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Abstract

The shortage of available and suitable construction sites in city centres has led to the increased use of problematic areas, where the

bearing capacity of the underlying deposits is very low. The reinforcement of these problematic soils with granular fill layers is one of the

soil improvement techniques that are widely used. Problematic soil behaviour can be improved by totally or partially replacing the

inadequate soils with layers of compacted granular fill. The study presented herein describes the use of artificial neural networks

(ANNs), and the multi-linear regression model (MLR) to predict the bearing capacity of circular shallow footings supported by layers of

compacted granular fill over natural clay soil. The data used in running the network models have been obtained from an extensive series

of field tests, including large-scale footing diameters. The field tests were performed using seven different footing diameters, up to

0.90 m, and three different granular fill layer thicknesses. The results indicate that the use of granular fill layers over natural clay soil has

a considerable effect on the bearing capacity characteristics and that the ANN model serves as a simple and reliable tool for predicting

the bearing capacity of circular footings in stabilized natural clay soil.
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1. Introduction

Recently, there is an increasing demand to construct on
soft subsoils, which were considered unsuitable for con-
struction in the past. Soft soils, such as normally con-
solidated or slightly overconsolidated clays, have high
compressibility and low shear strength. They include a
variety of materials such as loose silts, clays, organic soils
and peat. These materials can be found throughout the
world. Shallow footings, when built on these soils, have a
low load-bearing capacity and undergo large settlements.
Construction on soft soils often requires the utilisation of
ground improvement techniques. Reinforcement of the
soft soils with granular fill layers is a soil improvement
technique that is widely used. Soft soil behaviour can be
improved by totally or partially replacing the inadequate
soils with layers of compacted granular fill.
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Physical modelling can be carried out through either a full-
scale model or a small-scale model in geotechnical engineer-
ing. Full-scale modelling is generally performed with the real-
site conditions, such as the ground conditions, loads and
stress levels. Hence, the results obtained from this type of
modelling are more accurate than those from other types of
modelling. Despite their operational and financial disadvan-
tages, large- and full-scale field tests produce more reasonable
results when simulating the soil behaviour and modelling a
geotechnical structure. Large-scale field tests were conducted
in this study to overcome the shortcomings of small-scale
laboratory model tests and to more accurately model the full-
scale behaviour of reinforced soil footings.

Several experimental and numerical studies have been
described for the reinforcement of weak soft soils (Ochiai
et al., 1996; Adams and Collin, 1997; Yin, 1997; Otani et al.,
1998; Alawaji, 2001; Dash et al., 2003; Thome et al., 2005;
Chen, 2007; Deb et al., 2007). Ochiai et al. (1996) summarised
the theory and practice of the geosynthetic reinforcement of fills
over extremely soft grounds in Japan. Adams and Collin (1997)
conducted 34 large-model load tests to evaluate the potential
benefits of geosynthetic-reinforced spread foundations. It was
concluded that the soil-geosynthetic system formed a composite
material that inhibited the development of the soil-failure wedge
beneath shallow spread foundations. Otani et al. (1998) studied
the behaviour of a strip foundation constructed on reinforced
clay. The settlement was found to be reduced by increasing the
reinforcement size, the stiffness and the number of layers. The
load-carrying capacity of foundations has been found to
increase more on soil in which reinforcements are provided at
closer spacing. Alawaji (2001) discussed the effects of reinfor-
cing sand pads over collapsible soil and reported that a
successive reduction in collapse settlement, up to 75%, was
obtained. Dash et al. (2003) performed model tests in the
laboratory to study the response of reinforcing granular fill
overlying soft clay beds and showed that substantial improve-
ments in the load-carrying capacity and a reduction in surface
heaving of the foundation bed were achieved.

