

brought to you by C

Topology and its Applications 124 (2002) 77-83

www.elsevier.com/locate/topol

Extension of maps to nilpotent spaces. II

M. Cencelj^{a,1}, A.N. Dranishnikov^{b,*}

^a IMFM, University of Ljubljana, P. O. B. 2964, SI-1001 Ljubljana, Slovenia ^b Department of Mathematics, University of Florida, P.O. Box 118105, 358 Little Hall, Gainesville, FL 32611-8105, USA

Received 20 February 2001; received in revised form 27 June 2001

Abstract

Let *M* be a nilpotent CW-complex with finitely generated fundamental group. We give necessary and sufficient cohomological dimension theory conditions for a finite-dimensional metric compactum *X* so that every map $A \rightarrow M$, where *A* is a closed subset of *X* can be extended to a map $X \rightarrow M$.

This is a generalization of a result by Dranishnikov [Mat. Sb. 182 (1991)] where such conditions were found for simply-connected CW-complexes M, and Cencelj and Dranishnikov forthcoming paper [Cannad. Bull. Math.] where such conditions were found for nilpotent CW-complexes M with finitely generated homotopy groups.

© 2001 Elsevier Science B.V. All rights reserved.

MSC: primary 55M10, 55S36; secondary 54C20, 54F45

Keywords: Cohomological dimension; Extension of maps; Nilpotent space

We generalize the main theorem of [4] and Theorem 7 of [2] to obtain the following theorem. We use the Kuratowski notation $X \tau M$ for the case every map from a closed subset of X to M can be extended over all of X. We recall that the cohomological dimension of a space X can be defined in these notations as follows: dim_G X ≤ n iff and only if $X \tau K(G, n)$, where K(G, n) is an Eilenberg–MacLane complex.

Theorem 1. For any nilpotent CW-complex M with finitely generated fundamental group and finite-dimensional metric compactum X, the following are equivalent:

- (1) $X \tau M$;
- (2) $X\tau SP^{\infty}M$;

* Corresponding author. Supported in part by NSF grant DMS-997109.

E-mail addresses: matija.cencelj@uni-lj.si (M. Cencelj), dranish@math.ufl.edu (A.N. Dranishnikov).

0166-8641/01/\$ – see front matter @ 2001 Elsevier Science B.V. All rights reserved. PII: S0166-8641(01)00239-5

¹ Supported in part by the Ministry of Science and Technology of Slovenia, Research Grant No. J1-0885-0101-98.

(3) $\dim_{H_i(M)} X \leq i \text{ for every } i > 0;$

(4) $\dim_{\pi_i(M)} X \leq i$ for every i > 0.

We recall that a group *G* is called *nilpotent* if its lower central series $G = \Gamma^1 G \supset \Gamma^2 G \supset \cdots \supset \Gamma^k G \supset \Gamma^{k+1} G = 1$ has a finite length *k* called the nilpotency class of *G*. Here $\Gamma^2 G = [G, G]$ and $\Gamma^i G = [G, \Gamma^{i-1}G]$. The main examples of nilpotent groups are upper triangular matrix groups. The action of an upper triangular matrix group on a corresponding vector space suggest a definition of a *nilpotent action*. An action $\alpha : G \rightarrow$ Aut *H* is called nilpotent if there is a *G*-invariant normal stratification $H = H_1 \supset \cdots \supset H_i \supset \cdots \supset H_n = *$ such that H_i/H_{i+1} is abelian and the induced action on H_i/H_{i+1} is trivial for all *i*. A topological space is called *nilpotent* if $\pi_1(X)$ is a nilpotent group and the action of $\pi_1(X)$ on the higher dimensional homotopy groups is nilpotent.

As opposed to [2, Theorem 7] we do not assume M to have all the homotopy groups finitely generated. The requirement that M has finitely generated fundamental group, however, seems to be necessary in view of [8, Example 5.2]. It can be dropped if the fundamental group is abelian.

In order to prove this theorem we first prove two propositions and a lemma.

Proposition 2. The following conditions for an abelian group G are equivalent:

- (1) G is p-divisible;
- (2) Ext $(\mathbb{Z}_{p^{\infty}}, G) = 0;$
- (3) Ext $(\mathbb{Z}_{p^{\infty}}, G)$ is *p*-divisible.

