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Abstract

Necessary and sufficient conditions are given for the product of two positive semi-
definite (psd) matrices to be EP. As a consequence, it is shown that the product of two
psd matrices is psd if and only if the product is normal. © 1999 Elsevier Science Inc. All
rights reserved.

1. Introduction

In [2], Hartwig and Spindelbock have raised the following question: If 4 and
B are two positive semidefinite (psd) matrices satisfying the condition
[44T, BB'] = 0 when is 4B EP? In this note we give a set of conditions, each of
which is necessary and sufficient for a product of two psd matrices to be psd.
Further, it is shown that for the given psd matrices 4 and B, AB is psd if and
only if AB is normal. Also, it is proved that AB is psd if and only if 4B is bi-
dagger and star-dagger.

All matrices considered in this paper are square matrices with complex
entries. We begin with a few basic definitions and notations. For any matrix A,
its range space, null space, row space and its rank are denoted by R(4), N(4),
RS(A) and r(A), respectively. A is said to be psd if there exists a matrix P such
that PP* = 4. If 4 and its conjugate transpose 4* have the same range space,
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then A is called EP. A matrix X is called an {1, 2} inverse of A if AX4A = 4 and
XAX = X. The unique commuting {1,2} inverse of 4, if it exists, is called the
group inverse of A and is denoted by 4%. The Moore—Penrose inverse (denoted
as A") is the unique solution to the equations AX4A = 4, XAX = X, (4X)" = AX
and (XA)" = XA. We shall assume familiarity with the basic theory of these
inverses as given in [4]. For any two matrices 4 and B, [4,B] = AB — BA is the
commutator of A and B. A matrix 4 is called bi-EP if [447, A'A] = 0, bi-dagger
if (42)" = (4")* and star-dagger if [4T,4"] = 0. The parallel sum of two psd
matrices 4 and B is defined to be 4(4 + B)'B and is denoted by 4 : B. The
ordering A = B means that 4 — B is psd.

The following characterization of the reverse order law (see [4], p. 182; [6], p.
68) is used in proving our main theorem.

Theorem 1. For any two square matrices P and Q the following are equivalent:
(1) P*PQQ* is EP.
(2) R(P'PQ) C R(Q) and R(QQ'P*) C R(P").
3) (PO)' = O'P.
(4) P*POQ" and P'PQQ* are Hermitian.

2. Main results

We now establish equivalent conditions for the product of two psd matrices
to be EP in the following theorem.

Theorem 2. Let A and B be two psd matrices. Then the following are equivalent:
(1) AB is EP
(2) R(4B) C R(B) and RS(AB) C RS(4).
3) (AI/ZBI/2)T — g2t 412t
(4) ABB' and BAA' are Hermitian.
(5) (i) [44",BBY] = 0, (ii) [4,AA"BB'] = 0 and (iii) [B, BB'AA'] = 0.
(6) [44f, BBT] = 0 and [AB,B'A"] = 0.
(7) (4B)* = B4,
(8) AB[(A : B)(A : B)'] = AB and [(A : B)(4 : B)'|AB = 4B.
(9) 24B(AA" : BB') = AB and 2(AA' : BB)AB = AB.
(10) A = AATBAA' and B > BB'ABB'.
(11) AB is bi-dagger
(12) AB is bi-EP.
(13) (4B)" = B4,
(14) A*BB' and B*4A" are Hermitian.

Proof. Since A and B are psd matrices, we have by Corollary 2.3 of [3], that
r(4B) = r((AB)*). Hence (4B)" exists (see [4], p. 162). Further, if 4 is EP then
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A" is a polynomial in 4 (see [4], p. 173) and hence AX = X4 implies that
A'X = XAT; in particular, 44" = A4'4. The equivalence of (1)~(4) follow from
Theorem 1 on replacing P by A'/? > 0 and Q by B'/? > 0.

(4) = (5). If (4) holds, then ABB" = BB'4 and BAA' = AA'B. Moreover,
since 4 and B are Hermitian, they are EP and hence 4'BB' = BB'A! and
B'AA" = AA'B'. Now AA'BB' = BAA'B" = BB'AA" = [4A4', BB'] = 0. Further-
more, ABB' = BB'4 and [44',BB'] = 0 imply that 444'BB" = ABB' = BB'A4
= BB'AA'A = AA'BB'A. Hence [4,4A'BB'|=0. Similarly, [B,AA'BB!] =0
holds.

