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Abstract

Necessary and su�cient conditions are given for the product of two positive semi-

de®nite (psd) matrices to be EP. As a consequence, it is shown that the product of two

psd matrices is psd if and only if the product is normal. Ó 1999 Elsevier Science Inc. All

rights reserved.

1. Introduction

In [2], Hartwig and Spindelb�ock have raised the following question: If A and
B are two positive semide®nite (psd) matrices satisfying the condition
�AAy; BBy� � 0 when is AB EP? In this note we give a set of conditions, each of
which is necessary and su�cient for a product of two psd matrices to be psd.
Further, it is shown that for the given psd matrices A and B, AB is psd if and
only if AB is normal. Also, it is proved that AB is psd if and only if AB is bi-
dagger and star-dagger.

All matrices considered in this paper are square matrices with complex
entries. We begin with a few basic de®nitions and notations. For any matrix A,
its range space, null space, row space and its rank are denoted by R�A�, N�A�,
RS�A� and r�A�, respectively. A is said to be psd if there exists a matrix P such
that PP � � A. If A and its conjugate transpose A� have the same range space,
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then A is called EP. A matrix X is called an f1; 2g inverse of A if AXA � A and
XAX � X . The unique commuting f1; 2g inverse of A, if it exists, is called the
group inverse of A and is denoted by A#. The Moore±Penrose inverse (denoted
as Ay) is the unique solution to the equations AXA � A, XAX � X , �AX �� � AX
and �XA�� � XA. We shall assume familiarity with the basic theory of these
inverses as given in [4]. For any two matrices A and B, �A;B� � ABÿ BA is the
commutator of A and B. A matrix A is called bi-EP if �AAy;AyA� � 0, bi-dagger
if �A2�y � �Ay�2 and star-dagger if �Ay;A�� � 0. The parallel sum of two psd
matrices A and B is de®ned to be A�A� B�yB and is denoted by A : B. The
ordering A P B means that Aÿ B is psd.

The following characterization of the reverse order law (see [4], p. 182; [6], p.
68) is used in proving our main theorem.

Theorem 1. For any two square matrices P and Q the following are equivalent:
(1) P �PQQ� is EP.
(2) R�P �PQ� � R�Q� and R�QQ�P �� � R�P ��.
(3) �PQ�y � QyP y.
(4) P �PQQy and P yPQQ� are Hermitian.

2. Main results

We now establish equivalent conditions for the product of two psd matrices
to be EP in the following theorem.

Theorem 2. Let A and B be two psd matrices. Then the following are equivalent:
(1) AB is EP
(2) R�AB� � R�B� and RS�AB� � RS�A�.
(3) �A1=2B1=2�y � B1=2yA1=2y :
(4) ABBy and BAAy are Hermitian.
(5) (i) �AAy;BBy� � 0, (ii) �A;AAyBBy� � 0 and (iii) �B;BByAAy� � 0.
(6) �AAy;BBy� � 0 and �AB;ByAy� � 0.
(7) �AB�# � ByAy.
(8) AB��A : B��A : B�y� � AB and ��A : B��A : B�y�AB � AB:
(9) 2AB�AAy : BBy� � AB and 2�AAy : BBy�AB � AB.
(10) A P AAyBAAy and B P BByABBy.
(11) AB is bi-dagger
(12) AB is bi-EP.
(13) �AB�y � ByAy.
(14) A2BBy and B2AAy are Hermitian.

Proof. Since A and B are psd matrices, we have by Corollary 2.3 of [3], that
r�AB� � r��AB�2�. Hence �AB�# exists (see [4], p. 162). Further, if A is EP then
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Ay is a polynomial in A (see [4], p. 173) and hence AX � XA implies that
AyX � XAy; in particular, AAy � AyA. The equivalence of (1)±(4) follow from
Theorem 1 on replacing P by A1=2 P 0 and Q by B1=2 P 0.
�4� ) �5�. If (4) holds, then ABBy � BByA and BAAy � AAyB. Moreover,

since A and B are Hermitian, they are EP and hence AyBBy � BByAy and
ByAAy � AAyBy. Now AAyBBy � BAAyBy � BByAAy ) �AAy;BBy� � 0. Further-
more, ABBy � BByA and �AAy;BBy� � 0 imply that AAAyBBy � ABBy � BByA
� BByAAyA � AAyBByA. Hence �A;AAyBBy� � 0. Similarly, �B;AAyBBy� � 0
holds.
�5� ) �4�. If (5) holds, then �AAy;BBy� � 0 and �A;AAyBBy� � 0 implying

ABBy � AAyABBy � AyABByA � BByAAyA � BByA. This shows that ABBy is
Hermitian. Similarly, �AAy;BBy� � 0 and �B;BByAAy� � 0 imply that BAAy is
Hermitian.