Proof. This is a direct consequence of the short exact sequence

 $0 \to \lim^{1} \operatorname{Hom}(\mathbb{Z}_{p^{n}}, G) \to \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, G) \to \widehat{G}_{p} \to 0,$

where $\widehat{G}_p = \lim G/p^n G$ is the *p*-adic completion. \Box

Proposition 3. Let G be a nilpotent group such that the abelianization Ab G is p-divisible. Then $\text{Ext}(\mathbb{Z}_{p^{\infty}}, G) = 0.$

Proof. We apply induction on the nilpotency class k of G. If k = 1, G is an abelian group and the result follows from Proposition 2. Now assume that G is of class k, i.e., (k + 1)st group $\Gamma^{k+1}G$ of the lower central series is trivial. Then the group $G/\Gamma^k G$ is of class k - 1. Every short exact sequence of nilpotent groups defines the six term exact sequence for Hom and Ext (see [1]). Then the exact sequence

 $\operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \Gamma^{k}G) \to \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, G) \to \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, G/\Gamma^{k}G)$

and the induction hypothesis imply that $\text{Ext}(\mathbb{Z}_{p^{\infty}}, G) = 0$. \Box

We recall that for every abelian group G there exists a Bockstein family $\sigma(G)$ of abelian groups [4] such that for every metric compactum X we have

 $\dim_G X = \max_{H \in \sigma(G)} \dim_H X.$

The family $\sigma(G)$ is a subfamily of the family $\sigma = \mathbb{Q} \cup (\bigcup_p \sigma_p)$, where $\sigma_p = \{\mathbb{Z}_p, \mathbb{Z}_{p^{\infty}}, \mathbb{Z}_{(p)}\}$. Here $\mathbb{Z}_{p^{\infty}}$ is the direct limit of the groups \mathbb{Z}_{p^k} and $\mathbb{Z}_{(p)} = \{m/n; n \text{ not divisible by } p\}$ is the *p*-localization of the integers. The family $\sigma(G)$ is defined by the following rule: $\mathbb{Z}_{(p)} \in \sigma(G)$ if and only if F(G) is not *p*-divisible; $\mathbb{Z}_p \in \sigma(G)$ if and only if the group G_p is not *p*-divisible; $\mathbb{Z}_{p^{\infty}} \in \sigma(G)$ if and only if $G_p \neq 0$ and G_p is *p*-divisible; and $\mathbb{Q} \in \sigma(G)$ if $F(G) \neq 0$. Here G_p is the *p*-torsion subgroup of *G* and F(G) = G/Tor(G).

The proof of the following lemma is based on the properties of *p*-completion and Bockstein's inequalities. First, we recall the Bockstein inequalities:

- (BI1) $\dim_{\mathbb{Z}_p\infty} X \leq \dim_{\mathbb{Z}_p} X$,
- (BI2) $\dim_{\mathbb{Z}_p} X \leq \dim_{\mathbb{Z}_{p^{\infty}}} X + 1$,
- (BI3) $\dim_{\mathbb{Z}_p} X \leq \dim_{\mathbb{Z}_p} X$,
- (BI4) $\dim_{\mathbb{Q}} X \leq \dim_{\mathbb{Z}_{(p)}} X$,

(BI5) $\dim_{\mathbb{Z}_{(p)}} X \leq \max\{\dim_{\mathbb{Z}_{p^{\infty}}} X, \dim_{\mathbb{Z}_{p^{\infty}}} X+1\},\$

(BI6) $\dim_{\mathbb{Z}_{p^{\infty}}} X \leq \max\{\dim_{\mathbb{Q}} X, \dim_{\mathbb{Z}_{p}} X - 1\}.$

The *p*-completion of a complex *M* is a \mathbb{Z}_p -complete space \widehat{M}_p together with a map $M \to \widehat{M}_p$ which induces an isomorphism of homologies $H_*(M; \mathbb{Z}_p) \to H_*(\widehat{M}_p; \mathbb{Z}_p)$.

