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Abstract

The second order properties of a process are usually characterized by the autocovariance

function. In the stationary case, the parameterization by the partial autocorrelation function is

relatively recent. We extend this parameterization to the nonstationary case. The advantage of

this function is that it is subject to very simple constraints in comparison with the auto-

covariance function which must be nonnegative definite. As in the stationary case, this

parameterization is well adapted to autoregressive models or to the identification of

deterministic processes.
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1. Introduction

Although the partial correlation notion was introduced many years ago by Yule
[19], the parameterization of a stationary time series by the partial autocorrelation
function (PACF) is relatively recent. This result is established by Barndorff-Nielsen
and Schou [1] for autoregressive processes and by Ramsey [18] for the general
stationary case. It is also observed by Burg [2], in the signal processing field, where
the partial autocorrelation coefficients are called reflection coefficients. In fact, the
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one-to-one correspondence between autocorrelation function (ACF) and PACF is a
classical result in orthogonal polynomial theory when the spectral measure has an
infinite set of growth points (see [12]). The simplicity of the constraints on the PACF
gave birth to many autoregressive estimation methods [2,5,9].

The extension of the PACF to the multivariate stationary case is a delicate point.
The difficulty to define a partial autocorrelation matrix lies in the square root choice
in normalizing the partial autocovariance. Morf et al. [16] propose to use the
triangular square root. Dégerine [4] gives a general approach for the multivariate
stationary case and introduces the canonical PACF. Estimation techniques are
proposed in [6,10,17].

In the nonstationary case, the partial correlation coefficients appear in the
generalization of Schur and Levinson–Durbin algorithms for nonlocally determi-
nistic processes by Lev-Ari and Kailath [15]. In this note, we show that the PACF,
like the ACF, can be used in order to parametrize any nonstationary time series. We
precise its variation domain Db and present a new algorithm which constructs a

process sequence with a prescribed PACF. This construction proves that any element
of Db is a PACF. We extend the Levinson–Durbin algorithm to the general

nonstationary situation and use it to prove that the PACF associated with any ACF
is unique. We show that the PACF is well adapted to the identification of
nonnegative definite functions and give a nice characterization of both deterministic
and autoregressive processes. As in the stationary case, we observe that the PACF is
subject to only very simple constraints in comparison with the ACF. This suggests to
use the PACF in order to estimate, in a nonparametric way, the second order
characteristics of a process. Furthermore, this approach has lead to a new estimation
method for periodic autoregressive processes [14], which extends the one based on
the empirical PACF in the stationary case [5]. Notice that a new time-dependent
power spectrum is clearly related to the PACF (see [7]).

The next section is devoted to the parametrization by the PACF and the last one
relates some interesting results coming from the use of this function.

2. Partial autocorrelation function

2.1. Notations and definitions

Let X ð�Þ ¼ fXðtÞ; tAZg be a scalar complex valued nonstationary process with
zero mean and second order moments. In this paper we are only concerned with the
second order properties of the process X ð�Þ: Consequently it is convenient to use a
geometrical approach by considering the following Hilbert space M; with the

hermitian product /U ;VS ¼ EfU %Vg ¼ CovfU ;Vg: The elements of M are the
linear combinations, with complex coefficients, of elements of fXðtÞ; tAZg and their
limits for mean square convergence. So the ACF Rð�; �Þ is defined by

Rðt; sÞ ¼ /X ðtÞ;XðsÞS ¼ CovfXðtÞ;XðsÞg ðt; sÞAZ2:
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This function is nonnegative definite (n.n.d.), that is for all spt;Rs;t ¼ fRðs þ i;
s þ jÞgi;j¼0;y;t	s is n.n.d. (as the covariance matrix of the random vector

½XðsÞ;y;XðtÞ�T ). As in [18], it is convenient to consider the decomposition

DR ¼ IðDRÞ þBðDRÞ

of the set DR of n.n.d. functions, where the interior IðDRÞ consists of all positive
definite (p.d.) functions (all the matrices Rs;t are p.d.), while the boundary BðDRÞ
consists of all n.n.d. functions for which some matrix Rs;t is singular. In this case, the

corresponding process X ð�Þ will be called locally deterministic since for some spt; the
components XðsÞ; y;XðtÞ are almost surely linearly dependent. In the opposite
case, the process X ð�Þ will be called nonlocally deterministic.