Artificial neural networks are a form of artificial intelli-
gence; they try to simulate the behaviour of the human
brain and nervous system. They have the ability to relate the
input data and the corresponding output data, which can be
defined depending on the single or multiple parameters
employed to solve the linear or nonlinear problems. In
recent years, the use of artificial neural networks has
increased in geotechnical engineering. Artificial neural net-
works have been successfully applied to many geotechnical
engineering problems, such as pile capacity, settlement of
foundations, soil properties and behaviour, liquefaction,
earth-retaining structures, slope stability, tunnels and under-
ground openings. Comprehensive information on the
above-mentioned applications can be found in the literature
(Fausett, 1994; Nawari et al., 1999; Wang and Rahman,
1999; Shahin et al., 2001; Juang et al., 2001; Basma and
Kallas, 2004; Kung et al., 2007; Cobaner et al., 2008;
Kayadelen, 2008; Kuo et al., 2009; Padmini et al., 2008;
Cho, 2009; Laman and Uncuoglu, 2009; Samui, 2010).
The study presented herein describes the use of artificial
neural networks (ANNs) and the multi-linear regression
model (MLR) to predict the bearing capacity of circular
shallow footings supported by layers of compacted gran-
ular fill over natural clay soil. The data used to run the
network models have been obtained from an extensive
series of field tests, including large-scale footing diameters.
The field tests were performed using seven different footing
diameters, up to 0.90 m, and three different granular fill
layer thicknesses. The large-scale testing was performed at
the Adana Metropolitan Municipality’s (AMM) Water
Treatment Facility Centre (WTFC) located in the western
part of Adana, Turkey. A total of 28 tests were conducted
using a model footing with diameters of 0.06, 0.09, 0.12,
0.30, 0.45, 0.60 and 0.90 m. The primary objectives of these
large-scale experiments were to model the full-scale beha-
viour of reinforced soil footings more accurately, to
evaluate the performance of granular fill layers stabilizing
the natural clay soil, with respect to the bearing capacity,
and to examine the effects of the thickness of granular fill
layers. To the best of the authors’ knowledge, the effect of
granular fill layers on the bearing capacity behaviour of
large-scale footings on natural clay deposits and the
statistical support with artificial intelligence have not yet
been investigated in foundation engineering.

2. Field tests

It is known from the literature that most of the experi-
mental studies on reinforced soils were conducted using
small-scale laboratory tests. Due to the scale effect, it is
sometimes difficult to accurately model the full-scale beha-
viour of reinforced soil in small-scale laboratory tests (Abu-
Farsakh et al., 2008). For this reason, large-scale field tests
were conducted on natural clay deposits and layers of
compacted granular fill overlying natural clay deposits.

2.1. Site characterization

A total of 28 field tests were conducted in the Adana
Metropolitan Municipality’s (AMM) Water Treatment
Facility Center (WTFC) located in the western part of
Adana, Turkey. The soil conditions at the experimental
test site (WTFC) were determined from a geotechnical site
investigation comprising both field and laboratory tests.
Two test pit excavations (TP1 and TP2) and four borehole
drillings (BH1, BH2, BH3 and BH4) were performed in the
WTFC test area (Fig. 1). The test area had dimensions of
30 m (length) by 11.6 m (width). Test pits of 2.50 m were
excavated and boreholes were drilled with diameters of
0.10 m and depths of 13 m. The borehole drilled on the
south side was 20 m. The ground water level was observed
as being 2.20 m from the borehole drillings. The saturation
ratio of the clay layer, where the tests were conducted, was
about 80%. Three subsoil layers were clearly identified by
visual inspection and by the Unified Soil Classification
System (USCS). The first layer, 0.80 m in depth, was
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observed as topsoil and was removed before the tests. The
intermediate layer, between the depths of 0.80 m and
7.0 m, exhibited a silty clay stratum with high plasticity
(CH). A silty clay layer, with the intrusion of sand (CL),
was observed in the bottom layer to a depth of 10.0 m.
Standard Penetration Tests (SPT) were carried out during
the drilling of each borehole, and the distribution of SPT
values with depth is shown in Fig. 2. These values infer
that the tested soil was classified as medium stiff clay.
Conventional laboratory tests, such as sieve analysis,
moisture content, Atterberg limit, specific gravity, stan-
dard proctor, unconfined compression, laboratory vane,
triaxial and consolidation tests, were performed in the
Geotechnical Laboratory of the Civil Engineering Depart-
ment at Cukurova University, Adana, Turkey. The clay
content of the soil layers varied from 60% to 70%. The
upper homogeneous layer, where all the loading tests were
carried out, was classified as high plasticity clay (CH)
according to USCS. The water content of the stratified soil
layers varied between 20% and 25%, depending on depth,
which was almost the same as, or greater than, the plastic
limit. The specific gravities of the soil layers (Gs) varied
from 2.60 to 2.65 along the depths. The values of the
undrained shear strengths, cu, were determined by uncon-
fined compression tests in the range of 60–80 kN/m2. The
average value of undrained shear strength from the triaxial
tests was obtained as 65 kN/m2. The soil layers were
classified as lightly overconsolidated soil (OCR¼1–2.65)
from odometer tests. The clay content, the water content
and the unconfined strength of the natural clay deposits
along the depths are presented in Fig. 3. Triaxial, con-
solidation and unconfined compression tests were con-
ducted on undisturbed soil samples derived from the field.
2.2. Details of model footings and granular fill material used