Lemma 4. Let *M* be a connected nilpotent CW-complex with finitely generated fundamental group and let *X* be a finite-dimensional metric compactum. If

 $\dim_{H_i(M)} X \leq i \quad for every \ i \geq 1$,

then

 $\dim_{\pi_i(M)} X \leq i \quad for every i \geq 1.$

Proof. Let $\pi_n = \pi_n(M)$ and $H_n = H_n(M)$. We prove $\dim_{\pi_n} X \leq n$ by induction on *n*. As it was shown in [2], Theorem 1, $\dim_G X = \dim_{AbG} X$ for a finitely generated nilpotent group *G*, where *AbG* is the abelianization of *G*. Since $H_1(M) = Ab\pi_1(M)$, the claim holds for n = 1.

Let $\dim_{\pi_i(M)} X \leq i$ hold for all i < n. For the group π_n $(n \geq 2)$ there is a short exact sequence

$$0 \to \left(\bigoplus_{p \text{ prime}} G_p^n\right) \to \pi_n \to F(\pi_n) \to 0,$$

where G_p^n is the Sylow *p*-subgroup of π_n and $F(\pi_n)$ is torsion-free. Therefore it suffices to show $\dim_{F(\pi_n)} X \leq n$ and $\dim_{G_n^n} X \leq n$.

Let us first show that $F(\pi_n) \neq 0$ implies $\dim_{\mathbb{Q}} X \leq n$. If π_i , i < n, are torsion groups, the Hurewicz theorem modulo the generalized Serre class of torsion groups implies $F(H_n) \neq 0$ and hence $\dim_{\mathbb{Q}} X \leq n$. If, however, at least one of the groups π_i is not a torsion group, then by the same Hurewicz theorem we obtain $F(H_j) \neq 0$ for some j < n. Therefore, $\mathbb{Q} \in \sigma(F(H_j))$ and $\dim_{\mathbb{Q}} X \leq \dim_{H_j} X \leq j < n$.

Let *p* be a prime number. We consider the case when $F(\pi_n)$ is not *p*-divisible. In that case $\mathbb{Z}_{(p)} \in \sigma(F(\pi_n))$. We show that $\dim_{\mathbb{Z}_{(p)}} X \leq n$.

The Bockstein inequalities imply the following alternative [6]:

either dim_{$\mathbb{Z}(p)$} $X = \dim_{\mathbb{Q}} X$ or dim_{$\mathbb{Z}(p)$} $X = \dim_{\mathbb{Z}_{p^{\infty}}} X + 1$.

We may assume that all groups H_i , $1 \le i < n$, are *p*-divisible without *p*-torsions. Otherwise, $\mathbb{Z}_p \in \sigma(H_i)$ or $\mathbb{Z}_{p^{\infty}} \in \sigma(H_i)$ and we have $\dim_{\mathbb{Z}_p} X \le \dim_{H_i} X \le i < n$ or $\dim_{\mathbb{Z}_{p^{\infty}}} \le \dim_{H_i} X \le i < n$. In view of the inequality (BI2), in both cases we have $\dim_{\mathbb{Z}_{p^{\infty}}} +1 \le n$. Then the inequality $\dim_{\mathbb{Q}} X \le n$ and the above alternative imply that $\dim_{\mathbb{Z}_{p^{\infty}}} X \le n$.

Because of induction assumption, similarly we may assume that all groups π_i , 1 < i < n, are *p*-divisible and without *p*-torsions.

Since *M* is a nilpotent CW-complex its *p*-completion \widehat{M}_p exists [1]. Our assumptions, the propositions and the exact sequence

$$0 \to \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_i) \to \pi_i(\widehat{M}_p) \to \operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_{i-1}) \to 0$$

imply $\pi_i(\widehat{M}_p) = 0$ for i < n. Here we used the fact that $\text{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_1) = 0$ which follows from the equality $G_p^1 = 0$. The latter follows from the absence of *p*-torsions in H_1 and a property of nilpotent groups (see [2, Proposition 2]).

From the Hurewicz theorem we obtain $\pi_n(\widehat{M}_p) = H_n(\widehat{M}_p)$. This group is $\pi_n(\widehat{M}_p) = \text{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_n)$ and its *p*-divisibility would imply that it is the trivial group. Since $F(\pi_n)$ is not *p*-divisible and the group $\widehat{F}(\pi_n) = \text{Ext}(\mathbb{Z}_{p^{\infty}}, F(\pi_n))$ is without torsion, the exactness property of Ext and Hom [1, p. 169], implies that $\text{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_n) = \pi_n(\widehat{M}_p)$ is not a *p*-torsion group.

