
Computers and Mathematics with Applications 60 (2010) 3088–3097

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Symmetry analysis of an integrable Ito coupled system
Hassan A. Zedan 1

Department of Mathematics, Faculty of Science, Kafr El-Sheikh University, Egypt

a r t i c l e i n f o

Article history:
Received 21 February 2010
Accepted 3 October 2010

Keywords:
Coupled evolution system
Truncated Painleve expansion
Symbolic computation
Weiss–Kruskal simplification

a b s t r a c t

In this paper, we study the invariance analysis, integrability properties and P-property of
the Ito coupled nonlinear partial differential equations. We explore several new solutions
for the Ito system through the Lie symmetry analysis.Moreover, thisworkhas beendevoted
to study the integrability aspects of the Ito system throughhigher order symmetries.Weare
also investigating the existence of higher order symmetries for the Ito system. Interestingly
our investigations reveal a rich variety of particular solutions,whichhavenot been reported
in the literature, for this model.
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1. Introduction

For the past two decades, the Lie group method has been applied to solve a wide range of problems and to explore many
physically interesting solutions of nonlinear phenomena [1–4]. In recent years several extensions and modifications of the
classical Lie algorithm have been proposed in order to arrive at new solutions of partial differential equations (PDEs) [5].

Lie symmetry analysis is one of themost powerfulmethods to obtain particular solutions of differential equations [6]. It is
based on the study of their invariancewith respect to one-parameter Lie group of point transformationswhose infinitesimal
generators are represented as vector fields. Once the Lie groups that leave the differential equations invariant are known,
we can construct an exact solution called a group invariant solution which is invariant under the transformation.

In this paper, we investigate the invariance analysis and the Painleve analysis to the following Nonlinear Ito coupled
system

ut = vx,

vt = −2(vxxx +3uvx +3vux) − 12wwx,

wt = wxxx +3uwx . (1.1)

Let us consider a one-parameter Lie group of infinitesimal transformations of the form:

U = u + εη1(x, t, u, v, w),

V = v + εη2(x, t, u, v, w),

W = w + εη3(x, t, u, v, w),

X = x + εζ1(x, t, u, v, w),

T = t + εζ2(x, t, u, v, w), ε ≪ 1. (1.2)

The functions η1, η2, η3, ζ1 and ζ2 are the infinitesimal of transformations for the variables u, v, w, x and t respectively. In
order to find the infinitesimal we need to extend the group to calculate how derivative terms transform. The transformation
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(1.2), together with the transformations for the first, second, . . . , derivatives, are called the first, second, . . . , extensions.
We denote the infinitesimal for ut , vt , wt , ux , vx , wx , uy , vy , wy , utt by η

(1)
1t , η

(1)
2t , η

(1)
3t , η

(1)
1x , η

(1)
2x , η

(1)
3x , η

(1)
1y , η

(1)
2y , η

(1)
2y , η

(2)
1tt ,

respectively. Using these various extensions, the infinitesimal criterion for the invariance of (1.1) under group (1.2) admits
an infinitesimal generator of the form:

η
(1)
1t = η

(1)
2x ,

η
(1)
2t = −2(η(3)

2xxx + 3η1vx + 3η(1)
2x u + 3η2ux + 3η(1)

1x v) − 12η3wx − 12η(1)
3x w,

η
(1)
3t = η

(3)
3xxx + 3η1wx + 3η(1)

3x u (1.3)

where η
(1)
1t , η

(1)
2t , η

(1)
3t , η

(1)
1x , η

(1)
2x , η

(1)
3x , η

(1)
1y , η

(1)
2y , η

(1)
2y , η

(2)
1tt are extending infinitesimal of transformations given by [1–4]. The

invariance of Eq. (1.1) under the infinitesimal transformations (1.2) leads to [9]:

η1 = −2au, η2 = −4av, η3 = −3aw, ζ1 = ax + b, ζ2 = 3at + c (1.4)

where a, b and c are arbitrary constants.
The associated Lie vector fields are

V1 = x
∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u
− 4v

∂

∂v
− 3w

∂

∂w
, V2 =

∂

∂x
, V3 =

∂

∂t
.

