

ELSEVIER

Linear Algebra and its Applications 295 (1999) 3-6

LINEAR ALGEBRA AND ITS APPLICATIONS

www.elsevier.com/locate/laa

On a product of positive semidefinite matrices

A.R. Meenakshi^a, C. Rajian^{b,*,1}

^a Department of Mathematics, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India ^b Department of Mathematics, S.T. Hindu College, Nagercoil 629 002, Tamil Nadu, India

Received 22 February 1994; accepted 16 December 1998

Submitted by R.E. Hartwig

Abstract

Necessary and sufficient conditions are given for the product of two positive semidefinite (psd) matrices to be EP. As a consequence, it is shown that the product of two psd matrices is psd if and only if the product is normal. © 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

In [2], Hartwig and Spindelböck have raised the following question: If A and B are two positive semidefinite (psd) matrices satisfying the condition $[AA^{\dagger}, BB^{\dagger}] = 0$ when is AB EP? In this note we give a set of conditions, each of which is necessary and sufficient for a product of two psd matrices to be psd. Further, it is shown that for the given psd matrices A and B, AB is psd if and only if AB is normal. Also, it is proved that AB is psd if and only if AB is bidagger and star-dagger.

All matrices considered in this paper are square matrices with complex entries. We begin with a few basic definitions and notations. For any matrix A, its range space, null space, row space and its rank are denoted by R(A), N(A), RS(A) and r(A), respectively. A is said to be psd if there exists a matrix P such that $PP^* = A$. If A and its conjugate transpose A^* have the same range space,

^{*}Corresponding author.

¹ Supported by University Grants Commission, New Delhi, India.

^{0024-3795/99/}\$ – see front matter © 1999 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3 7 9 5 (9 9) 0 0 0 1 4 - 2

then A is called EP. A matrix X is called an $\{1,2\}$ *inverse* of A if AXA = A and XAX = X. The unique commuting $\{1,2\}$ inverse of A, if it exists, is called the *group inverse* of A and is denoted by $A^{\#}$. The Moore–Penrose inverse (denoted as A^{\dagger}) is the unique solution to the equations AXA = A, XAX = X, $(AX)^* = AX$ and $(XA)^* = XA$. We shall assume familiarity with the basic theory of these inverses as given in [4]. For any two matrices A and B, [A, B] = AB - BA is the *commutator* of A and B. A matrix A is called bi-EP if $[AA^{\dagger}, A^{\dagger}A] = 0$, bi-dagger if $(A^2)^{\dagger} = (A^{\dagger})^2$ and star-dagger if $[A^{\dagger}, A^*] = 0$. The *parallel sum* of two psd matrices A and B is defined to be $A(A + B)^{\dagger}B$ and is denoted by A : B. The *ordering* $A \ge B$ means that A - B is psd.

The following characterization of the reverse order law (see [4], p. 182; [6], p. 68) is used in proving our main theorem.

Theorem 1. For any two square matrices P and Q the following are equivalent: (1) P^*PQQ^* is EP.

- (2) $R(P^*PQ) \subseteq R(Q)$ and $R(QQ^*P^*) \subseteq R(P^*)$.
- (3) $(PQ)^{\dagger} = Q^{\dagger}P^{\dagger}$.
- (4) P^*PQQ^{\dagger} and $P^{\dagger}PQQ^*$ are Hermitian.

2. Main results

We now establish equivalent conditions for the product of two psd matrices to be EP in the following theorem.

Theorem 2. Let A and B be two psd matrices. Then the following are equivalent: (1) AB is EP

(2) $R(AB) \subseteq R(B)$ and $RS(AB) \subseteq RS(A)$. (3) $(A^{1/2}B^{1/2})^{\dagger} = B^{1/2^{\dagger}}A^{1/2^{\dagger}}$. (4) ABB^{\dagger} and BAA^{\dagger} are Hermitian. (5) (i) $[AA^{\dagger}, BB^{\dagger}] = 0$, (ii) $[A, AA^{\dagger}BB^{\dagger}] = 0$ and (iii) $[B, BB^{\dagger}AA^{\dagger}] = 0$. (6) $[AA^{\dagger}, BB^{\dagger}] = 0$ and $[AB, B^{\dagger}A^{\dagger}] = 0$. (7) $(AB)^{\#} = B^{\dagger}A^{\dagger}$. (8) $AB[(A:B)(A:B)^{\dagger}] = AB$ and $[(A:B)(A:B)^{\dagger}]AB = AB$. (9) $2AB(AA^{\dagger}:BB^{\dagger}) = AB$ and $2(AA^{\dagger}:BB^{\dagger})AB = AB$. (10) $A \ge AA^{\dagger}BAA^{\dagger}$ and $B \ge BB^{\dagger}ABB^{\dagger}$. (11) AB is bi-dagger (12) AB is bi-EP. (13) $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$. (14) $A^{2}BB^{\dagger}$ and $B^{2}AA^{\dagger}$ are Hermitian.