Therefore $H_n(\widehat{M}_p) \otimes \mathbb{Z}_{p^{\infty}} \neq 0$ and by the universal coefficient theorem $H_n(\widehat{M}_p; \mathbb{Z}_{p^{\infty}}) \neq 0$.

One of the main properties of the *p*-completion $M \mapsto \widehat{M}_p$ is that it induces an isomorphism of homology with coefficients in \mathbb{Z}_p . With exact sequences

$$0 \to \mathbb{Z}_{p^k} \to \mathbb{Z}_{p^{k+1}} \to \mathbb{Z}_p \to 0$$

and induction we can prove that the *p*-completion induces an isomorphism in homology with coefficients in \mathbb{Z}_{p^n} for arbitrary *n*. Since the tensor product and homology commute with the direct limit the *p*-completion induces also an isomorphism in homology with coefficients in $\mathbb{Z}_{p^{\infty}}$.

Therefore $H_n(M; \mathbb{Z}_{p^{\infty}}) \neq 0$. Since H_{n-1} has no *p*-torsion this implies $H_n \otimes \mathbb{Z}_{p^{\infty}} \neq 0$. Thus and $\dim_{\mathbb{Z}_{p}} X \leq n$.

Thus, we proved the inequality $\dim_{\mathbb{Z}_{(p)}} X \leq n$ for all p for which $F(\pi_n)$ is p-divisible. Since the Bockstein family $\sigma(F(\pi_n))$ consists of all such p's, we proved the inequality $\dim_{F(\pi_n)} X \leq n$.

To perform the induction step we still have to prove the inequalities $\dim_{G_p^n} X \leq n$ for all *p*. When $F(\pi_n)$ is not *p*-divisible we have shown $\dim_{G_p^n} X \leq \dim_{\mathbb{Z}_p} X \leq \dim_{\mathbb{Z}_{(p)}} X \leq n$.

Assume now $F(\pi_n)$ is *p*-divisible. We consider two cases:

(1) G_p^n is not *p*-divisible. In this case $\sigma(G_p^n) = \{\mathbb{Z}_p\}$ and we have to show the inequality $\dim_{\mathbb{Z}_p} X \leq n$. Like above we can assume that all groups π_i , H_i , $1 < i \leq n - 1$, have no

p-torsion and are *p*-divisible and that π_1 and H_1 are torsion groups, but without *p*-torsion. From the exact sequence

$$0 \to \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_i) \to \pi_i(\widetilde{M}_p) \to \operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_{i-1}) \to 0$$

and Propositions 2 and 3 we obtain $\pi_i(\widehat{M}_p) = 0$ for 0 < i < n. Since G_p^n is not *p*-divisible Proposition 2 and the exactness property imply that the group

$$\pi_n(\widehat{M}_p) = \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_n) = \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, G_p^n)$$

is not trivial and is not *p*-divisible.

Thus the Hurewicz theorem implies $H_i(\widehat{M}_p) = 0$ for 0 < i < n and the group $H_n(\widehat{M}_p)$ is not *p*-divisible. Therefore $H_n(\widehat{M}_p) \otimes \mathbb{Z}_p \neq 0$ and $H_n(\widehat{M}_p; \mathbb{Z}_p) \neq 0$. From the main properties of the *p*-completion we obtain $H_n(M; \mathbb{Z}_p) \neq 0$ and since H_{n-1} is without *p*torsion, $H_n \otimes \mathbb{Z}_p \neq 0$. Therefore $\mathbb{Z}_p \in \sigma(H_n)$ or $\mathbb{Z}_{(p)} \in \sigma(H_n)$. In both cases we have $\dim_{\mathbb{Z}_p} X \leq n$ and $\dim_{G_n^n} X \leq n$.

(2) $G_n^n \neq 0$ is *p*-divisible. Then the group π_n is *p*-divisible.