Let X fðt; sÞ; spt; denote the orthogonal projection of X ðtÞ on the closed linear
subspace Mðs; t 	 1Þ ¼ spfXðsÞ;y;X ðt 	 1Þg; i.e. the linear predictor of X ðtÞ given

Xðt 	 1Þ;y;XðsÞ; with the convention X fðt; tÞ ¼~00: The ðt 	 sÞth-order forward

partial innovation is efðt; sÞ ¼ X ðtÞ 	 X fðt; sÞ and we put s2fðt; sÞ ¼ jjefðt; sÞjj2 ¼
Varfefðt; sÞg: The associated normalized innovation is defined, for spt; by

Zfðt; sÞ ¼ efðt; sÞ
sfðt; sÞ; sfðt; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2fðt; sÞ

q
;

with the convention 0	1 ¼ 0: Notice that this convention is necessary in the locally
deterministic case when XðtÞAMðs; t 	 1Þ: All the notions obtained by reversing the
time index are denoted by b for ‘‘backward’’; for instance, for spt; the backward

innovation ebðs; tÞ ¼ X ðsÞ 	 Xbðs; tÞ leads to Zbðs; tÞ ¼ ebðs; tÞ=sbðs; tÞ: The PACF

bð�; �Þ describes, for all ðt; sÞ of Z2; the partial correlation coefficient between X ðtÞ
and XðsÞ in the set fXðsÞ;y;XðtÞg:

Definition 1. The partial autocorrelation function bð�; �Þ of X ð�Þ is defined on Z2 by

bðt; sÞ ¼
/Zfðt; s þ 1Þ; Zbðs; t 	 1ÞS if sot;

jjXðtÞjj2 if s ¼ t;

/Zbðt; s 	 1Þ; Zfðs; t þ 1ÞS if s4t:

8><
>:

Note that, setting bðt; tÞ ¼ VarfXðtÞg instead of 1 in the above definition, the
function bð�; �Þ; like the ACF, characterizes the second order properties of X ð�Þ:

2.2. PACF variation domain

The advantage of the PACF is that its variation domain can be easily described.
For tas; we have jbðt; sÞjp1 and the equality to 1 implies linear relationships.
Indeed, for sot; jbðt; sÞj ¼ 1 if and only if s is the largest integer such that X ðtÞ
belongs to the set Mðs; t 	 1Þ: By convention, the partial correlation is then set equal
to 0 everytime it is undefined, i.e. for the points ðt; s 	 kÞ and ðt þ k; sÞ; kX1: In the
same way, we have bðt; t 	 kÞ ¼ bðt þ k; tÞ ¼ 0 for kX0; when the variable XðtÞ is
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equal to zero almost surely. Note that our convention differs from that of [18] but is
well adapted to the one-to-one correspondence given in Theorem 3 below. Precisely,
the PACF bð�; �Þ is in the set Db defined by the following conditions:

(i) bðs; tÞ ¼ bðt; sÞ with bðt; tÞX0 and jbðt; sÞjp1 if tas; ðt; sÞAZ2;
(ii) bðt; tÞ ¼ 0 ) bðt; sÞ ¼ 0; sAZ;
(iii) jbðt; sÞj ¼ 1; sot ) bðt; s 	 kÞ ¼ bðt þ k; sÞ ¼ 0; kX1:

We also consider the decomposition

Db ¼ IðDbÞ þBðDbÞ;

where the interior IðDbÞ consists of all bð�; �ÞADb satisfying, for all tAZ; bðt; tÞ40

and jbðt; sÞjo1 for sat: So the boundary BðDbÞ consists of all bð�; �ÞADb satisfying

bðt; tÞ ¼ 0 for some tAZ; or jbðt; sÞj ¼ 1 for some ðt; sÞAZ2 with sat: Clearly the
PACF of a locally deterministic process is in BðDbÞ and we will see in Section 3 that

IðDbÞ corresponds to the nonlocally deterministic case.

We now show that Db is the PACF variation domain. It means that any function

in Db is the PACF of a nonstationary or stationary process. To do so, we give in

Theorem 2 an algorithm which allows to construct a process with any prescribed
PACF in Db: The following recursion is the basis of this constructive process.