Seven different footings with diameters of 0.06, 0.09, 0.12,
0.30, 0.45, 0.60 and 0.90 m were used in this study. These
rigid, steel footings had thicknesses of 0.02 m for Dr0.12 m
and 0.03 m for D40.12 m, where D is the footing diameter.
The granular fill material used in the model tests was
obtained from the Kabasakal region situated northwest of
Adana, Turkey. Some conventional tests (sieve analysis,
moisture content, unit weight, direct shear and proctor tests)
were conducted on this material. The granular soil was
prepared at the optimum moisture content value of 7%
and a maximum dry unit weight of 21.7 kN/m3 obtained
from standard proctor tests (Fig. 4(b)). The values for the
internal friction angle and the cohesion of granular fill were
obtained as 431 and 15 kN/m2, respectively, from direct shear
tests. The square-shaped direct shear box had a width of
60 mm. The specific gravity of the granular soil was obtained
as 2.64. From the sieve analysis, the granular soil was
classified as well-graded gravel-silty gravel, GW-GM, accord-
ing to USCS. Fig. 4(a) shows the particle size distribution of
the natural granular fill material. However, the granular fill
material used in the laboratory conventional and field tests
was obtained by passing natural granular material through a
sieve with 4.75-mm openings. The reason was to provide
homogeneity in the laboratory and field test conditions.
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2.3. Experimental set-up and test programme

After obtaining the soil properties of the WTFC test
area, 24 piles were constructed. The topsoil was removed
before the tests. Then, reaction piles were connected with a
steel beam. The top surface of the test area was leveled,
and the footing was placed on a predefined alignment such
that the loads from the hydraulic jack and the loading
frame would be transferred concentrically to the footing. A
hydraulic jack against the steel beam provided downward
load. The hydraulic jack and the two linear variable
displacement transducers (LVDT) were connected to a
data logger unit and the data logger unit was connected to
a computer. The granular fill material was placed and
compacted in layers. The thickness of each layer was
changed depending on the footing diameter. The amounts
of granular fill material and water needed for each layer
were firstly calculated. Then, the granular fill material was
compacted using a plate compactor to a predetermined
height to achieve the desired density. The compacted
granular fill layer had a moisture content of 7% and a
unit weight of 20.20 kN/m3. Load was applied with a
hydraulic jack and maintained manually with a hand
pump. The load and the corresponding footing settlement
were measured with a calibrated pressure gauge and two
LVDTs, respectively. The testing procedure was performed
according to ASTM D 1196-93 (ASTM, 1997), where the
load increments were applied and maintained until the rate
of the settlement was less than 0.03 mm/min over three
consecutive minutes.
Some tests were repeated twice to verify the repeatability

and the consistency of the test data. The same pattern for
the load–settlement relationship, with a difference in ulti-
mate load values of less than 2.0%, was obtained. The
difference was considered to be small, and thus, ignored.
The tests were continued until the applied vertical load was
clearly reduced or a considerable settlement of the footing
was obtained from a relatively small increase in vertical
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load. Detailed information on the testing procedure can be
found by Laman et al. (2009) and Ornek (2009). The general
layout of the test set-up is given in Fig. 5.

The research was conducted in two series. Series I
consisted of tests with seven different footing diameters
(0.06, 0.09, 0.12, 0.30, 0.45, 0.60 and 0.90 m) on the surface
of the natural clay deposit. Series II was the same as Series
I, except that the footings were placed on the granular fill
layers settled on the natural clay deposit. The granular fill
layers were designed in three different thicknesses accord-
ing to the footing diameters (0.33D, 0.67D and 1.00D).
12

15

D = 0.30m
D = 0.45m
D = 0.60m
D = 0.90m

Fig. 6. Curves of load against settlement in Series I tests.
3. Test results and discussion

3.1. Series I tests: tests on natural clay deposit

In the Series I tests, a total of seven in situ tests were
conducted with seven different circular foundations (dia-
meters of 0.06, 0.09, 0.12, 0.30, 0.45, 0.60 and 0.90 m)
resting on the natural clay deposit. Load–settlement curves
for all sizes are presented in Fig. 6. The horizontal and
vertical axes show the load and settlement ratios, respec-
tively. As can be seen in the figure, the bearing capacity
increased with an increase in the foundation size. Bearing
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capacities of approximately 190 kN and 1.0 kN were
obtained for diameters of 0.90 m and 0.06 m, respectively.
These values were derived at the settlement ratio of 3%.
The settlement ratio of 3% was obtained for all of
the footing sizes. For D¼0.90 m, the natural clay soil
deposit collapsed and there was no longer load applied
after s/D43%. Therefore, s/D¼3% is used for all the
footing sizes in order to discuss improvements in the
bearing capacity. Since the load was applied directly
through the natural clay soil in the Series I tests, the
settlement pattern generally resembles a typical punching-
shear failure.