(5) = (4). If (5) holds, then [44f,BB'] =0 and [4,44'BB'] =0 implying
ABB'" = AA'ABB'" = ATABB'A = BB'AA'A = BB'A. This shows that ABB' is
Hermitian. Similarly, [447, BB| =0 and [B,BB'AA'] =0 imply that BAA' is
Hermitian.

Next, we prove the equivalence of (4), (6) and (7).

(4) = (6). If (4) holds, then [44", BB'] = 0. (See the derivation of (4) = (5).)
Now ABB'A" = BB'AA" = B'BAA" = B'A'AB and so [4B,BiA'] = 0.

(6) = (7). If (6) holds, then [44', BB'] = 0 shows that B'4' is an {1,2} in-
verse of AB (see [2], p. 245). It is also a commuting {1, 2} inverse of 4B and so
(4B)" = BiA'.

(7) = (4). Since (4B)" exists, we have R(4B) = R((4B)") and N(4B) =
N((4B)") (see [4], p. 162). If (7) holds, then R(4B) = R(B'A") C R(B') = R(B)
and hence BB'AB = AB (see [4], p. 55). Post-multiplication by B! yields
BB'ABB' = ABB', showing that 4BB' is Hermitian. Similarly, one can show
that BAA' is Hermitian.

(2) <= (8). If (2) holds, then R(AB) C R(B) and RS(AB) C RS(4) = R(A), it
is also known that R(4B) C R(A) and RS(4B) C RS(B) = R(B). Thus,
R(AB),RS(AB) C R(A) NR(B) = R(4 : B). This implies that [(4:B)(4: B)]
AB = AB and AB[(4 : B)(4 : B)'] = AB. Each of the above steps is clearly re-
versible, and hence (8) < (2).

(2) <= (9). Since 44" and BB' are orthogonal projections along R(4) and
R(B), respectively, it follows that 2(44' : BB) is the orthogonal projection
along R(4A") N R(BB') (see [6], p. 189) and so R[2(4A" : BB")] = R(4) N R(B).
Hence the equivalence of (2) and (9) holds.

(4) <= (10). Since 4 and B are psd and 44", BB are idempotent Hermitian,
by Corollary 2 of [1], we have 4 > BB'4ABB' if and only if ABB' = BB'4 and
B > AATBAAT if and only if BAAT = 44TB. Hence we have the equivalence of (4)
and (10).

By Corollary 3 of [2] and by the existence of (AB)# it follows that AB is EP if
and only if AB is bi-dagger; the latter holds if and only if 4B is bi-EP. Hence
we have the equivalence of (1), (11) and (12).

From the fact that 4 and B are psd, it is clear that (4) and (14)
are equivalent. Also, the equivalence of (13) and (14) follows from
Theorem 1. O
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As an application of Theorem 2, we have the following:

Theorem 3. Let A and B be two psd matrices. Then the following are equivalent:
(1) AB is normal.
(2) 4B = 0.
(3) (i) [44",BB'] = 0, (ii) [AB,B'A"] = 0 and (iii)[B'A", BA] = 0.
(4) AB is bi-dagger and star-dagger.

Proof. (1) < (2). If (1) holds, then AB is normal. Since 4 and B are psd, the
eigen values of 4B are non-negative. Hence AB is psd. The implication of (1)
from (2) is obvious.

(1)=(3). If AB is mnormal, then AB(AB)' = (4B)'4B  and
(4B)"(4B)" = (4B)'(4B)" = BA(AB)' = (4B)'BA.

Now the equivalence of (1) and (13) of Theorem 2 implies that BAB'AT
= B'4'BA and therefore (3) (iii) holds. Proving that (3) (ii) holds is similar and
(3) (1) is obvious.

(3) = (1). From the equivalence of (6) and (1) in Theorem 2, (3) (i) and (3)
(i1) imply that 4B is EP. Further, (3) (iii) implies that 4B is star-dagger; hence
by Theorem 3 of [5] AB is normal.

The equivalence of (1) and (4) is obvious. [
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