Theorem 1. The partial innovations satisfy, for sot; the recurrence formulae

efðt; sÞ ¼ efðt; s þ 1Þ 	 bðt; sÞs
f ðt;sþ1Þ

sbðs;t	1Þe
bðs; t 	 1Þ;

ebðs; tÞ ¼ ebðs; t 	 1Þ 	 bðs; tÞs
bðs;t	1Þ

sf ðt;sþ1Þe
fðt; s þ 1Þ; ð1Þ

and the residual variances are given by

s2fðt; sÞ ¼ bðt; tÞ
Yt	s

j¼1

½1	 jbðt; t 	 jÞj2�;

s2bðs; tÞ ¼ bðs; sÞ
Yt	s

j¼1

½1	 jbðs; s þ jÞj2�: ð2Þ

Proof. From the projection of XðtÞ on the orthogonal decomposition

Mðs; t 	 1Þ ¼ Mðs þ 1; t 	 1Þ"spfZbðs; t 	 1Þg;

we have

X fðt; sÞ ¼ X fðt; s þ 1Þ þ bðt; sÞsfðt; s þ 1ÞZbðs; t 	 1Þ;

and consequently the first recurrence formula relationship holds. Since the variables

efðt; sÞ and ebðs; t 	 1Þ are uncorrelated, we obtain

s2fðt; sÞ ¼ s2fðt; s þ 1Þ½1	 jbðt; sÞj2�
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and then the expression of the residual variance. The second relationships in (1) and
(2) are proved in a similar way. &

Our constructive process is the following.

Theorem 2. Let fZðtÞ; tAZg be a white noise sequence with unit variance and bð�; �Þ an

element of Db: Then, starting from any s in Z; the sequence fX ðtÞ; tXsg defined by, for

t ¼ s; s þ 1;y:

Zfðt; sÞ ¼ ZðtÞ if s2fðt; sÞ ¼ bðt; tÞ
Yt	s

j¼1

½1	 jbðt; t 	 jÞj2�40; else ~00;

for k ¼ s;y; t 	 1:

Zfðt; k þ 1Þ ¼ ½1	 jbðt; kÞj2�
1
2Zfðt; kÞ þ bðt; kÞZbðk; t 	 1Þ;

Zbðk; tÞ ¼ ½1	 jbðk; tÞj2�	
1
2fZbðk; t 	 1Þ 	 bðk; tÞZfðt; k þ 1Þg;

XðtÞ ¼ ½bðt; tÞ�
1
2Zfðt; tÞ; Zbðt; tÞ ¼ Zfðt; tÞ;

admits a PACF which coincides with bð�; �Þ on fðu; tÞAZ2; u; t ¼ s; s þ 1;yg:

Proof. We suppose that the sequence fXðuÞ; u ¼ s;y; t 	 1g has been constructed
in terms of the variables ZðuÞ; u ¼ s;y; t 	 1; in such a way that its PACF coincides

with bð�; �Þ on fðu; vÞAZ2; u; v ¼ s;y; t 	 1g:
Furthermore, the basis fZbðk; t 	 1Þ; k ¼ s;y; t 	 1g of the corresponding space

Mðs; t 	 1Þ is available. Note that these hypotheses are satisfied for t ¼ s þ 1 after
the first recurrence step:

Zfðs; sÞ ¼ Zbðs; sÞ ¼ ZðsÞ; XðsÞ ¼ bðs; sÞ
1
2Zfðs; sÞ:

Through the first recurrence formula, the algorithm defines the variable XðtÞ as

X ðtÞ ¼
Xt	1

k¼s

sfðt; k þ 1Þbðt; kÞZbðk; t 	 1Þ þ sfðt; sÞZfðt; sÞ;

where Zfðt; sÞ ¼ ZðtÞ is orthogonal to Mðs; t 	 1Þ: This definition is equivalent to

XðtÞ ¼ X fðt; sÞ þ sfðt; sÞZfðt; sÞ: According to the Mðs; t 	 1Þ basis choice, we have

efðt; s þ 1Þ ¼X ðtÞ 	 X fðt; s þ 1Þ

¼ sfðt; s þ 1Þbðt; sÞZbðs; t 	 1Þ þ sfðt; sÞZfðt; sÞ;

jjefðt; s þ 1Þjj2 ¼ s2fðt; s þ 1Þjbðt; sÞj2 þ s2fðt; sÞ ¼ s2fðt; s þ 1Þ;