3.2. Series II tests: tests on granular fill layer placed on

natural clay deposit

The effect of the granular fill layer thickness on the
bearing capacity and the settlement behaviour was inves-
tigated in the Series II tests. In the tests, the granular fill
thickness was changed depending on the footing diameter
as 0.33, 0.67 and 1.00D. The bearing capacity–settlement
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Fig. 7. Bearing capacity–settlement curves in Series II tests. (a) D¼0.09 m

and (b) ¼0.9 m.
curves for the typical sizes of D¼0.09 m and 0.90 m are
presented in Fig. 7.
It can be seen from Fig. 7 that the relationship between

the bearing capacity (q)–settlement ratios (s/D) for all the
curves is fairly linear for small-load ranges, and that the
relationship is nonlinear for large-load ranges and does not
exhibit any peak values. Also, from a comparison of the
curves for different H/D values, it can be seen that the
load–settlement behaviour became stiffer as the H/D ratio
increased, due to partially replacing the natural clay soil
with a layer of compacted stiffer granular fill, for both
D¼0.09 m and 0.90 m footing diameters. In the Series II
tests, the bearing capacity is a function of H/D (Madhav
and Vitkar, 1978; Hamed et al., 1986).
The contributions of granular fill layers on the bearing

capacity are presented by the term Bearing Capacity Ratio
(BCR). The term BCR is commonly used to express and
compare the test data on reinforced and unreinforced soils.
The following well-established definition (Binquet and Lee,
1975a) is used for BCR:

BCR¼ qR=q0 ð1Þ

where qR and q0 are the bearing capacity for the reinforced
(granular fill layer placed on natural clay deposit) and
unreinforced (natural clay deposit) soils, respectively. The
parameters investigated, including the settlement of foot-
ing plate, s, are normalised by the diameter of the footing
plate, D (Laman and Yildiz, 2003). The bearing capacity
obtained at s/D¼3% is used to calculate the correspond-
ing BCRs. The settlement ratio (s/D) is defined as the ratio
of the footing settlement (s) to the footing diameter (D).
Fig. 8 shows the relation of BCR to the H/D ratio

obtained from the Series II tests using the values of the
bearing capacity evaluated by Eq. (1). H/D is defined as
the ratio of the granular fill thickness (H) to the footing
diameter (D). It is shown that the bearing capacity of all
the circular footings increased when partially replacing the
natural clay soil with the compacted stiffer granular fill
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layer, and also that BCR increased with an increase in the
granular fill thickness for all footing diameters. The BCR
values obtained for D¼0.90 m are 1.21, 1.35 and 1.44 for
H¼0.33D; H¼0.67D and H¼1.00D, respectively. Seven
different sets of data were used in Fig. 8 for different
diameters of footings. The data are close to each other,
except for the results of H/D¼1.00, which are slightly
different, so that a simple best fit line with an R2 of 0.79
was obtained from the regression analysis.
4. Overview of artificial neural networks

Artificial neural networks are a form of artificial intelli-
gence, which by means of their architecture, try to simulate
the behaviour of the human brain and nervous system.
They have the ability to relate input data and correspond-
ing output data, which can be defined depending on single
or multiple parameters for solving linear or nonlinear
problems. Artificial neural networks do not require any
prior knowledge or a physical model of the problem to
solve it. The nature of the relationship between the input
and the output parameters is captured by means of
learning the samples in the data set (Shahin et al., 2001;
Juang et al., 2001). Artificial neural networks can be
applied successfully to solve problems which have no
specific solutions and are too complex to be modelled
mathematically or with traditional methods (Thirumalaiah
and Deo, 1998; Adeli, 2001). A comprehensive description
of ANNs can be found in many publications (e.g., Hecht-
Nielsen, 1990; Zurada, 1992; Maier and Dandy, 2000;
Shahin et al., 2001).

In this study, the artificial neural network approach,
namely, multi-layer perceptron (MLP) and multi-linear
regression (MLR) models were used. The results of the
field studies were compared with those obtained by the
MLP and MLR approaches.