The non-zero commutation relation between the vector fields are

[V1, V2] = −V2, [V1, V2] = −3V3.

Solving the characteristic equation associated with the infinitesimal symmetries (1.4) one obtains

z =
ax + b

(3at + c)
1
3
,

w1 = (3at + c)
2
3 u,

w2 = (3at + c)
4
3 v,

w3 = (3at + c)w. (1.5)

Wewish to note thatwhile deriving the above similarity reductions under similarity transformation (1.5), one can reduce
the system of PDEs (1.1) to the system of ODEs of the form:

2w1 + zw′

1 + w′

2 = 0,

−4w2 − zw′

2 + 2a2w′′′

2 + 6w1w
′

2 + 6w2w
′

1 + 12w3w
′

3 = 0,

3w3 + zw′

3 + a2w′′′

3 − 3w1w
′

3 = 0 (1.6)

where prime denotes differentiation with respect to z.

2. Painleve (P) analysis

In order to verify whether the reduced system of ODEs (1.6) is integrable or not we apply Ablowitz–Ramani–Segur (ARS)
algorithm [6–8] to the system of ODEs (1.6). Since the independent variable appeared explicitly in the above system of ODEs
(1.6), first let us rewrite Eq. (1.6) of the form:

2w1 + τw′

1 + z0w′

1 + w′

2 = 0,

−4w2 − τw′

2 − z0w′

2 + 2a2w′′′

2 + 6w1w
′

2 + 6w2w
′

1 + 12w3w
′

3 = 0,

3w3 + τw′

3 + z0w′

3 + a2w′′′

3 − 3w1w
′

3 = 0 (2.1)

where τ = z − z0 and z0 is a movable singular point.
Now let us represent the solution to the system of ODEs (2.1) locally as a Laurent series and let the leading order be of

the form

w1 = a0τ α, w2 = b0τ β , w3 = c0τ γ (2.2)

where a0, b0 and c0 are arbitrary constants and α, β and γ are integers to be determined.
Substituting (2.2) into the system of ODEs (2.1) and balancing the dominant terms, we obtain, α = β, β − 3 =

β + α − 1 and β − 3 = 2γ − 1. Then α = β = γ = −2. Now let us consider the Laurent expansion of the form

w1 = a0τ−2
+ β1τ

r−2, w2 = b0τ−2
+ β2τ

r−2, w3 = c0τ−2
+ β3τ

r−2. (2.3)



3090 H.A. Zedan / Computers and Mathematics with Applications 60 (2010) 3088–3097

Substituting the system of equations (2.3) into the system of ODEs (2.1) and balancing the most singular terms again, we
obtain r = −1, 2, 4, 6. Let us assume the Laurent series of the form

w1 =

6−
j=0

ajτ j−2, w2 =

6−
j=0

bjτ j−2, w3 =

6−
j=0

cjτ j−2. (2.4)

Substituting the system of equations (2.4) into the system of ODEs (2.1) and equating various powers of τ n and solving
the resultant equations, then we obtain

α0 = α1 = α4 = α5 = α6 = β0 = β1 = β5 = β6 = γ0 = γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = 0,

α2 =
1
3
z0, α3 =

1
3
, β2 = −

1
2
z20 , β3 = −z0, β4 = −

1
2


.

The Laurent series solution (2.4) is meromorphic ; consequently the similarity reduced system of ODEs (2.1) also
possesses the Painleve property. Even though the systemof ODEs (1.6) is integrable in general it is very difficult to integrate it
explicitly and obtain a general solution. However, one can obtain a number of physically interesting solutions by considering
certain special choices of the infinitesimal symmetries (1.2) which we present, few of them, in the following sections.

Then we obtain the solution of the system of ODEs

w1 =
1
3
z, w2 = −

1
2
z2, w3 = 0

and hence the solution of the system of PDEs (1.1) are

u =
(ax + b)

3(3at + c)
, v = −

(a2x2 + 2abx + b2)
2(3at + c)2

, w = 0. (2.5)

Generic subcases: Let us recall that in the derivation of the general similarity reductions we made an assumption that a ≠ 0
and c ≠ 0. Now let us consider another cases and the possible similarity reductions.

