We? + ry(13(—1 + n) V2 We?

2(ry — 8)*))(ry — 8)* + 2(—68(—1 4 n) V2 We* + r,(145(—1 + n) V2We* + 374(ry — 6)°))€® + 369r,¢%)))

+ 32 (—=21(64(ry — 6)° +240(r, — 8)*€ + 120(r, — 8)°

e+ 56%) ¢ cosdn(z — t) — 8V (ry — 8) (13 (4(—4(—1 + n)V*We* + ry((—1 +n) V?

We 4 2(ry — 6)%))(rs — 8)” + (—12(=1 4 n)V2We* + 19, ((—1 4 n) V2We* + 4(r, — 8)7))E + 33r,¢*)

+ 2P (4(=2(=1 + ) V2 We + 1y (=1 + n) V2 We? + 8(r, — 6)))
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2rmy (4(=2(=1 +n)V2We* + ry((—=1 +n)V2We* +8(ry — 0)))(r — 0)° + (=7(=1 + n) V2 We* + r,(21(—1 + n) V> We?

+136(r, — 6)*))€ + 48r2¢")) (log(r1) — log(r2))))

+ € cos 20(252Qrf(r2 — 8)(48(ry — 8)* + 80(ry — 0)°E + 15¢*) — m(r — 12) V'

(16(=1 + n)r 2 V2We (2 + 3r2) (r, — 8)7 = 211mE®) + 8(=1 + n)R VP WeA(—(ry, — 8)” + 6r2¢%)

+ 4 (8(=(=1 4 n)V2We* +126(ry — 0)*)(ry — 8)* 4 40(— (=1 + n) V> We?
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+ 21 (= 11(=1 4 n) V2 We* + 35(r, — 6)))€* 4 49r,¢*)) (log(ry) — log(rz)))>
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+(=1+n)r (4 +27r) VW + 414 (116(r, — 0)* + 1362) + 11 (5(=1 + n) V2 We? — 2ry(=51(=1 + n) V2 We* + 56(r, — 6)*) + Trr€?)
+ T2y (=2(=1 + n)V2We 4 1y (=16(ry — 8)° + €2))) + 6m2(21(ry — 8)(10(ry — 8)* + 36)$p* cos4n(z — 1) + r V(13 (8(—1
+ ) VPWe +22(ry — 8)° + 5€%) + rira(8(—1 + n) V2 We? +22(ry — )’
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+ 312 (=21(80(ry — 8)* + 60(ry — 8)°€ + 3¢*)dp* cos 4n(z — 1) — 4V (ry — 0) (43 (—(—1 + n) V2 We + ry(=9(—1 + n) V> We?
+24(ry — 0) + 16€%)) + 4rira(— (=1 4+ ) V2We? + ry(=9(—1 + n) V2 We* + 24(ry — 8)° + 16€))) + 3 (=8(~1

+n)VPWE +15(—14(=1 + n)V2We* +8(ry — 8)° + 176))) (log(r1) — log(r2)))) + 1207 (3(ry — 8)(16(r — 8)° + 168(ry — 8)*€?

+210(ry — 8)*¢* + 35€%)¢? cos dn(z — 1) + V(12 (=8(=1 + n) V2 WeX(ry — 6)* + 4(—6(—1 + n) V2We? + 1, (5(=1 + n) V2 We* + 14

x (ry = 8)"))(r2 —

0V @ + (=3(=1+n)VPWe* + 1y (47(=1 + n)V*We* + 84(r, — 0))))e* + Tra€%) + 2 (8(— (=1 + n) V> We?
+2r2(ry — 8))(r2 — ) + 4(=T(=1 4+ n)V2We* + 2r,(6(—1 + n) V2 We* +29(r, — 8)*))(r

— 8 E +2(=2(=1+n)V*We

(
+3r(16(—1 4+ n) V2 We* + 43(ry — 6)°))€* + 19r2€%) + 1172 (8(—= (=1 + n) V2 We? + 2y (ry — 6)*)(rr — 8)* + 4(=7(=1 4 n) V> We?
(

+2m(6(—1 +n) V2We? +29(ry — 0))) (12 —
x (log(r) —log(r2))) + 3r7e’

0 +2(=2(=1+n)V2We* 4 3r,(16(—1 + n) V2 We* + 43(r, — 6)°))e* + 19r,¢%))
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