An MLP distinguishes itself by the presence of one or
more hidden layers, whose computation nodes are corre-
spondingly called the hidden neurons of hidden units. An
MLP network structure is shown in Fig. 9. The function of
the hidden neurons is to intervene between the external
input and the network output in some useful manner. The
number of hidden layer neurons is found by performing a
simple trial-and-error method in all applications. The
sigmoid and linear functions are used for the activation
functions of the hidden and output nodes, respectively.
Input layer
i

Hidden layer
j

Output layer
k

wij wjk

q (kPa)

D (cm)

s (mm)

H (cm)

Fig. 9. Chosen model architecture.
Detailed theoretical information about MLPs can be
found by Haykin (1998). Here, the MLP is trained using
the Levenberg–Marquardt technique, because this techni-
que is more powerful and faster than the conventional
gradient descent technique (Hagan and Menhaj, 1994; El-
Bakyr, 2003).
A typical structure of artificial neural networks consists

of a number of processing elements, or nodes, which are
usually arranged in layers, namely, an input layer, an
output layer and one or more hidden layers (Fig. 9)
(Haykin, 1998).
Each processing element in a specific layer is fully or

partially joined to many other processing elements via
weighted connections. The input from each element in the
previous layer (xi) is multiplied by an adjustable connec-
tion weight (wji). At each element, the weighted input
signals are summed and a threshold value or bias (yj) is
added. This combined input (Ij) is then passed through a
nonlinear transfer function (f(.)) (e.g., sigmoidal transfer
function and tanh transfer function) to produce the output
of the processing elements (yj). The output of one proces-
sing element provides the input to the processing elements
in the next layer. This process is summarised in Eqs. (2)
and (3) and illustrated in Fig. 9:

Ij ¼
X

wjixiþqj summation ð2Þ

yj ¼ f ðIjÞ transfer ð3Þ

The propagation of information in the artificial neural
networks starts at the input layer where the network is
presented with a historical set of input data and the
corresponding (desired) outputs. The actual output of the
network is compared to the desired output and an error is
calculated. Using this error and utilising a learning rule,
the network adjusts its weights until it can find a set of
weights that will produce the input/output mapping that
has the smallest possible error. This process is called
‘‘learning’’ or ‘‘training’’. It should be noted that a
network with one hidden layer can approximate any
continuous function provided that sufficient connection
weights are used (Cybenko, 1989; Hornik et al., 1989). The
objective of the learning is to capture the relationship
between the input and the output parameters. For this
purpose, network models are trained using a learning
algorithm. Here, the MLP is trained using the
Levenberg–Marquardt (LM) learning algorithm due to
fact that this technique is more powerful and faster than
the conventional gradient descent technique (Hagan and
Menhaj, 1994; El-Bakyr, 2003; Cigizoglu and Kisi, 2005).
The Levenberg–Marquardt algorithm is an approximation
of Newton’s method, and Hagan and Menhaj (1994)
showed that it is very efficient for training networks which
have up to a few hundred weights. Although the computa-
tional load of the Levenberg–Marquardt algorithm is
greater than the other techniques, this is compensated by
the increased efficiency and much better precision in the
results. In many cases, the Marquardt algorithm was
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found to converge when other back-propagation techni-
ques diverged (Hagan and Menhaj, 1994). If there is a
function, V ðxÞ, which is to be minimised with respect to
the parameter vector, x, then Newton’s method would be

Dx¼�½r2V ðxÞ��1rV ðxÞ ð4Þ

where r2V ðxÞ is the Hessian matrix and rV ðxÞ is the
gradient. If we assume that V ðxÞ is a sum of squares
function,

V ðxÞ ¼
XN

i ¼ 1

ei
2ðxÞ ð5Þ

then it can be shown that

rV ðxÞ ¼ JT ðxÞeðxÞ ð6Þ

r2V ðxÞ ¼ JT ðxÞJðxÞþSðxÞ ð7Þ

where JðxÞ is the Jacobean matrix and SðxÞ is described as
follows:

SðxÞ ¼
XN

i ¼ 1

eir
2eiðxÞ ð8Þ

For the Gauss–Newton method, it is assumed that
SðxÞ � 0, and the update of Eq. (4) becomes

