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The importance of long-term load forecasting in the power industries cannot be over-emphasised, as it
provides the industries with future power demand that may be useful in generating, transmitting and
distributing power reliably and economically. In recent times, many techniques have been used in load
forecasting, but artificial intelligence techniques (fuzzy logic and ANN) provide greater efficiency
compared to conventional techniques (e.g., regression and time series). In this paper, a fuzzy logic model

IL?r; Wire‘:; for long-term load forecasting is presented. A fuzzy logic model is developed based on the weather
Loag forecasting parameters (temperature and humidity) and historical load data for the town of Mubi in Adamawa state
Fuzzy logic to forecast a year-ahead load. The fuzzy logic model forecast a year-ahead load with a MAPE of 6.9% and
Universe of discourse efficiency of 93.1%. The result obtained reveal that the proposed model is capable of predicting future
Membership function load.

Copyright © 2016, Far Eastern Federal University, Kangnam University, Dalian University of Technology,
Kokushikan University. Production and hosting by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Forecasting is the estimation of the value of a variable (or set of
variables) at a future point in time. This definition is adopted from
[18]. The main aim of power companies is to provide their cus-
tomers with a sufficient and reliable power supply [14]. The power
they generate, transmit or distribute is very costly and too precious
to be wasted. However, load demand is never constant; it fluctuates
due to reasons such as variation in weather parameters, breakdown
of power facilities as a result of over-usage, limited capacity and
lack of proper maintenance. Additionally, the increase in the
number of customers cannot be predicted accurately. There may be
error in the knowledge of when these challenges and changes will
occur. This usually results in a shortage or interruption of the power
supply which causes inconveniencies and sometimes losses
depending on the classes of consumers. Therefore, load forecasting
is an important and useful tool for power companies in terms of

Abbreviation: ANN, Artificial Neural Network; PHCN, Power Holding Company
of Nigeria; MF, Membership Function; MW, Megawatts; H, Humidity; T, Tempera-
ture; FL, Forecasted load; LH, Low Humidity; MH, Medium Humidity; HH, High
Humidity; LT, Low Temperature; HT, High temperature; LL, Low Load; ML, Medium
Load; HL, High load; APE, Absolute percentage Error; MAPE, Mean Absolute Per-
centage Error; n, number of sample data.
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operation and planning for the future demand of their customers
[1,12]. Also load forecasting remains an indispensable factor for
power system planning and evaluating the cost effectiveness of
investing in new techniques and strategy for effective power de-
livery [3,8,11]. The types of load forecasting are classified into four
categories [13].

e Very short-term load forecasting: forecasting for few minutes to
a few hours.

e Short-term load forecasting: forecasts within a time period of
few hours to few days.

e Mid-term load forecasting: forecasting for few weeks to a few
months.

e Long-term load forecasting: forecasting within the period of one
year to more than one year.

Based on the reasons and needs, any of the above categories can
be chosen. In this work, long-term load forecasting is used to
forecast future load. In most of the literature several methods of
forecasting have been developed. These include linear regression,
exponential smoothing, stochastic processes, the ARMA model,
data mining models, fuzzy logic and artificial neural network (ANN)
[2,4,16]. Among these methods, fuzzy logic and ANN are widely
used. However, fuzzy logic seems to take the lead over ANN because
of its distinct characteristics [5], for example, when there is a
reasonable fluctuation between the weather parameters and load,
fuzzy logic can handle it with less forecast error.
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In this work, long-term load forecasting for future planning
using fuzzy logic is proposed and the following objectives can be
achieved; the development of a fuzzy logic simulation model in
order to forecast a future load, the development of a fuzzy rule base
to enable us determine accurate load forecasting and to confirm the
effect of the weather parameters on the electrical load.

1.1. Fuzzy systems

The basic concept of fuzzy set theory was first introduced by
Zadeh in 1965 [G]. Fuzzy set theory can be considered as a
generalized classical set theory. Normally, in classical set theory
an element can either belong to a particular set or not. Therefore,
the degree of being a member of that set is its crisp value. How-
ever, in fuzzy set theory, the degree of membership of an element
can be continuously varied. Fuzzy set maps from the universe of
discourse to the close interval {0, 1} [17]. The continuous nature of
data can be represented by a membership function in fuzzy sets.
Fuzzy set theory is one of the dominant technologies in artificial
intelligence (Al) and it has broad application in load forecasting.
For example, it can model ordinary linguistic variables which may
be imprecise or vague in nature at a cognitive level [1,7]. Load
forecasting involves many uncertainties, such as the variation in
such factors as temperature, humidity, rainfall, wind speed, at-
mospheric pressure and solar radiation with respect to load, and
its value cannot be exactly determined numerically [10]. There-
fore, a fuzzy logic approach will be the most suitable method to
use under such conditions.

Fuzzy logic is used to map the highly non-linear relationship
(using membership function) between the weather parameters and
their consequences on the peak load in every month of the year
[20]. In this paper, the two parameters of temperature and hu-
midity are used as inputs to the fuzzy logic model while load is an
output. The end expectation is that the two weather parameters
may have an impact on the load peak as observed in this research.