Since $\sigma(G_p^n) = \{\mathbb{Z}_{p^{\infty}}\}\)$, we have to show that $\dim_{\mathbb{Z}_{p^{\infty}}} X \leq n$. We obtain this directly if H_n has *p*-torsion elements, so assume H_n has no *p*-torsion. Again we can assume also that all the groups π_i , H_i , $1 \leq i \leq n - 1$, are without *p*-torsion. Therefore the exact sequence

$$0 \to \operatorname{Ext}(\mathbb{Z}_{p^{\infty}}, \pi_i) \to \pi_i(M_p) \to \operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_{i-1}) \to 0$$

implies $\pi_n(\widehat{M}_p) = 0$ and the group $\pi_{n+1}(\widehat{M}_p)$ maps epimorphically onto $\operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_n)$. The latter group includes the *p*-adic integers $\widehat{\mathbb{Z}}_p = \lim_{\leftarrow} \mathbb{Z}_{p^n}$ since $\operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \mathbb{Z}_{p^{\infty}}) \cong \widehat{\mathbb{Z}}_p$. Therefore $\operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_n)$ is not a *p*-torsion group and since $\mathbb{Z}_{p^{\infty}}$ is divisible, the group $\operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \pi_n)$ contains $\operatorname{Hom}(\mathbb{Z}_{p^{\infty}}, \mathbb{Z}_{p^{\infty}})$ which is not *p*-divisible, as a direct summand. Thus the group $\pi_{n+1}(\widehat{M}_p) = H_{n+1}(\widehat{M}_p)$ is neither a *p*-torsion group nor *p*-divisible. Therefore $H_{n+1}(\widehat{M}_p) \otimes \mathbb{Z}_{p^{\infty}} \neq 0$ and $H_{n+1}(\widehat{M}_p; \mathbb{Z}_{p^{\infty}}) \neq 0$. This implies $H_{n+1}(M; \mathbb{Z}_{p^{\infty}}) \neq 0$ and since by assumption H_n has no *p*-torsion elements the universal coefficient theorem gives $H_{n+1} \otimes \mathbb{Z}_{p^{\infty}} \neq 0$ which in turn implies $\dim_{\mathbb{Z}_{(p)}} X \leq n+1$.

If all the groups π_i , $1 \le i \le n-1$, are torsion groups, the Hurewicz theorem modulo the generalized Serre class of nilpotent torsion groups without *p*-torsion implies that H_n has *p*-torsion and thus $\dim_{\mathbb{Z}_{p^{\infty}}} X \le n$. If, however, $F(\pi_i) \ne 0$ for some $i, 1 \le i \le n-1$, we obtain $\dim_{\mathbb{Q}} X \le i \le n-1$. Bockstein's inequality (BI6) then implies $\dim_{\mathbb{Z}_{p^{\infty}}} X \le n$. \Box

The nilpotency of *M* is essential in Lemma 4. If one takes a non nilpotent space $M = \mathbb{R}P^2$, the hypothesis of the lemma turns into the inequality $\dim_{\mathbb{Z}_2} X \leq 1$ but the conclusion turns into sequence of inequalities $\dim_{\mathbb{Z}_2} X \leq 1$, $\dim_{\mathbb{Z}} X \leq 2, \ldots, \dim_{\pi_n(S^2)} X \leq n, \ldots$. Since for all *n* there are *n*-dimensional compact spaces *X* with $\dim_{\mathbb{Z}_2} X \leq 1$ (see [6]), the hypothesis of the lemma does not imply the conclusion.

The requirement that $\pi_1(M)$ is finitely generated can be dropped when the fundamental group $\pi_1(M)$ is abelian. The general case is less clear because of the existence of a nilpotent group N with $Ab N = \mathbb{Q} \oplus \mathbb{Q}$ and $[N, N] = \mathbb{Z}_{p^{\infty}}$ (see [7, p. 28]). This group seems to give a counterexample to the implication $\dim_{Ab N} X \leq 1 \Rightarrow \dim_N X \leq 1$.

We recall that the Postnikov tower for a nilpotent space M [7] is an inverse system $E_1 \leftarrow E_2 \leftarrow \cdots \leftarrow E_n \leftarrow \cdots$ with bonding maps $p_{n+1}: E_{n+1} \rightarrow E_n$ whose fibers

are $K(\pi_{n+1}(M), n+1)$ together with maps $\alpha_n : M \to E_n$ such that $p_{n+1}\alpha_{n+1} = \alpha_n$, α_n induces an isomorphism of homotopy groups $\pi_i(M) \to \pi_i(E_n)$ for $i \leq n$, $E_1 = K(\pi_1(M), 1)$ and every map $p_{n+1} : E_{n+1} \to E_n$ is the composite of principal fibrations

$$E_{n+1} = Y_c \xrightarrow{q_c} Y_{c_1} \to \cdots \to Y_1 \xrightarrow{q_1} Y_0 = E_n,$$

where the fibre of q_i is an Eilenberg–MacLane space $K(G_i, k)$ and q_i is induced by a map $\kappa_i : Y_{i-1} \to K(G_i, k+1)$, where

$$G_i = \Gamma^i \pi_k(M) / \Gamma^{i+1} \pi_k(M)$$

comes from the stratification of $\pi_k(M)$ under the nilpotent action of $\pi_1(M)$ on $\pi_k(M)$.