/efðt; s þ 1Þ; Zbðs; t 	 1ÞS ¼ sfðt; s þ 1Þbðt; sÞ:
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So s2fðt; s þ 1Þ is the norm of eðt; s þ 1Þ and bðt; sÞ is the partial correlation between
XðtÞ and X ðsÞ: For j ¼ s þ 2;y; t; this recurrence carries on with

efðt; jÞ ¼
Xj	1

k¼s

sfðt; k þ 1Þbðt; kÞZbðk; t 	 1Þ þ sfðt; sÞZfðt; sÞ;

jjefðt; jÞjj2 ¼
Xj	1

k¼s

s2fðt; k þ 1Þjbðt; kÞj2 þ s2fðt; sÞ

¼
Xj	1

k¼sþ1

s2fðt; k þ 1Þjbðt; kÞj2 þ s2fðt; s þ 1Þ ¼ ? ¼ s2fðt; jÞ;

/efðt; jÞ; Zbð j 	 1; t 	 1ÞS ¼ sfðt; jÞbðt; j 	 1Þ:

Thus s2fðt; jÞ is the norm of eðt; jÞ and bðt; j 	 1Þ is the partial correlation between
XðtÞ and X ð j 	 1Þ: Finally

jjXðtÞjj2 ¼
Xt	1

k¼s

s2fðt; k þ 1Þjbðt; kÞj2 þ s2fðt; sÞ ¼ bðt; tÞ:

The first step of the recurrence hypotheses at time t is true. Consequently the second

one constructs effectively (see Theorem 1) the new basis fZbðk; tÞ; k ¼ s;y; tg of the
space Mðs; tÞ: &

This algorithm transforms a white noise sequence fZðtÞ; tX0g into a process

fXðtÞ; tX0g with specified values of bð�; �Þ on N2: At each time t; the new sample

XðtÞ is obtained from ZðtÞ; from the past, advisedly stored in the form Zbðs;
t 	 1Þ; s ¼ 0;y; t 	 1; and from the necessary new coefficients bðt; sÞ; s ¼ 0;y; t:
Starting from t ¼ 0; a two-sided sequence fXðtÞ; tAZg; in which XðtÞ and Xð	tÞ are
generated alternatively, can be associated in a similar way to any bð�; �Þ of Db: In

such a construction, we have at time t;Xð	t þ 1Þ;y;X ðt 	 1Þ; that is Zbðk; t 	 1Þ
and Zfð	k;	t þ 1Þ for k ¼ 	t þ 1;y; t 	 1: The new variables X ðtÞ and Xð	tÞ are
obtained in the following way:

X ðtÞ ¼X fðt;	t þ 1Þ þ efðt;	t þ 1Þ

¼
Xt	1

k¼	tþ1

sfðt; k þ 1Þbðt; kÞZbðk; t 	 1Þ þ sfðt;	t þ 1ÞZðtÞ;

X ð	tÞ ¼Xbð	t; tÞ þ ebð	t; tÞ

¼
Xt

k¼	tþ1

sbð	t; k 	 1Þbð	t; kÞZfðk;	t þ 1Þ þ sbð	t; tÞZð	tÞ;

where s2fðt; kÞ and s2bð	t; kÞ are determined by means of the relations in (2).
Therefore from any element bð�; �Þ of Db; it is possible to construct a nonstationary
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sequence fXðtÞ; tAZg which admits bð�; �Þ as PACF. This shows that the application
Rð�; �Þ-bð�; �Þ maps DR onto Db:

2.3. The generalized Levinson–Durbin ðGLDÞ Algorithm

In order to prove the one-to-one correspondence between DR and Db; we extend

the Levinson–Durbin Algorithm of Lev-Ary and Kailath [15] for nonstationary
processes to the locally deterministic case. Let us introduce the following notations
for spt:

efðt; sÞ ¼
Xt	s

j¼0

af
tðt 	 s; jÞXðt 	 jÞ; af

tðt 	 s; 0Þ ¼ 1;

ebðs; tÞ ¼
Xt	s

j¼0

ab
t ðt 	 s; jÞXðs þ jÞ; ab

t ðt 	 s; 0Þ ¼ 1: ð3Þ

The coefficients in these decompositions are not uniquely defined in the locally
deterministic case. In the algorithm below, they are selected recursively by the
process itself, but the correspondence between Rð�; �Þ and bð�; �Þ given by (4) is
satisfied with any set of coefficients.