2. Methodology
2.1. Method of data collection

The data are collected from two places. The weather parameters
of temperature and humidity are collected from the meteorological
centre of the Department of Geography of Adamawa State Univer-
sity, while the historical load data comes from Power Holding
Company of Nigeria (PHCN), a Mubi business unit of Adamawa
state.

The block diagram of Fuzzy interface shows how to forecast the
future load.

2.2. Fuzzy interface

The fuzzy interface can be actualized using the block diagram of
Fig. 1. The weather parameters are fed to the fuzzifier and the
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Fig. 1. Fuzzy interface.

output of the fuzzifier and fuzzy rule base enter into the Fuzzy
inference engine which is the heart of the system as it processes
input data and gives out the forecasted load. The inference system
accomplishes the task of forecasting by the use of a fuzzy rule base
prepared by the forecaster.

In practise, the accuracy of the forecast depends on the cogni-
zance of the forecaster and the prepared rules. The output from the
fuzzy inference engine is still fuzzy in nature. It is then converted
into a crisp value by defuzzification, which produces the forecasted
load.

Figs. 2—4 show the variation in load for the years 2013 and 2014
and their average loads with temperature and humidity. It is
observed from the figures that the load increases with an increase
in temperature while an increase in humidity does not produced
much impact on the load as in [2] where the relationship between
load and weather parameters is linear. This may be attributed to the
geographical location and the weather conditions of the town of
Mubi in Adamawa State. This necessitated the present research.

2.3. Fuzzification of input and output

The first step is to examine the historical data of all the pa-
rameters that are used as inputs and outputs. The maximum
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Fig. 2. Load, temperature and humidity vs. month for 2013.
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Fig. 3. Load, temperature and humidity vs. month for 2014.
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Fig. 4. Average load, temperature and humidity vs. month.

and minimum values of the parameters such as temperature
and humidity are obtained and used for the process of
fuzzification.

In this work, load is considered as an output while tempera-
ture and humidity are input parameters. From the data collected,
the following fuzzy sets are classified as Low Load (LL):
0.5 MW-1.0 MW, Medium Load (ML): 1.0 MW—-1.5 MW, High
Load (HL): 1.5 MW-2.0 MW, while the input parameters are
classified as Low Humidity (LH): 16%—26%, Medium Humidity
(MH): 27%—38%. High Humidity (HH): 39%—43%, Temperature
with range of 15 °C—31 °C is classified as Low Temperature (LT):
15 °C—21 °C and High Temperature (HT): 22 °C—31 °C.

2.4. Assigning of membership function
“Membership function (MF) is a curve that defines how each

point in the input space is mapped to a membership value between
0 and 1” [21]. This research considered the load and weather
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Fig. 5. Membership function for humidity.
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Fig. 7. Membership function of load.

parameters as the fuzzy sets or universe of discourse. These are
further classified as low, medium and high and they serve as a
subset of the fuzzy sets. A number of membership functions used in
fuzzy logic includes the triangular, trapezoidal and bell shapes [15].
In this research a triangular membership function is arbitrarily
chosen. To assign the membership function to the various subsets of
fuzzy sets, it is observed that the humidity can be best classified in
the ranges (15%—32%), (27%—43%), and (41%—50%) as LH, MH and
HH, respectively. The temperature is classified as (14 °C—24 °C),
(20 °C—38 °C) as LT and HT, and the load is classified as (0.5
MW-—1.5 MW), (1.0 MW—2.0 MW), and (1.7 MW—2.4 MW) as LL, ML
and HL. These are fully implemented as shown in Figs. 5—7,
respectively.

2.5. Fuzzy rule base

This aspect is the most important of the whole work. The fore-
cast output will depend on these rules. The antecedents (input
variables) are fed to the fuzzy inference engine and when the rules
are applied, the inference system acts on the antecedent and pro-
duces the consequences (output). If there are two or more variables
to be used as antecedents, fuzzy operators, for example AND, OR
and NOT, may be used to combine the variables to form fuzzy
sentences. Some of the rules formulated are as follows.

IF (humidity is LH) AND (Temperature is LT) THEN (Load is LL)
IF (humidity is MH) AND (Temperature is LT) THEN (Load is HL)
IF (Humidity is MH) AND (Temperature is HT) THEN (Load is ML)
IF (Humidity is HH) AND (Temperature is HT) THEN (Load is ML).
IF (Humidity is HH) OR (Temperature is HT) THEN (Load is HL)

2.6. Building fuzzy logic models and simulations

Fig. 8 shows a fuzzy logic model. This is developed in the
simulink environment in MATLAB (R2014a product of MathWorks
Natick, U.S.). As can be seen, two input data are multiplexed and
sent into the fuzzy logic controller with the rule viewer and the
output is captured on a display.