Proof. Since A and B are psd matrices, we have by Corollary 2.3 of [3], that $r(AB) = r((AB)^2)$. Hence $(AB)^{\#}$ exists (see [4], p. 162). Further, if A is EP then

 A^{\dagger} is a polynomial in A (see [4], p. 173) and hence AX = XA implies that $A^{\dagger}X = XA^{\dagger}$; in particular, $AA^{\dagger} = A^{\dagger}A$. The equivalence of (1)–(4) follow from Theorem 1 on replacing P by $A^{1/2} \ge 0$ and Q by $B^{1/2} \ge 0$.

(4) \Rightarrow (5). If (4) holds, then $ABB^{\dagger} = BB^{\dagger}A$ and $BAA^{\dagger} = AA^{\dagger}B$. Moreover, since A and B are Hermitian, they are EP and hence $A^{\dagger}BB^{\dagger} = BB^{\dagger}A^{\dagger}$ and $B^{\dagger}AA^{\dagger} = AA^{\dagger}B^{\dagger}$. Now $AA^{\dagger}BB^{\dagger} = BAA^{\dagger}B^{\dagger} = BB^{\dagger}AA^{\dagger} \Rightarrow [AA^{\dagger}, BB^{\dagger}] = 0$. Furthermore, $ABB^{\dagger} = BB^{\dagger}A$ and $[AA^{\dagger}, BB^{\dagger}] = 0$ imply that $AAA^{\dagger}BB^{\dagger} = ABB^{\dagger}A$ $= BB^{\dagger}AA^{\dagger}A = AA^{\dagger}BB^{\dagger}A$. Hence $[A, AA^{\dagger}BB^{\dagger}] = 0$. Similarly, $[B, AA^{\dagger}BB^{\dagger}] = 0$ holds.

 $(5) \Rightarrow (4)$. If (5) holds, then $[AA^{\dagger}, BB^{\dagger}] = 0$ and $[A, AA^{\dagger}BB^{\dagger}] = 0$ implying $ABB^{\dagger} = AA^{\dagger}ABB^{\dagger} = A^{\dagger}ABB^{\dagger}A = BB^{\dagger}AA^{\dagger}A = BB^{\dagger}A$. This shows that ABB^{\dagger} is Hermitian. Similarly, $[AA^{\dagger}, BB^{\dagger}] = 0$ and $[B, BB^{\dagger}AA^{\dagger}] = 0$ imply that BAA^{\dagger} is Hermitian.

Next, we prove the equivalence of (4), (6) and (7).

(4) \Rightarrow (6). If (4) holds, then $[AA^{\dagger}, BB^{\dagger}] = 0$. (See the derivation of (4) \Rightarrow (5).) Now $ABB^{\dagger}A^{\dagger} = BB^{\dagger}AA^{\dagger} = B^{\dagger}BAA^{\dagger} = B^{\dagger}A^{\dagger}AB$ and so $[AB, B^{\dagger}A^{\dagger}] = 0$.

(6) \Rightarrow (7). If (6) holds, then $[AA^{\dagger}, BB^{\dagger}] = 0$ shows that $B^{\dagger}A^{\dagger}$ is an $\{1, 2\}$ inverse of *AB* (see [2], p. 245). It is also a commuting $\{1, 2\}$ inverse of *AB* and so $(AB)^{\#} = B^{\dagger}A^{\dagger}$.

 $(7) \Rightarrow (4)$. Since $(AB)^{\#}$ exists, we have $R(AB) = R((AB)^{\#})$ and $N(AB) = N((AB)^{\#})$ (see [4], p. 162). If (7) holds, then $R(AB) = R(B^{\dagger}A^{\dagger}) \subseteq R(B^{\dagger}) = R(B)$ and hence $BB^{\dagger}AB = AB$ (see [4], p. 55). Post-multiplication by B^{\dagger} yields $BB^{\dagger}ABB^{\dagger} = ABB^{\dagger}$, showing that ABB^{\dagger} is Hermitian. Similarly, one can show that BAA^{\dagger} is Hermitian.