Theorem 3 (GLD Algorithm). The correspondence between Rð�; �Þ and bð�; �Þ on

½s;y; t�2 is realized as follows.
For k ¼ s;y; t;

s2fðk; kÞ ¼ s2bðk; kÞ ¼ bðk; kÞ ¼ Rðk; kÞ:
For n ¼ 1;y; t 	 s;

for k ¼ s þ n;y; t; with the conventions
P0

j¼1 y ¼ 0 and 0	1 ¼ 0:

bðk; k 	 nÞ ¼
Rðk; k 	 nÞ þ

Pn	1
j¼1 af

kðn 	 1; jÞRðk 	 j; k 	 nÞ
sfðk; k 	 n þ 1Þsbðk 	 n; k 	 1Þ ; ð4Þ

if nat 	 s and kXs þ n þ 1:

s2fðk; k 	 nÞ ¼ ½1	 jbðk; k 	 nÞj2�s2fðk; k 	 n þ 1Þ;

s2bðk 	 n 	 1; k 	 1Þ ¼ ½1	 jbðk 	 n 	 1; k 	 1Þj2�s2bðk 	 n 	 1; k 	 2Þ; ð5Þ

af
kðn; nÞ ¼ 	bðk; k 	 nÞ s

fðk; k 	 n þ 1Þ
sbðk 	 n; k 	 1Þ; ð6Þ

ab
kðn; nÞ ¼ 	bðk 	 n; kÞ s

bðk 	 n; k 	 1Þ
sfðk; k 	 n þ 1Þ; ð7Þ

for j ¼ 1;y; n 	 1:

af
kðn; jÞ ¼ af

kðn 	 1; jÞ þ af
kðn; nÞab

k	1ðn 	 1; n 	 jÞ; ð8Þ

ab
kðn; jÞ ¼ ab

k	1ðn 	 1; jÞ þ ab
kðn; nÞaf

kðn 	 1; n 	 jÞ: ð9Þ
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Proof. Let Xð�Þ be a process with ACF and PACF given by their geometrical

definitions. The algebraic relationships between Rð�; �Þ and bð�; �Þ on ½s;y; t�2 are
obtained by determining, recursively from n ¼ 1 to t 	 s 	 1; the decompositions (3)
of all the nth-order partial innovations defined on this domain. Relations (5)–(9)
follow from Theorem 1 and

bðk; k 	 nÞ ¼ /efðk; k 	 n þ 1Þ;X ðk 	 nÞS
sfðk; k 	 n þ 1Þsbðk 	 n; k 	 1Þ

leads to (4). When the denominator of the above fraction is equal to zero, the
numerator is also equal to zero. So the convention in the geometrical definition of

bðk; k 	 nÞ agrees with 0	1 ¼ 0 in the algorithm. &

Clearly, the GLD Algorithm shows that two different ACF lead to distinct PACF.
Notice that the application bð�; �Þ-Rð�; �Þ is simply obtained by writing (4) in the
form

Rðk; k 	 nÞ ¼ sfðk; k 	 n þ 1Þsbðk 	 n; k 	 1Þbðk; k 	 nÞ

	
Xn	1

j¼1

af
kðn 	 1; jÞRðk 	 j; k 	 nÞ;

even in the locally deterministic case.

3. Miscellaneous results

Here are presented some straightforward consequences of the parameterization
given by the PACF.

3.1. On the nonnegative definiteness property

The extension of the Levinson–Durbin Algorithm to the locally deterministic case
allows to determine a Cholesky decomposition of a generalized inverse of any n.n.d.
hermitian matrix. Indeed, let us recall that Rs;t ¼ fRðs þ i; s þ jÞgi;j¼0;y;t	s represents

the covariance matrix of the random vector ½XðsÞ;y;X ðtÞ�T and let us note that

efs;t ¼

efðs; sÞ
efðs þ 1; sÞ

^

efðt; sÞ

0
BBBB@

1
CCCCA ¼ Af

s;t

XðsÞ
Xðs þ 1Þ

^

XðtÞ

0
BBB@

1
CCCA;
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where

Af
s;t ¼

1

af
sþ1ð1; 1Þ 1 ð0Þ

^ & &

af
tðt 	 s; t 	 sÞ ? af

tðt 	 s; 1Þ 1

0
BBBB@

1
CCCCA

and

Efefs;tef�s;tg ¼

s2fðs; sÞ
s2fðs þ 1; sÞ ð0Þ

ð0Þ &

s2fðt; sÞ

0
BBBB@

1
CCCCA ¼ S2f

s;t;

where � denotes the conjugate transpose. Then a decomposition of a generalized

inverse R	
s;t of the covariance matrix Rs;t is given by R	

s;t ¼ Af�
s;tS

2fþ

s;t Af
s;t; where the

matrices S2f
s;t and Af

s;t are provided by the algorithm. The diagonal matrix S2fþ

s;t is the

Moore–Penrose inverse of S2f
s;t obtained by inverting the terms which are not equal to

zero. This decomposition is in fact a by-product of the GLD Algorithm which

determines the coefficients of all the innovations efðv; uÞ and ebðu; vÞ; spupvpt:
This process, which allows to obtain a Cholesky decomposition of a n.n.d. hermitian
matrix, is not common but follows the one proposed by Delsarte et al. [8] in the
nonlocally deterministic case. Furthermore, the extension of the Levinson–Durbin
Algorithm to the locally deterministic case provides an easy way to check that a
given matrix Rs;t is n.n.d. and to describe all n.n.d. functions Rð�; �Þ which extend this

set of values.