Dx ¼ ½JT ðxÞJðxÞ��1JT ðxÞeðxÞ ð9Þ

The Levenberg–Marquardt modification to the Gauss–
Newton method is

Dx ¼ ½JT ðxÞJðxÞþmI ��1JT ðxÞeðxÞ ð10Þ

Parameter m is multiplied by a b factor whenever a step
would result in an increased V ðxÞ. When a step reduces
V ðxÞ, m is divided by b. When m is large, the algorithm
becomes the steepest descent (with step 1/m), while for
small m, the algorithm becomes the Gauss–Newton. The
Levenberg–Marquardt algorithm can be considered a
trust-region modification to the Gauss–Newton. The key
step in this algorithm is the computation of the Jacobean
matrix. For neural network-mapping problems, the terms
in the Jacobean matrix can be computed by a simple
modification to the back-propagation algorithm (Mamak
et al., 2009).

The great majority of the civil engineering applications of
neural networks are based on the use of the back-propaga-
tion (BP) algorithm, primarily because of its simplicity
(Laman and Uncuoglu, 2009). In the BP algorithm, train-
ing is supervised such that the network connection weights
are adjusted according to the sum of the squares of the
differences between the actual and the target outputs.

The goal of the training is to reduce the error function
iteratively, defined in the form of the sum of the squares of
the errors between the actual outputs and the target
outputs. Global error, E, can be defined as

E ¼
1

p

Xp

p ¼ 1

Ep ð11Þ
where p is the total number of training samples and Ep is
the error for training samplep.

Ep is calculated by the following equation:

Ep ¼
1

2

XN

i ¼ 1

ðoi�tiÞ
2

ð12Þ

In this equation, N, oi and ti represent the total number of
output neurons, the network output at the ith output neuron
and the target output at the ith output neuron, respectively
(Maier and Dandy, 2000; Shahin et al., 2001). The informa-
tion related to the theory and the applications of ANNs may
be found by Rumelhart and McClelland (1986).
5. Artificial neural network application

In this study, artificial neural networks were used to
predict the bearing capacity of circular shallow footings
supported by layers of compacted granular fill over natural
clay soil. For this purpose, multilayer feed forward net-
work models have been trained using an LM learning
algorithm. The data used to run the network models have
been obtained from the above-mentioned field tests.
Details of the field tests are given in Sections 2 and 3.
The problem is proposed to network models by means

of three input parameters representing the diameter of the
footing (D), the thickness of the granular fill layer (H), the
settlement of the footing (s) and one output parameter
representing the bearing capacity (q).
It is common practice to split the available data into two

sub-sets, namely, a training set and an independent
validation set (Maier and Dandy, 2000). The literature
offers little guidance when selecting the size of the training
and the test samples. Most authors select the ratio of the
training data and the testing data depending on the
particular problem (Kisi, 2005; Sudheer, 2005; Dogan
et al., 2008). Thus, a total of 751 individual data samples,
obtained from experimental studies, were used for the
training and the testing of the network models. The
available data set were divided into two groups, training
and testing data sets, which consisted of 512 and 239 data
samples, respectively. The data samples were selected
randomly from the available data set to constitute the
mentioned data sets. One important aspect here is to make
sure that the minimum and the maximum testing data set
fall within the minimum and the maximum training data
set. The statistical properties and the range in parameters
are shown in Tables 1 and 2, respectively. In Table 1,
parameters, Xmin, Xmax, Xmean, Sx and Csx refer to the
minimum value, the maximum value, the mean value, the
standard deviation value and the skewness coefficient of
the training and the testing data sets, respectively.
To develop the best network model, given the available

data set, the training data set should contain all represen-
tative samples that are present in the available data set
(Shahin et al., 2004). As seen in Table 1, the data sets
represent the same problem domain such that the



Table 1

Statistical properties of data sets.

Xmin Xmax Xmean Sx Csx

Training data set

D (m) 0.06 0.90 0.48 0.31 �0.01

H (m) 0 0.90 0.19 0.24 1.16

s (m) 0 0.053 0.012 0.01 1.16

q (kPa) 0 948.16 351.17 212.55 0.27

Test data set

D (m) 0.06 0.90 0.42 0.28 0.55

H (m) 0 0.90 0.28 0.28 1.18

s (m) 0 0.047 0.012 0.01 1.08

qu (kPa) 0 856.18 350.80 202.88 0.08

Table 2

Ranges of parameters.

Model variable Minimum value Maximum value Range

D (m) 0 0.90 0.90

H (m) 0 0.90 0.90

s (m) 0 0.053 0.053

q (kPa) 0 948.16 948.16
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statistical properties of the data sets are consistent with
each other. In any model development process, familiarity
with the available data is of the utmost importance. In
general, different variables span different ranges. In order
to ensure that all variables receive equal attention during
the training process, they should be standardized.