2.7. Error analysis

The absolute percentage error (APE) and mean absolute per-
centage error are computed using Equations (1) and (2)

Display
Humidity |§|

Scope

255 Fuzzy Logic
Controller

Temperature with Ruleviewer

Fig. 8. Simulation of long-term load forecasting using fuzzy logic in Simulink.
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APE — actual(i) — forecast(i) <100 (1)
actual
1 |actual(i) — forecast(i) .
MAPE = l; actual(l) x 100% (2)

3. Results and discussion

The output of the fuzzy inference system is an aggregate of all
the membership functions acted upon by the inference engine. To
obtain its crisp equivalent, defuzzification is performed [9,19]. The
centroid of area method produces a numerical forecast that is
sensitive to all the rules applied. Fig. 8 shows the forecasted output
for a sample data set. It is observed after the simulation that for a

Temperature = 25.5
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Table 1

Humidity, temperature, actual and forecasted load for 2013.
H (%) T(°C) Actual load (MW) Forecasted load (MW) APE (%)
23 19.50 0.90 0.83 7.89
25 19.00 0.80 0.84 4.50
27 21.00 0.85 0.85 0.45
27 23.50 1.75 1.32 14.84
29 23.50 1.75 1.76 0.57
37 29.50 1.85 1.80 2.70
42 26.50 1.25 135 8.00
43 24.50 0.80 1.06 17.77
43 24.50 0.90 1.06 6.00
44 25.50 1.15 1.06 7.83
27 21.00 0.70 0.85 5.75
16 15.00 0.65 0.85 12.80

MAPE (%) 7.43

Table 2

Humidity, temperature, actual and forecasted load for 2014.
H (%) T(°C) Actual load (MW) Forecasted load (MW) APE (%)
18 18.50 1.05 1.25 19.00
24 20.00 1.15 1.25 8.00
26 20.50 1.15 1.25 8.00
26 22.00 1.40 1.25 10.00
30 23.50 145 1.53 5.00
37 31.00 2.10 2.25 7.00
45 27.50 2.00 1.70 15.00
43 25.00 1.90 1.70 11.00
43 24.50 1.60 1.70 6.00
43 25.00 1.70 1.70 0.00
26 22.00 1.40 1.25 10.00
16 16.00 1.10 1.25 14.00

MAPE (%) 8.55

Actual & forecasted load (MW)

Humidiy, temparature & load

08

25

Table 3
Average humidity and temperature, and actual and forecasted load.
H (%) T(°C) Actual load (MW) Forecasted load (MW) APE (%)
24 19.00 0.98 1.04 6.12
26 19.50 0.98 1.04 6.12
27 20.75 1.00 1.05 5.00
29 22.75 1.58 1.29 18.34
33 23.50 1.60 1.65 3.12
42 30.25 1.98 2.03 2.53
41 27.00 1.63 1.53 6.14
43 24.75 135 1.38 2.22
43 24.50 1.25 1.38 10.40
35 2525 143 1.38 3.50
22 21.50 1.05 1.05 0.00
16 15.50 0.88 1.05 19.32
MAPE (%) 6.90
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Fig. 10. Month vs 2013 actual and forecasted load.
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Fig. 11. Month vs. actual and forecasted load for 2014.
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Fig. 12. Month vs. average actual and forecasted load.
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humidity of 33% and temperature of 25.5 °C, the forecasted load is
1.65 MW.

Fig. 9 shows the rule viewer which indicates the forecasted load
for a sample data set. It is used to view the output of the model as
that of Fig. 8.

Tables 1 and 2 show the actual and forecasted load for the years
2013 and 2014, while Table 3 shows the average load and the ex-
pected load for a year ahead, and their respective APE is computed
using Equation (1) for the sample data. MAPE is computed using
Equation (2).

Figs. 10 and 11 shows the graphical representation of the actual
and forecasted load in the year 2013 and 2014, respectively, while
Fig. 12 shows their average humidity and temperature with actual
and forecasted load at the bottom. As it is observe from Fig. 12 that
the load increases with increase in temperature. This is clearly
shown in the month of June when the maximum load corresponds
to the maximum temperature. However, an increase in humidity
has less effect on the load. It is also worth mentioning that weather
parameters have an effect on the load.

4. Conclusions

In this paper, a fuzzy logic model is proposed and presented as a
basis for long-term forecasting. Long-term forecasting plays a very
important role in power planning and operation. Reliable fore-
casting techniques are essential in long-term load forecasting,
which this work has demonstrated. This paper only forecasted the
load for a year ahead. However, with much historical data, fore-
casting for more years can be done with intensive study and eval-
uation of the data. The fuzzy logic model developed for long-term
load forecasting presented a very good forecast. A reliably fore-
casted result is obtained and MAPE is evaluated as 6.9%, which
shows the variation of the forecast from the actual load. This dif-
ference may be as a result of an inconsistency in the power supply
during certain months of the year. However, the accuracy of the
prediction is calculated as 93.1%. Thus, the model indicates that it is
efficient and capable of forecasting the load with precision.
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