Recall that the Eilenberg–MacLane complex $K(G_i, k)$ is the free abelian topological group $G = FA(M(G_i, k))$ generated by the Moore space $M(G_i, k)$ [3]. Hence we may assume that $K(G_i, k+1) = BG$ is the Milnor classifying space for the topological group Gand the map q_i is induced by the universal locally trivial G-bundle $v : EG \to BG$. Therefore we may assume that all spaces E_n in the Postnikov tower are CW complexes and all maps p_{n+1} are projections of fibre bundles.

The following is proved in [5, Assertion 7].

Proposition 5. Let $f : E \to B$ be a locally trivial fibration with a fiber F, and assume that F, B are CW complexes. Suppose that $X\tau B$ and $X\tau F$ for some compactum X. Then $X\tau E$.

Proof of theorem. The implications

 $X \tau M \Rightarrow X \tau SP^i M \Rightarrow \dim_{H_i(M)} X \leq i \text{ for every } i \geq 1$

are proved in [4] without any assumption on $\pi_1(M)$. Our lemma proves that $\dim_{H_i(M)} X \leq i$, $\forall i \geq 1 \Rightarrow \dim_{\pi_i(M)} X \leq i$, $\forall i \geq 1$.

Let $K(\pi_1, 1) \leftarrow E_2 \leftarrow \cdots \leftarrow E_n \leftarrow \cdots$ be the Postnikov tower of M. By definition $\dim_{\pi_i} X \leq i$ means $X \tau K(\pi_i, i)$. Every map in the Postnikov tower of M is a composition of principal fibre bundle projections therefore by induction, Proposition 5 and conditions $X \tau K(\pi_i, i)$ it follows $X \tau E_n$ for every n. Let $\dim X = m$ and let N_m be the CW-complex homotopy equivalent to E_m which is obtained from M by attaching cells of dimension $\geq m + 2$. Then $X \tau E_m$ implies $X \tau N_m$ by the Homotopy Extension Theorem. Since every map $f: X \to B^k$ of an m-dimensional space to the k-dimensional ball, k > m, can be pushed to the boundary, i.e., there is a map $g: X \to \partial B^k$ with $g|_{f^{-1}(\partial B^k)} = f|_{f^{-1}(\partial B^k)}$, the property $X \tau N_m$ implies the property $X \tau M$ for a compact m-dimensional space X. \Box

References

- A.K. Bousfield, D.M. Kan, Homotopy Limits, Completions and Localizations, in: Lecture Notes in Math., Vol. 304, Springer, Berlin, 1972.
- M. Cencelj, A.N. Dranishnikov, Extension of maps to nilpotent spaces, Canad. Bull. Math. 44 (3) (2001) 266–269.

- [3] A. Dold, R. Thom, Quasifaserungen und unendliche symmetrische produkte, Ann. of Math. 67 (1958) 239–281.
- [4] A.N. Dranishnikov, Extension of mappings into CW-complexes, Mat. Sb. 182 (9) (1991) 1300–1310 (in English: Math. USSR Sb. 74 (1) (1993) 47–56).
- [5] A.N. Dranishnikov, On intersections of compacta in Euclidean space, Proc. Amer. Math. Soc. 112 (1) (1991) 267–275.
- [6] A.N. Dranishnikov, On the dimension of the product of two compacta and the dimension of their intersection in general position in Euclidean space, Trans. Amer. Math. Soc. 352 (12) (2000) 1559–5618.
- [7] P. Hilton, G. Mislin, J. Roitberg, Localization of Nilpotent Groups and Spaces, North-Holland, Amsterdam, 1975.
- [8] R.B. Warfield, Nilpotent Groups, in: Lecture Notes in Math., Vol. 513, Springer, Berlin, 1976.