Preprocessing of the data is usually required before
presenting the data samples to the network model when
the neurons have a transfer function with bounded range.
The reasons for scaling the data samples are to initially
equalise the importance of the variables and to improve
the interpretability of the network weights (Goh, 1995).

Determining an appropriate architecture of the neural
network for a particular problem is an important issue,
since the network topology directly affects its computa-
tional complexity and generalisation capability (Kisi and
Uncuoglu, 2005). Multilayer feed forward network models
with one hidden layer can approximate any complex
nonlinear function provided a sufficient number of hidden
layer neurons is available. In this study, therefore, multi-
layer feed forward network models containing one hidden
layer were used.

Determining the optimum number of hidden layer
neurons is very important for accurately predicting a
parameter using artificial neural networks. However, there
is no theory for how many hidden layer neurons need to be
used for a particular problem. For that reason, the
numbers of hidden layer neurons have generally been
determined by a trial-and-error method. A common
strategy for finding the optimum number of hidden layer
neurons is to start with a few neurons and to increase the
number of neurons, while monitoring the performance
criteria, until no significant improvement is observed (Goh,
1995; Nawari et al., 1999).
In this study, the performance of various network

models with different numbers of hidden layer neurons
was examined in order to choose an appropriate number of
hidden layer neurons. Hence, two neurons were used in the
hidden layer at the beginning of the process, and then the
number was increased step-by-step adding one neuron
until no significant improvement was noted.
The MLR technique was applied to both the testing and

the training data sets. The following formulas, using the
MLR technique, were found to offer the best fitting
statistical measures for the testing and training data sets,
respectively:

q ¼ 83:5D�30Hþ20243s ð13Þ

q ¼ 28:1Dþ118Hþ17012s ð14Þ

where q (kPa) is the bearing capacity, s (m) is the footing
settlement, H (m) is the granular fill thickness and D (m) is
the footing diameter.
The network models were tried and compared according

to mean absolute relative error (MARE) and mean square
error (MSE) criteria. These criteria are defined as

MARE ¼
1

N

XN

i¼1

9Mimeasured
�Mipredicted

9
Mimeasured

� 100 ð15Þ

MSE ¼

PN
i¼1 ðMimeasured

�Mipredicted
Þ
2

N
ð16Þ

In these equations, N and M denote the total number of
data samples and bearing capacities, respectively.
At the end of these processes, the best performance was

obtained from the ANN model which has four neurons in
the hidden layer. The chosen model architecture is shown
in Fig. 9.
The training of the network models is carried out by

presenting the training data set involving pairs of input–
output data. The connection weights are adjusted during
the training phase according to the differences between the
target output (Mmeasured ) and the actual output (Mpredicted )
(Kisi and Uncuoglu, 2005).



Table 3

Saved weights from input layer to hidden layer.

Neuron number I1 I2 I3

H1 0.872 �0.337 �2.339

H2 �4.547 3.023 �27.511

H3 11.138 �8.745 �0.824

H4 8.427 �4.058 �7.270

Table 4

Saved weights from hidden layer to output layer.

Neuron number H1 H2 H3 H4

O1 �2.3217 �6.0613 �5.2341 0.0767

Table 5

Saved bias values.

Neuron number Bias value

H1 �1.2103

H2 4.0043

H3 1.8147

H4 �3.3966

O1 �2.5091

Table 6

Results obtained from chosen network model and regression model.

MLP MLR

Train MSE (kPa) 501.081 69,133.740

Test MSE (kPa) 1670.661 56,996.477

Train MARE 11.343 51.282

Test MARE 18.420 47.052

R2
train 0.988 0.480

R2
test 0.950 0.249

Epoch number 63 –

Hidden layer neurons 4 –

(MLR) R2 = 0.480

(ANN) R2 = 0.988
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Fig. 10. Correlation between measured and predicted bearing capacities

in training phase.
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Fig. 11. Correlation between measured and predicted bearing capacities

in testing phase.
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The adjustment of the connection weights is continued
until the mean square error over all the training samples
falls below a given value or the maximum number of epoch
is reached. In the training phase, the performance of the
network models is monitored at each epoch using the test
data set. In this way, the overfitting of the network model
can be prevented. When the training phase was complete,
the weights were saved for use in the test phase. The saved
weights and bias values used in the chosen network model
with four hidden layer neurons are presented in Tables 3–5.