Next, we prove the equivalence of (4), (6) and (7).
�4� ) �6�. If (4) holds, then �AAy;BBy� � 0. (See the derivation of �4� ) �5�.)

Now ABByAy � BByAAy � ByBAAy � ByAyAB and so �AB;ByAy� � 0.
�6� ) �7�. If (6) holds, then �AAy;BBy� � 0 shows that ByAy is an f1; 2g in-

verse of AB (see [2], p. 245). It is also a commuting f1; 2g inverse of AB and so
�AB�# � ByAy.
�7� ) �4�. Since �AB�# exists, we have R�AB� � R��AB�#� and N�AB� �

N��AB�#� (see [4], p. 162). If (7) holds, then R�AB� � R�ByAy� � R�By� � R�B�
and hence BByAB � AB (see [4], p. 55). Post-multiplication by By yields
BByABBy � ABBy, showing that ABBy is Hermitian. Similarly, one can show
that BAAy is Hermitian.
�2� () �8�. If (2) holds, then R�AB� � R�B� and RS�AB� � RS�A� � R�A�, it

is also known that R�AB� � R�A� and RS�AB� � RS�B� � R�B�. Thus,
R�AB�;RS�AB� � R�A� \ R�B� � R�A : B�. This implies that ��A : B��A : B�y�
AB � AB and AB��A : B��A : B�y� � AB. Each of the above steps is clearly re-
versible, and hence �8� () �2�.
�2� () �9�. Since AAy and BBy are orthogonal projections along R�A� and

R�B�, respectively, it follows that 2�AAy : BBy� is the orthogonal projection
along R�AAy� \ R�BBy� (see [6], p. 189) and so R�2�AAy : BBy�� � R�A� \ R�B�.
Hence the equivalence of (2) and (9) holds.
�4� () �10�. Since A and B are psd and AAy;BBy are idempotent Hermitian,

by Corollary 2 of [1], we have A P BByABBy if and only if ABBy � BByA and
B P AAyBAAy if and only if BAAy � AAyB. Hence we have the equivalence of (4)
and (10).

By Corollary 3 of [2] and by the existence of �AB�# it follows that AB is EP if
and only if AB is bi-dagger; the latter holds if and only if AB is bi-EP. Hence
we have the equivalence of (1), (11) and (12).

From the fact that A and B are psd, it is clear that (4) and (14)
are equivalent. Also, the equivalence of (13) and (14) follows from
Theorem 1. �
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As an application of Theorem 2, we have the following:

Theorem 3. Let A and B be two psd matrices. Then the following are equivalent:
(1) AB is normal.
(2) AB P 0.
(3) (i) �AAy;BBy� � 0, (ii) �AB;ByAy� � 0 and (iii)�ByAy;BA� � 0.
(4) AB is bi-dagger and star-dagger.

Proof. �1� () �2�. If (1) holds, then AB is normal. Since A and B are psd, the
eigen values of AB are non-negative. Hence AB is psd. The implication of (1)
from (2) is obvious.
�1� ) �3�. If AB is normal, then AB�AB�y � �AB�yAB and

�AB���AB�y � �AB�y�AB�� ) BA�AB�y � �AB�yBA.
Now the equivalence of (1) and (13) of Theorem 2 implies that BAByAy

� ByAyBA and therefore (3) (iii) holds. Proving that (3) (ii) holds is similar and
(3) (i) is obvious.
�3� ) �1�. From the equivalence of (6) and (1) in Theorem 2, (3) (i) and (3)

(ii) imply that AB is EP. Further, (3) (iii) implies that AB is star-dagger; hence
by Theorem 3 of [5] AB is normal.

The equivalence of (1) and (4) is obvious. �
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