2.1. Case 1: a = c = 0, b is arbitrary

The similarity variables take the form:
z = t,
w1 = u,
w2 = v,

w3 = w. (2.6)
The similarity reduced system of ODEs turns out to be

w′

1 = 0, w′

2 = 0, w′

3 = 0.
Thus the solution obtained will be stationary.

2.2. Case 2: a = b = 0, c is arbitrary

The similarity variables take the form:
z = x,
w1 = u,
w2 = v,

w3 = w. (2.7)
The similarity reduced system of ODEs turns out to be

w′

2 = 0,
2w′′′

2 + 6w1w
′

2 + 6w2w
′

1 + 12w3w
′

3 = 0,

w′′′

3 − 3w1w
′

3 = 0. (2.8)

From the first equation of the system of ODEs (2.8) we obtain w2 = k1 and from the second one we obtain w1 =
k2−6w2

3
6k1

.
When we substitute w1 into the third equation and integrate it twice we obtain

w′

3 =


k4 +

k3
k1

w3 +
k2
2k1

w2
3 −

1
2k1

w4
3.
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2.2.1. Subcase 1: k2 = k3 = 0, k1 and k4 are arbitrary
we obtain

w =

√
2sn

√
2
√
2k1k4x

2
√
k1

, I
√

k1k4√
2

,

and

u = −

√
2sn

√
2
√
2k1k4x

2
√
k1

, I


√
k4

√
k1

,

v = k1.

2.2.2. Subcase 2: k3 = k4 = 0, k1 and k2 are arbitrary
we obtain

w =


2k1k2 − x2

2k1
,

and

u =
−5k1k2 + 3x2

6k21
,

v = k1.

2.2.3. Subcase 3: k3 = 0, k1, k2 and k4 are arbitrary
we obtain

w =

2sn


A1x, 1

2


−

4k1k4+k22+k2A2
k1k4




−
k2−A2
k1k4

,

and

u =
k2
2k1

+

12sn


A1x, 1

2


−

4k1k4+k22+k2A2
k1k4

2

k4

k2 − A2
,

v = k1.

where A1 =

√
−k1(k2−A2)

2
√
k1

and A2 =


8k1k4 + k22.

If we use the Painleve analysis we obtain

u =
2
x2

, v = −
1
2
c20 , w =

c0
x

. (2.9)

2.3. Case 3: b = c = 0, a is arbitrary

The similarity variables take the form:

z =
x

t
1
3
,

w1 = t
2
3 u,

w2 = t
4
3 v,

w3 = tw. (2.10)
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The similarity reduced system of ODEs turns out to be

2w1 + zw′

1 + 3w′

2 = 0,
−4w2 − zw′

2 + 6w′′′

2 + 18w1w
′

2 + 18w2w
′

1 + 36w3w
′

3 = 0,

3w3 + zw′

3 + 3w′′′

3 − 9w1w
′

3 = 0 (2.11)

where prime denotes differentiation with respect to z.
In order to verify whether the reduced system of ODEs (2.9) is integrable or not we apply Ablowitz–Ramani–Segur (ARS)

algorithm [6–8] to the system of ODEs (2.9). Since the independent variable appeared explicitly in the above system of ODEs
(2.9) first let us rewrite the system of ODEs (2.9) of the form:

2w1 + τw′

1 + z0w′

1 + 3w′

2 = 0,
−4w2 − τw′

2 − z0w′

2 + 6w′′′

2 + 18w1w
′

2 + 18w2w
′

1 + 36w3w
′

3 = 0,

3w3 + τw′

3 + z0w′

3 + 3w′′′

3 − 9w1w
′

3 = 0 (2.12)

where τ = z − z0 and z0 is a movable singular point.
Then we obtain

w1 =
1
9
z, w2 = −

1
18

z2, w3 = 0

and hence the solution of the system of PDEs (1.1) are

u =
x
9t

, v = −
x2

18t2
, w = 0. (2.13)