(2) \iff (8). If (2) holds, then $R(AB) \subseteq R(B)$ and $RS(AB) \subseteq RS(A) = R(A)$, it is also known that $R(AB) \subseteq R(A)$ and $RS(AB) \subseteq RS(B) = R(B)$. Thus, $R(AB), RS(AB) \subseteq R(A) \cap R(B) = R(A:B)$. This implies that $[(A:B)(A:B)^{\dagger}] = AB$ and $AB[(A:B)(A:B)^{\dagger}] = AB$. Each of the above steps is clearly reversible, and hence (8) \iff (2).

(2) \iff (9). Since AA^{\dagger} and BB^{\dagger} are orthogonal projections along R(A) and R(B), respectively, it follows that $2(AA^{\dagger}:BB^{\dagger})$ is the orthogonal projection along $R(AA^{\dagger}) \cap R(BB^{\dagger})$ (see [6], p. 189) and so $R[2(AA^{\dagger}:BB^{\dagger})] = R(A) \cap R(B)$. Hence the equivalence of (2) and (9) holds.

(4) \iff (10). Since *A* and *B* are psd and $AA^{\dagger}, BB^{\dagger}$ are idempotent Hermitian, by Corollary 2 of [1], we have $A \ge BB^{\dagger}ABB^{\dagger}$ if and only if $ABB^{\dagger} = BB^{\dagger}A$ and $B \ge AA^{\dagger}BAA^{\dagger}$ if and only if $BAA^{\dagger} = AA^{\dagger}B$. Hence we have the equivalence of (4) and (10).

By Corollary 3 of [2] and by the existence of $(AB)^{\#}$ it follows that AB is EP if and only if AB is bi-dagger; the latter holds if and only if AB is bi-EP. Hence we have the equivalence of (1), (11) and (12).

From the fact that A and B are psd, it is clear that (4) and (14) are equivalent. Also, the equivalence of (13) and (14) follows from Theorem 1. \Box

As an application of Theorem 2, we have the following:

Theorem 3. Let A and B be two psd matrices. Then the following are equivalent: (1) AB is normal.

- (2) $AB \ge 0$.
- (3) (i) $[AA^{\dagger}, BB^{\dagger}] = 0$, (ii) $[AB, B^{\dagger}A^{\dagger}] = 0$ and (iii) $[B^{\dagger}A^{\dagger}, BA] = 0$.
- (4) AB is bi-dagger and star-dagger.

Proof. (1) \iff (2). If (1) holds, then *AB* is normal. Since *A* and *B* are psd, the eigen values of *AB* are non-negative. Hence *AB* is psd. The implication of (1) from (2) is obvious.

(1) \Rightarrow (3). If *AB* is normal, then $AB(AB)^{\dagger} = (AB)^{\dagger}AB$ and $(AB)^{*}(AB)^{\dagger} = (AB)^{\dagger}(AB)^{*} \Rightarrow BA(AB)^{\dagger} = (AB)^{\dagger}BA$.

Now the equivalence of (1) and (13) of Theorem 2 implies that $BAB^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger}BA$ and therefore (3) (iii) holds. Proving that (3) (ii) holds is similar and (3) (i) is obvious.

 $(3) \Rightarrow (1)$. From the equivalence of (6) and (1) in Theorem 2, (3) (i) and (3) (ii) imply that *AB* is EP. Further, (3) (iii) implies that *AB* is star-dagger; hence by Theorem 3 of [5] *AB* is normal.

The equivalence of (1) and (4) is obvious. \Box

Acknowledgement

The authors thank the referees for giving several helpful comments and suggestions to improve the presentation of paper.

References

- [1] J.K. Baksalary, R. Kala, K. Klaczynski, The matrix inequality $M \ge B^*MB$, Linear Algebra Appl. 54 (1983) 77–86.
- [2] R.E. Hartwig, K. Spindelböck, Matrices A for which A* and A[†] commute, Linear and Multilinear Algebra 14 (1984) 241–256.
- [3] Y. Hong, R.A. Horn, The Jordan canonical forms of product of a Hermitian and a positive semidefinite matrix, Linear Algebra Appl. 147 (1991) 373–386.
- [4] A. Ben Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
- [5] C.D. Meyer, Some remarks on EPr matrices and generalized inverses, Linear Algebra Appl. 3 (1970) 275–278.
- [6] C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971.