The decomposition S2f
s;t ¼ Af

s;tRs;tA
f�
s;t implies that the determinants of the matrices

Rs;t and S2f
s;t are equal and then,

jRs;tj ¼
Yt

k¼s

s2fðk; sÞ;

that is, in terms of partial correlations (see Theorem 1),

jRs;tj ¼
Yt

k¼s

bðt; tÞ
" # Yt

k¼sþ1

Yk	s

j¼1

½1	 jbðk; k 	 jÞj2�:

When the process is stationary, we obtain the formula

jRt	sj ¼ jRnj ¼ bð0Þnþ1
Yn

j¼1

½1	 jbð jÞj2�nþ1	j;

where Rt	s ¼ Rs;t; n ¼ t 	 s; and bð jÞ ¼ bðt; t 	 jÞ; jX0: Rs;t is p.d. if and only if

jRs;sþjj40; j ¼ 0;y; t 	 s [11, Theorem 19, p. 337]. So the jRs;tj expression and the

GLD Algorithm give immediately the one-to-one correspondence between Rð�; �Þ
and bð�; �Þ in the nonlocally deterministic case and then IðDbÞ corresponds to
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IðDRÞ: This argument was used by Ramsey [18] in the analogous situation for
stationary processes. It is also the proof given in [12] where this situation only
is considered. However, the condition jRs;tjX0; for all ðs; tÞ; is not sufficient

for the nonnegative definiteness property of Rð�; �Þ: On the other hand, if Rð�; �Þ
and bð�; �Þ are related by the GLD Algorithm, the Cholesky factorization Rs;t ¼
ðAf

s;tÞ
	1S2f

s;tðAf�
s;tÞ

	1 holds and proves that Rs;t is n.n.d. when bð�; �Þ belongs to Db: This

is the proof used by Burg [2] in the stationary case where the coefficients in Af
s;t are

easily uniquely selected for a singular T!plitz matrix Rs;t: In the nonstationary case,

the Cholesky factorization of Rs;t; which follows immediately from our approach, is

more delicate to prove directly. Notice that Theorem 2 shows that any bð�; �ÞADb is a

PACF without the GLD Algorithm. Furthermore, it provides an elegant way to
simulate a process with a given PACF. In the stationary case, a PACF bð�Þ belongs
to BðDbÞ when bð0Þ ¼ 0 or when there exists pX1 such that jbðpÞj ¼ 1: That is the

process Xð�Þ satisfies the stochastic difference equation (cf. (3))Xp

j¼0

aðp; jÞXðt 	 jÞ ¼ 0; aðp; 0Þ ¼ 1:

The Levinson–Durbin Algorithm gives Rð0Þ;y;Rðp 	 1Þ and also RðpÞ so that
the Toeplitz matrix Rp	1 ¼ fRði 	 jÞgi;j¼0;y;p	1 is p.d. but the above stochastic

difference equation must be used in order to prove that the Toeplitz matrix Rp; using

RðpÞ; is n.n.d. as the covariance matrix of fX ð1Þ;y;Xðp þ 1Þg: So in the sufficiency
part of the proof of [18] (cf. Case IV), fX ð1Þ;y;XðpÞg must be considered first
instead of fXð1Þ;y;X ðp þ 1Þg:

3.2. Deterministic processes

As in the stationary case (cf. [18]), a deterministic process is easily described.
Iterating the first relation of (1) in Theorem 1, we have

efðt; t 	 nÞ ¼ X ðtÞ 	
Xn

k¼1

bðt; t 	 kÞsfðt; t 	 k þ 1ÞZbðt 	 k; t 	 1Þ:

Then, using mean square convergence, the innovation process eðtÞ satisfies

eðtÞ ¼ XðtÞ 	
XþN

k¼1

bðt; t 	 kÞsfðt; t 	 k þ 1ÞZbðt 	 k; t 	 1Þ;

and its variance is given by

s2
e ðtÞ ¼ lim

n-þN

s2fðt; t 	 nÞ ¼ bðt; tÞ
YþN

k¼1

½1	 jbðt; t 	 kÞj2�:

So the process Xð�Þ is deterministic if and only if its PACF satisfies one of the
following conditions:

(i) bðt; tÞ ¼ 0;
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(ii) jbðt; sÞj ¼ 1 for some sot;
(iii)

PþN

k¼1 jbðt; t 	 kÞj2 ¼ þN;

for every t in Z:

3.3. Autoregressive processes

In the nonstationary case, we will call X ð�Þ an autoregressive process of order p;
denoted by ARðpÞ; if for all tAZ; there exist some constants atðkÞ; k ¼ 1;y; p such
that

Xp

k¼0

atðkÞXðt 	 kÞ ¼ eðtÞ; atð0Þ ¼ 1; ð10Þ

where eð�Þ ¼ feðtÞ; tAZg is the innovation process and p is the smallest integer for
which these relationships hold. Let us recall that eð�Þ is a sequence of zero-mean

uncorrelated variables such that eðtÞ; with variance s2
e ðtÞX0; is uncorrelated with

XðsÞ; sot: Contrarily to the stationary case, we do not know if a process satisfying
(10) with any white noise sequence is ARðpÞ: Furthermore, the process X ð�Þ can be

locally deterministic because the variance s2
e ðtÞ can vanish. As in the stationary case

(see [18]), the PACF characterizes in a simple way this family of processes.

Theorem 4. A process Xð�Þ is autoregressive of order p if and only if its PACF bð�; �Þ
satisfies

bðt; t 	 kÞ ¼ 0; 8tAZ; 8k4p; (tAZ; bðt; t 	 pÞa0:

Proof. If X ð�Þ is ARðpÞ; then the process eð�Þ in (10) is the innovation process.

Moreover efðt; t 	 nÞ ¼ efðt; t 	 pÞ ¼ eðtÞ for nXp and the variances equality

s2fðt; t 	 nÞ ¼ bðt; tÞ
Yn

k¼1

½1	 jbðt; t 	 kÞj2�

¼ bðt; tÞ
Yp

k¼1

½1	 jbðt; t 	 kÞj2� ¼ s2fðt; t 	 pÞ;

shows that bðt; t 	 kÞ ¼ 0 for k4p: This is obvious if s2fðt; t 	 pÞ40; otherwise this
variance is equal to zero because bðt; tÞ ¼ 0 or because there exists kpp such that
jbðt; t 	 kÞj ¼ 1: For both situations, the conventions used imply bðt; t 	 jÞ ¼ 0 for
j4p: Now let p̃ be the largest integer k less than p for which we have bðt; t 	 kÞa0

when t belongs to Z: Then X ð�Þ satisfies (10) with p ¼ p̃ and eðtÞ ¼ efðt; t 	 p̃Þ; tAZ:
This shows that p ¼ p̃; by definition of the model order and the existence of tAZ such
that bðt; t 	 pÞa0 is satisfied. Moreover, these last points establish clearly the
sufficient condition of the theorem. &.
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A fundamental difference with the stationary case concerns the Wold–Cramér
decomposition (see [3])

X ðtÞ ¼ UðtÞ þ VðtÞ; tAZ;

where Uð�Þ is purely nondeterministic and Vð�Þ is deterministic. When Xð�Þ is a
stationary ARðpÞ process, only one of these two components is possible according to

s2
e is strictly positive or not. Furthermore, the roots of the polynomial equationXp

k¼0

aðkÞzk ¼ 0

lie outside the unit circle if Xð�Þ ¼ Uð�Þ and the parameters að1Þ;y; aðpÞ; together
with s2

e ; characterize the PACF. If X ð�Þ ¼ Vð�Þ; we can suppose that all the roots lie

on the unit circle, but að1Þ;y; aðpÞ characterize only the support of the spectral
measure. In the nonstationary case, the two components Uð�Þ and Vð�Þ can coexist.
In this case Xð�Þ and Uð�Þ satisfy (10) with the same parameters atðkÞ and the same

variances s2
e ðtÞ but with different PACF. The process Vð�Þ also satisfies (10) with the

same parameters atðkÞ as Xð�Þ or Uð�Þ but with s2
e ðtÞ ¼ 0 and a third PACF. Let us

illustrate this problem by the following example. The model is

X ðtÞ þ aXðt 	 1Þ ¼ eðtÞ; tAZ;

with jajo1 and s2
e ðtÞ ¼ 1 for all t in Z: Let Uð�Þ be the stationary ARð1Þ process

associated with these parameters. We have, for all tAZ;

bUðt; tÞ ¼ 1

1	 a2
; bUðt; t 	 1Þ ¼ 	a; bUðt; t 	 kÞ ¼ 0; k41:

Now, let Vð�Þ be defined by VðtÞ þ aVðt 	 1Þ ¼ 0; tAZ; where Vð0Þ is a zero-mean
random variable with unit variance and uncorrelated with Uð�Þ:

Then bV ð�; �Þ is given by

bV ðt; tÞ ¼ a2t; bV ðt; t 	 1Þ ¼ 	1; bV ðt; t 	 kÞ ¼ 0; k41; tAZ:

Using RX ð�; �Þ ¼ RUð�; �Þ þ RV ð�; �Þ and the GLD Algorithm, we obtain:

bX ðt; tÞ ¼ 1

1	 a2
þ a2t; bX ðt; t 	 1Þ ¼ 	a

ð1þ a2ðt	1Þ 	 a2tÞ
1
2

ð1þ a2t 	 a2ðtþ1ÞÞ
1
2

;

bX ðt; t 	 kÞ ¼ 0; k41; tAZ:

The above example shows that the set of parameters fatðkÞ; k ¼ 1;y; p; s2
e ðtÞgtAZ;

does not specify the second order properties of Xð�Þ: This question is still open if we
restrict ourself to purely nondeterministic processes. Another problem is to
characterize the set of coefficients fatðkÞ; k ¼ 1;y; pgtAZ for which a solution of

(10) exists. A sufficient condition is given in [13], using the theory of linear difference

equations, when atðpÞa0 and s2
e ðtÞ ¼ 1 for all tAZ: Then this solution is purely

nondeterministic and corresponds to Uð�Þ in our example. Note that no problem
arises when only unilateral sequences fX ðtÞ; tX0g are considered. In such a case the
second order properties of Xð�Þ are characterized by fbðt; sÞ; s; tX0g; with the
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condition of Theorem 4, or equivalently by any initial condition fbðt; sÞ; 0ps; topg
and any set of parameters fatðkÞ; k ¼ 1;y; p; s2

e ðtÞgtXp; with atðpÞa0 for some

tXp: The correspondence between these two parameterizations is clearly one-to-one
in the nonlocally deterministic case. Then the coefficients fatðkÞ; k ¼ 1;y; pgtXp

are uniquely defined and can take any values. Otherwise the unicity is no longer true.

3.4. Estimation procedure

Notice that the PACF is well adapted for estimating the second order structure of
a nonstationary observed sequence in a nonparametric way. Indeed, each function
btðkÞ ¼ bðt; t;	kÞ; kAN; is the PACF of a stationary process. Furthermore, in the
nonlocally deterministic case, these functions can be estimated separately because
there exist no relationships between them. So we can apply any estimating method of
the stationary case in a sliding window or using a forgetting factor. Then the

estimated parameters give #btðkÞ for various k and each fixed t: For instance, the
maximum entropy method [2] should suggest to fit an evolutive autoregressive
process on the nonstationary observed sequence. On each window, we can estimate
the order p̂t of the model using any classical method of the stationary case. Then, the

coefficients #btðkÞ; k ¼ 0;y; p̂t; can be estimated by the empirical partial auto-
correlation coefficients of [5]. We have been able to observe that this approach leads
to an estimated evolutive instantaneous spectrum comparable with the one of [7]. Let
us point out that the PACF cannot be replaced, in these approaches, by the ACF

since R̂ð�; �Þ given by R̂ðt; t 	 kÞ ¼ R̂tðkÞ is not necessary p.d., even if R̂tðkÞ is p.d. as

a function of k: For instance, if we estimate R̂tðkÞ; k ¼ 0; 1;y; by the usual Yule–

Walker method, we must compute the corresponding #btðkÞ; k ¼ 0; 1;y; in order to

obtain #bð�; �Þ by #bðt; t 	 kÞ ¼ #btðkÞ: Now R̂ð�; �Þ associated with this #bð�; �Þ will be p.d.

but generally R̂ðt; t 	 kÞ will be different of R̂tðkÞ:
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[6] S. Dégerine, Sample partial autocorrelation function of a multivariate time series, J. Multivariate

Anal. 50 (1994) 294–313.
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