2.4. Case 4: a = 0, b and c are arbitrary (leads travelling wave solution)

The similarity variables take the form:

z = cx − bt,
w1 = u,
w2 = v,

w3 = w. (2.14)

The similarity reduced system of ODEs turns out to be

bw′

1 + cw′

2 = 0,

−bw′

2 + 2c3w′′′

2 + 6cw1w
′

2 + 6cw2w
′

1 + 12cw3w
′

3 = 0,

bw′

3 + c3w′′′

3 − 3cw1w
′

3 = 0 (2.15)

where prime denotes differentiation with respect to z.
Let us assume the Laurent series of the form

w1 =

6−
j=0

ajτ j−2, w2 =

6−
j=0

bjτ j−2, w3 =

6−
j=0

cjτ j−2. (2.16)

Then, we obtain the solution of the system of PDEs (1.1) are

u = −
2c3

(cx − bt)2
+ a2, v =

2bc
(cx − bt)2

−
b(−6ca2 + b)

6c2
, w = c2 (2.17)

or

u =
4c3

(cx − bt)2
+

b
3c

, v = −
4bc

(cx − bt)2
−

b2 − 6c2
√
6bcc

6c2
, w =

2
√
6bcc

(cx − bt)2
+ c2. (2.18)
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2.5. Case 5: b = 0, a and c are arbitrary

The similarity variables and similarity functions take the form

z =
ax

(3at + c)
1
3
,

w1 = (3at + c)
2
3 u,

w2 = (3at + c)
4
3 v,

w3 = (3at + c)w. (2.19)

We wish to note that while deriving the above similarity reductions under similarity transformation (2.19), one can
reduce the system of PDEs (1.1) to the system of ODEs of the form:

2w1 + zw′

1 + w′

2 = 0,

−4w2 − zw′

2 + 2a2w′′′

2 + 6w1w
′

2 + 6w2w
′

1 + 12w3w
′

3 = 0,

3w3 + zw′

3 + a2w′′′

3 − 3w1w
′

3 = 0 (2.20)

where prime denotes differentiation with respect to z.
In order to verify whether the reduced system of ODEs (2.20) is integrable or not we apply Ablowitz–Ramani–Segur

(ARS) algorithm [6–8] to the system of ODEs (2.20). Since the independent variable appeared explicitly in the above system
of ODEs (2.20) first let us rewrite the system of ODEs (2.20) of the form:

2w1 + τw′

1 + z0w′

1 + w′

2 = 0,

−4w2 − τw′

2 − z0w′

2 + 2a2w′′′

2 + 6w1w
′

2 + 6w2w
′

1 + 12w3w
′

3 = 0,

3w3 + τw′

3 + z0w′

3 + a2w′′′

3 − 3w1w
′

3 = 0 (2.21)

where τ = z − z0 and z0 is a movable singular point.
Let us assume the Laurent series of the form

w1 =

6−
j=0

ajτ j−2, w2 =

6−
j=0

bjτ j−2, w3 =

6−
j=0

cjτ j−2. (2.22)

Then we obtain

w1 =
1
3
z, w2 = −

1
2
z2, w3 = 0

and hence the solution of the system of PDEs (1.1) are

u =
ax

3(3at + c)
, v = −

a2x2

2(3at + c)2
, w = 0. (2.23)

2.6. Case 6: c = 0, a and b are arbitrary

z =
ax + b

t
1
3

,

w1 = t
2
3 u,

w2 = t
4
3 v,

w3 = tw. (2.24)

We wish to note that while deriving the above similarity reductions under similarity transformation (2.24) one can reduce
the system of PDEs (1.1) to the system of ODEs of the form:

2w1 + zw′

1 + 3w′

2 = 0,

−4w2 − zw′

2 + 6a2w′′′

2 + 18w1w
′

2 + 18w2w
′

1 + 36w3w
′

3 = 0,

3w3 + zw′

3 + a2w′′′

3 − 3w1w
′

3 = 0 (2.25)

where prime denotes differentiation with respect to z.
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In order to verify whether the reduced system of ODEs (2.25) is integrable or not we apply Ablowitz–Ramani–Segur
(ARS) algorithm [6–8] to the system of ODEs (2.25). Since the independent variable appeared explicitly in the above system
of ODEs (2.25) then we can rewrite the system of ODEs (2.25) in the form:

2w1 + τw′

1 + z0w′

1 + 3w′

2 = 0,

−4w2 − τw′

2 − z0w′

2 + 6a2w′′′

2 + 18w1w
′

2 + 18w2w
′

1 + 36w3w
′

3 = 0,

3w3 + τw′

3 + z0w′

3 + a2w′′′

3 − 3w1w
′

3 = 0 (2.26)

where τ = z − z0 and z0 is a movable singular point.
Let us assume the Laurent series of the form

w1 =

6−
j=0

ajτ j−2, w2 =

6−
j=0

bjτ j−2, w3 =

6−
j=0

cjτ j−2. (2.27)

Then we obtain

w1 =
1
9
z, w2 = −

1
18

z2, w3 = 0

and hence the solution of the system of PDEs (1.1) are

u =
ax + b
9t

, v = −
(ax + b)2

18t2
, w = 0. (2.28)

3. Painleve (P) analysis for the original PDE:

Methodology: Consider a system ofM polynomial differential equations

Fi(u(z), u′(z), u′′(z), . . . , u(mi)(z)) = 0, i = 1, 2, . . . ,M. (3.1)

Step 1 (Determine the dominant behavior). It is sufficient to substitute

ui(z) = xigαi(z), i = 1, 2, . . . ,M,

where xi is a constant, into (3.1) to determine the leading exponents αi. In the resulting polynomial system, equating every
two or more possible lowest exponents of g(z) in each equation gives a linear system for αi. The linear system is then solved
for αi, and each solution branch is investigated. The traditional Painleve test requires that all the αi’s are integers and that
at least one is negative. An alternative approach is to use the ‘‘weak’’ Painleve test, which allows certain rational αi’s and
resonances; see [10–12] for more information on the weak Painleve test.

If one or more exponents αi remain undetermined, we assign integer values to the free αi so that every equation in (3.1)
has at least two different terms with equal lowest exponents.

For each solution αi we substitute

ui(z) = ui,0(z)gαi(z), i = 1, 2, . . . ,M,

into (3.1). We then solve the (typically) nonlinear equation for ui,0(z), which is found by balancing the leading terms. By
leading terms, we mean those terms with the lowest exponent of g(z).
Step 2 (Determine the resonances). For each αi and ui,0(z), we calculate the r1 ≤ r2 ≤ r3 ≤ · · · ≤ rm for which ui,0(z) is an
arbitrary function in

ui(z) = gαi(z)
∞−
k=0

ui,k(z)gk(z), i = 1, 2, . . . ,M.

To do this, we substitute ui(z) = ui,0(z)gαi(z) + ui,r(z)gαi+r(z) into (3.1), and keep only the lowest order terms in g(z)
that are linear in ui,r . This is carried out by computing the solutions for r of det(Qr) = 0, where theM×M matrix Qr satisfies
Qrur = 0, ur = (u1,r u2,r u3,r · · · uM,r)

T .
If any of the resonances are non-integer, then the Laurent series solutions of (3.1) have a movable algebraic branch point

and the algorithm terminates. If rm is not a positive integer, then the algorithm terminates.
Step 3 (Find the constants of integration and check compatibility conditions). For the system to possess the Painleve property,
the arbitrariness of ui,r(z) must be verified up to the highest resonance level. This is carried out by substituting

ui(z) = gαi(z)
rm−
k=0

ui,k(z)gk(z)

into (3.1), where rm is the largest positive integer resonance. To simplify step 3, we can use Weiss–Kruskal simplification.
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The manifold defined by g(z) = 0 is noncharacteristic, that means gzl(z) ≠ 0 for some l on the manifold g(z) = 0. By the
implicit function theorem, we can then locally solve g(z) = 0 for zl, so that