To compare the results obtained from the network and
the regression models with the experimental results, the
predicted values were transformed back to their original
values and then MARE and MSE were computed.

The tangent sigmoid, logarithmic sigmoid and pure
linear transfer functions were tried as activation functions
for the hidden and the output layer neurons to determine
the best network model (Haykin, 1998). The most appro-
priate results have been obtained from the chosen network
model in which the tangent sigmoid and the pure linear
functions were used as the activation function for the
hidden and the output layer neurons, respectively. The
programme used in running the network models was
written in Matlab language code.

The MSE (mean square error), MARE (mean absolute
relative error) and R2 (determination coefficient) values of
MLP and MLR, for both training and testing phases, are
given in Table 6.

As seen from Table 6, the MLP model has the smaller
MSE (501.081) and MARE (11.343) values and the higher
R2 (0.988) value for the training phase. It also has the
smaller MSE (1670.661) and MARE (18.420) values and
the higher R2 (0.950) value for the testing phase. According
to the statistical analyses, the MLP estimations are better
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than those of MLR; they also produce more accurate
results than MLR. It can be seen from Table 6 that the
ANN method performs better than MLR in both the
training and the testing phases. In other words, the neural
network is able to successfully model the bearing capacity
of shallow footings resting on clay soil.

Figs. 10 and 11 present the measured bearing capacities
versus the predicted bearing capacities by the network
model with R2 coefficients for the training and the testing
phases, respectively. The linear 1:1 lines were also plotted
in these figures to discuss the performance of the statistical
models. It is seen from the figures that for the artificial
neural network (ANN) model approach, the location
points of the measured and the predicted bearing capacity
values are scattered around the 1:1 lines for both training
and testing phases. On the other hand, the multi-linear
regression model gives results in a broad band, especially
in the training phase. The prediction performance increases
from 48.0% to 98.8% for the training phase and from
24.9% to 95.0% for the testing phase, when the determi-
nation coefficients (R2) were considered. It is concluded
that a statistical model based on the artificial neural
network approach, namely, MLP, is also proposed as an
alternative to the MLR technique. MLP produced more
accurate results than the MLR technique.

6. Conclusions

In this study, field tests were performed using seven
different footing diameters, up to 0.90 m, and three
different granular fill layer thicknesses. At the end of the
tests, load–settlement curves were plotted, and artificial
neural networks (ANNs) and the multi-linear regression
model (MLR) were used to predict the bearing capacity of
circular shallow footings supported by a compacted gran-
ular fill layers over natural clay soil. Based on the results of
this investigation, the following main conclusions can be
drawn:
�
 It has been observed from the unreinforced field test
results that the bearing capacity increased with an
increase in foundation size. Bearing capacities of
approximately 190 kN and 1.0 kN were obtained for
diameters of 0.90 m and 0.06 m, respectively. The set-
tlement pattern generally resembled a typical punching-
shear failure under natural clay soil conditions.

�
 The field test results have indicated that the use of

granular fill layers over natural clay soil has a consider-
able effect on the bearing capacity and the settlement
characteristics.

�
 In the tests, the granular fill thickness (H) was changed

depending on the footing diameter as 0.33, 0.67 and
1.00D. The bearing capacity ratio (BCR) was seen to
increase with an increase in the granular fill thickness
for all footing diameters. The BCR values for D¼0.90
m obtained are 1.21, 1.35 and 1.44 for H¼0.33D;
H¼0.67D and H¼1.00D, respectively.
�
 A neural network model has been also developed for
this problem. The input parameters for assessing the
bearing capacity of shallow footings by ANNs are the
diameter of the footing (D), the thickness of the
granular fill layer (H) and the settlement of the footing
(s). The output of the neural network is the predicted
bearing capacity of the shallow footings in natural clay
deposits.

�
 The artificial neural network model serves as a simple

and reliable tool for the bearing capacity of circular
footings in natural clay soil stabilized with granular fill.
The results produced high coefficients of correlation for
the training and testing data of 0.988 and 0.950,
respectively.

�
 A statistical model based on the artificial neural network

approach, namely MLP, was also proposed as an
alternative to the MLR technique. MLP produced more
accurate results than the MLR technique, and MLP
gave better results between them in terms of MSE
(¼501.081), MARE (¼11.343%) and R2 (¼0.988)
statistics.

Nevertheless, this investigation is considered to have
provided a useful basis for further research leading to an
increased understanding of the application of soil reinfor-
cement to ultimate bearing capacity problems.
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