g(z) = zl − h(z1, . . . , zl−1, zl+1, . . . , zN)

for some arbitrary function h.
Now we apply the method into our problem (the Ito coupled system).
Let

u = u0(ϕ(x, t))α1 , v = v0(ϕ(x, t))α2 , w = w0(ϕ(x, t))α3 (3.2)

where u0, v0 and w0 are functions in x, t then system (1.1) becomes

∂u0

∂t
(ϕ(x, t))α1 + α1u0(ϕ(x, t))α1−1 ∂ϕ(x, t)

∂t
=

∂v0

∂x
(ϕ(x, t))α2 + α2v0(ϕ(x, t))α2−1 ∂ϕ(x, t)

∂x
, (3.3)

∂v0

∂t
(ϕ(x, t))α2 + α2v0(ϕ(x, t))α2−1 ∂ϕ(x, t)

∂t

= −2
∂3v0

∂x3
(ϕ(x, t))α2 − 6α2

∂2v0

∂x2
(ϕ(x, t))α2−1 ∂ϕ(x, t)

∂x
− 6α2

2
∂v0

∂x
(ϕ(x, t))α2−2


∂ϕ(x, t)

∂x

2

− 6α2
∂v0

∂x
(ϕ(x, t))α2−1


∂2ϕ(x, t)

∂x2


+ 6α2

∂v0

∂x
(ϕ(x, t))α2−2


∂ϕ(x, t)

∂x

2

− 2v0(ϕ(x, t))α2−3α3
2


∂ϕ(x, t)

∂x

3

− 6v0(ϕ(x, t))α2−2α2
2


∂ϕ(x, t)

∂x


∂2ϕ(x, t)

∂x2


+ 6v0(ϕ(x, t))α2−3α2

2


∂ϕ(x, t)

∂x

3

− 2v0(ϕ(x, t))α2−1α2


∂3ϕ(x, t)

∂x3


+ 6v0(ϕ(x, t))α2−2α2


∂ϕ(x, t)

∂x


∂2ϕ(x, t)

∂x2


− 4v0(ϕ(x, t))α2−3α2


∂ϕ(x, t)

∂x

3

− 6
∂u0

∂x
(ϕ(x, t))α1+α2v0 − 6u0(ϕ(x, t))α1+α2−1α1


∂ϕ(x, t)

∂x


v0

− 6u0(ϕ(x, t))α1+α2
∂v0

∂x
− 6u0(ϕ(x, t))α1+α2−1v0α2


∂ϕ(x, t)

∂x


− 12w0(ϕ(x, t))2α3

∂w0

∂x
− 12w2

0(ϕ(x, t))2α3−1α3


∂ϕ(x, t)

∂x


(3.4)

∂w0(x, t)
∂t


(ϕ(x, t))α3 + α3w0(x, t)(ϕ(x, t))α3−1


∂ϕ(x, t)

∂t


=


∂3w0(x, t)

∂x3


(ϕ(x, t))α3 + 3α3


∂2w0(x, t)

∂x2


(ϕ(x, t))α3−1


∂ϕ(x, t)

∂x


+ 3α2

3


∂w0(x, t)

∂x


(ϕ(x, t))α3−2


∂ϕ(x, t)

∂x

2

+ 3α3


∂w0(x, t)

∂x


(ϕ(x, t))α3−1


∂2ϕ(x, t)

∂x2


− 3α3


∂w0(x, t)

∂x


(ϕ(x, t))α3−2


∂ϕ(x, t)

∂x

2

+ α3
3w0(x, t)(ϕ(x, t))α3−3


∂ϕ(x, t)

∂x

3

+ 3α2
3w0(x, t)(ϕ(x, t))α3−2


∂ϕ(x, t)

∂x


∂2ϕ(x, t)

∂x2


− 3α2

3w0(x, t)(ϕ(x, t))α3−3


∂ϕ(x, t)
∂x

3

+ α3w0(x, t)(ϕ(x, t))α3−1


∂3ϕ(x, t)
∂x3


− 3α3w0(x, t)(ϕ(x, t))α3−2


∂2ϕ(x, t)

∂x2


∂ϕ(x, t)

∂x


+ 2α3w0(x, t)(ϕ(x, t))α3−3


∂ϕ(x, t)

∂

3

− 3u0(x, t)(ϕ(x, t))α1+α3


∂w0(x, t)

∂x


− 3α3u0(x, t)w0(x, t)(ϕ(x, t))α1+α3−1


∂ϕ(x, t)

∂x


. (3.5)

From Eq. (3.3) we obtain α1 = α2 and from Eq. (3.4) we obtain α2 − 3 = α2 + α1 − 1. Hence α1 = α2 = −2.
From Eq. (3.4) we obtain α2 − 3 = 2α3 − 1. Hence α3 = −2.
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Substituting α1 = α2 = α3 = −2 into Eqs. (3.3)–(3.5) and then requiring the leading terms (of (ϕ(x, t))−5 in Eq. (3.5))

balance, give u0 = −4


∂ϕ(x,t)
∂x

2
, from leading terms (of (ϕ(x, t))−3 in Eq. (3.3)) balance and substituting about u0, gives

v0 = −4


∂ϕ(x,t)
∂x

 
∂ϕ(x,t)

∂t


and from leading terms (of (ϕ(x, t))−5 in Eq. (3.3)) balance and substituting about u0 and v0,

gives w0 = ±2
√
2I


∂ϕ(x,t)
∂x

 3
2


∂ϕ(x,t)
∂t .

We have two cases first whenw0 = 2
√
2I


∂ϕ(x,t)
∂x

 3
2


∂ϕ(x,t)
∂t and the second onewhenw0 = −2

√
2I


∂ϕ(x,t)
∂x

 3
2


∂ϕ(x,t)
∂t

we will study these two cases.
Substituting

u(x, t) = −4


∂ϕ(x, t)
∂x

2

(ϕ(x, t))−2
+ ur(x, t)(ϕ(x, t))r−2,

v(x, t) = −4


∂ϕ(x, t)
∂x


∂ϕ(x, t)

∂t


(ϕ(x, t))−2

+ vr(x, t)(ϕ(x, t))r−2

and

w(x, t) = ±2
√
2I


∂ϕ(x, t)
∂x

 3
2


∂ϕ(x, t)
∂t

(ϕ(x, t))−2
+ wr(x, t)(ϕ(x, t))r−2

into (1.1) and equating the coefficient of (ϕ(x, t))r−5 in Eq. (3.4) we obtain the following characteristic equation for the
resonances

−8(−8 + r)(−6 + r)(−4 + r)(−3 + r)(−2 + r)(1 + r)(2 + r)


∂ϕ(x, t)
∂x

 15
2


∂ϕ(x, t)
∂t

4

= 0.

Assuming


∂ϕ(x,t)
∂x


≠ 0 and


∂ϕ(x,t)

∂t


≠ 0, then

r = −2, r = −1, r = 2, r = 3, r = 4, r = 6, r = 8.

We now substitute

u = (ϕ(x, t))−2
8−
0

uk(x, t)(ϕ(x, t))k,

v = (ϕ(x, t))−2
8−
0

vk(x, t)(ϕ(x, t))k,

w = (ϕ(x, t))−2
8−
0

wk(x, t)(ϕ(x, t))k (3.6)

into (1.1) and use the Weiss–Kruskal simplification [13,14] (i.e. ϕ(x, t) = x − h(t)) we obtain

u0 = −4, v0 = 4ht , w0 = 2
√
2I


−h′(t), u1 = 0, v1 = 0, w1 = 0,

u2 = −
1
3
h′(t), v2 = c1(x, t), w2 =

I
√

−h′(t)((h′(t))2 + 2v2)

2
√
2h′(t)

,

u3 = c2(x, t), v3 =
1
3
(−h′′(t) − 3h′(t)u3), w3 = −

I
√

−h′(t)(h′′(t) + 12h′(t)u3)

6
√
2h′(t)

u4 = c3(x, t), v4 =
1
2
(u3t − 2h′(t)u4), w4 = −

I
√

−h′(t)u4
√
2

,

u5 =
1

168(h′(t))2
((h′(t))2h′′(t) + 40h′(t)u4t − 2h′(t)v2t + 30(h′(t))3u3 + 6h′′(t)v2 + 60h′(t)u3v2),

v5 = −
1

168(h′(t))
((h′(t))2h′′(t) − 16h′(t)u4t − 2h′(t)v2t + 30(h′(t))3u3 + 6h′′(t)v2 + 60h′(t)u3v2),

w5 = −
1

168
√
2(h′(t))2


I


−h′(t)(5(h′(t))2h′′(t) + 32h′(t)u4t + 4h′(t)v2t + 24(h′(t))3u3 + 2h′′(t)v2

+ 48h′(t)u3v2)


,
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u6 = c4(x, t), v6 = −
1

672(h′(t))3
(−h′(t))3h′′′(t) − 30(h′(t))4u3t

+ 40h′(t)h′′(t)u4t − 40(h′(t))2u4tt − 8h′(t)h′′(t)v2t + 2(h′(t))2v2tt

− 30(h′(t))3h′′(t)u3 − 60(h′(t))2v2tu3 + 672(h′(t))4u6 + 12(h′′(t))2v2

− 6h′(t)h′′′(t)v2 − 60(h′(t))2u3tv2 + 60h′(t)h′′(t)u3v2,

w6 = −
1

288
√
2(h′(t))2


I


−h′(t)(h′′(t))2 − 2h′(t)h′′′(t) − 24(h′(t))2u3t − 6h′(t)h′′(t)u3

+ 72(h′(t))2u2
3 + 288(h′(t))2u6


,

u7 =
1
24

(u4t − 12u3u4), v7 =
1

120
(−5h′(t)u4t + 24u6t + 60h′(t)u3u4),

w7 = −
1

10080
√
2(h′(t))3


I


−h′(t)(−30(h′(t))4h′′(t) + 70(h′(t))2u3tt − 360(h′(t))3u4t + 1344(h′(t))2u6t

− 45(h′(t))3v2t + 45(h′(t))5u3 + 1260(h′(t))2u3tu3 − 560(h′(t))2h′′(t)u4 − 1680(h′(t))3u3u4

− 30(h′(t))2h′′(t)v2 + 120h′(t)u4tv2 − 90h′(t)v2tv2 + 180(h′(t))3u3v2 + 60h′′(t)v2
2 + 180h′(t)u3v

2
2)


,

u8 = c5(x, t), v8 =
1

144
(−144u8h′(t) − 12u4u3t − 12u3u4t + u4tt),

w8 = −
1

8064
√
2(h′(t))3


I


−h′(t)792u2
3v2(h′(t))2 + 1008u2

4(h
′(t))3 + 4032u8(h′(t))3

+ 396u2
3(h

′(t))4 + 108u3v2h′(t)h′′(t) + 30u3(h′(t))3h′′(t) + 6v2(h′′(t))2 − 2(h′(t))2(h′′(t))2

− 2v2h′(t)h′′′(t) − 5(h′(t))3h′′′(t) − 48v2(h′(t))2u3t − 24(h′(t))4u3t

+ 528u3(h′(t))2u4t + 36h′(t)h′′(t)u4t − 24u3(h′(t))2v2t − h′(t)h′′(t)v2t − 32(h′(t))2u4tt − 4(h′(t))2v2tt


,

where c1(x, t), c2(x, t), c3(x, t), c4(x, t) and c5(x, t) are arbitrary functions, then we establish u, v, w by substituting into
(3.6) from the two cases.

4. Conclusion

In this paper we have explored only Lie point symmetries. However, in recent years several works have been devoted
to study the integrability aspects of coupled systems (1.1) through higher order symmetries [15]. Presently, we are also
investigating the existence of higher order symmetries for the nonlinear Ito coupled system.
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