April 1981

THE SPACE STRUCTURES OF α -MELANOTROPIN

G. V. NIKIFOROVICH, M. D. SHENDEROVICH and G. I. CHIPENS Institute of Organic Synthesis, Latvian SSR Academy of Sciences, 21 Aizkraukles, Riga 226006, USSR

Received 9 February 1981

1. Introduction

The study of conformation-function relationships in biologically active peptides requires a detailed knowledge of their space structure. Semi-empirical conformational analysis is one of the methods providing the necessary information [1-4]. This communication describes the set of low-energy structures of α -melanotropin (α -MSH) peptide backbone determined by that method. α -MSH (Ac-Ser₁-Tyr₂-Ser₃-Met₄-Glu₅-His₆-Phe₇-Arg₈-Trp₉-Gly₁₀-Lys₁₁-Pro₁₂-Val₁₃-NH₂) is the natural oligopeptide which in many respects can be regarded as a natural analogue of corticotropin (ACTH).

2. Methods and results

The intramolecular conformational energy U involved the non-bonded, electrostatic and torsional potentials along with the hydrogen bond potentials [4]. The ionogenic side chains of the molecule (Glu, Arg, Lys) are assumed completely ionized [5]. The sets of local energy minima of the peptide backbone, i.e., B ($\varphi \sim -140^\circ$, $\psi \sim 140^\circ$), R ($\varphi -60^\circ$, $\psi \sim -60^\circ$), L ($\varphi \sim 60^\circ$, $\psi \sim 60^\circ$) and H (for the Gly₁₀ residue; $\varphi \sim 80^\circ$, $\psi -80^\circ$) conformations and all the $X_1 \sim 60^\circ$, 180° , -60° angle rotamers were considered as possible molecule conformations. The values of dihedral angles $X_2 - X_4$ were chosen in accordance with the calculation results obtained for tha appropriate monopeptides [6]. The principal steps involved in the selection of low-energy backbone structures are as follows:

(1) Determination of the set of low-energy backbone structures for molecule fragment 1-6 using the conformational energy U calculations for all possible di- and tripeptide conformations and consecutive estimation of 'near-neighbouring' interaction energies in tetra-,

penta- and hexapeptide fragments (see [2]). The final stage involves the refinement of side chain spacing for each of the selected hexapeptide backbone structures using an algorithm for the selection of energetically optimal dihedral angles χ [7]. As a result, 46 backbone structures of fragment 1–6 were found to meet the requirement $\Delta U = U - U_{min} \leq 10$ kcal/mol.

(2) The preliminary evaluation of the ionized group electrostatic interaction energy, Eel, and the energy of 'near-neighbouring' interactions in the backbone, $E^{\rm b}$, resulted in \sim 750 structures of the fragment 5–11 backbone for which $\Delta(E^{b} + E^{el}) \leq 20$ kcal/mol. At the same time, only 84 of them appear to satisfy the criterion $\Delta U \le 15$ kcal/mol, as judged by the results of energy U calculations for the structures of the 'model fragment': Glu-Ala-Ala-Arg-Ala-Gly-Lys. The optimal backbone conformations of fragment 12–13 have been determined for each of the 84 structures based on the calculation results for the fragment 7-13 (selection of the backbone structures satisfying the criterion $\Delta U \leq 10$ kcal/mol according to the scheme: $8-11 \rightarrow 8-13 \rightarrow 7-13$ accompanied by the refinement of the side chain spacing at each step). This was followed by the determination of 34 backbone structures for the fragment 5-13 which meet the requirement $\Delta U \leq 15$ kcal/mol when the side chains are optimally spaced.

(3) All the possible variants of the fragment 1–4 backbone contained in the earlier selected set of fragment 1–6 backbone structures were examined for each of 34 backbone structures of fragment 5–13 at the level of complete α -MSH molecule. The final step of the calculations including the refinement of side chain spacing led to the selection of 36 (out of > 200 calculated) types of low-energy backbone structures of α -MSH ($\Delta U \le 12$ kcal/mol). Table 1 demonstrates

structures characterized by the optimal backbone conformation of fragment 1 4 with respect to backbone structure of fragment 5-13. Structure 1 from table 1 is depicted in fig.1.

Fig.1. The α -melanotropin structure with lowest energy.

3. Discussion

The most remarkable feature of the structures presented in table 1 is the close spacing of the side chains of Glu_5 and Arg_8 residues. At the same time,

Table 1 The set of low-energy α -MSH structures

	Backbone structures													
Resid	ue Angl	e 1	2	3	4	5	6	7	8	9	10	11	12	13
	φ	-106	-128	-124	+99	-126	-119	-133	-133	-118	-121	-111	-119	-12
Ser y		145	126	120	142	118	155	142	136	154	111	-42	154	13
	⁷ 1	170	-64	-62	61	-63	177	-178	-179	176	179	176	176	-17
	× 2	1/7	180	175	119	176	162	180	180	161	178	172	162	18
	φ	52	-136	-140	49	-142	-128	-132	-145	-118	-139	48	-121	-13
Tyr	· Ψ.	- 57	- 55	-55	-58	- 59	11	142	166	10	- 56	31	12	10
	× 1	89	96	97	101	97	93	79	88	90	97	-01	-00	-4
	× ² ₃	-86	-97	-93	-84	-93	-83	-88	84	-83	-97	-95	-83	8
	φ	-151	-107	-97	-144	-107	-114	-128	-101	-115	-130	+142	-114	-16
Ser	Ý	-53	- 34	- 35	- 50	- 33	- 37	142	- 32	- 30	-48	-53	-31	- 5
	× 1	50	58	57	51	58	47	-178	57	52	55	180	50	5
	× 2	180	179	178	150	176	179	-175	179	179	177	180	179	180
	φ	+102	-127	-124	-113	-121	-105	-137	-143	-104	-127	-142	-105	-12
	Ψ	-49	158	153	-47	110	- 36	132	149	-41	156	101	-40	14
Met	× 1	-83	-160	-160	- 81	-156	-83	-101	-160	-64	-81	-80	-61	-80
	v ² 2	-177	+178	-161	177	178	51	180	-160	161	81	180	160	80
	~ 3	-1//	1/3	100	=1//	1/0	-1/0	100	175	•1//	-1/8	-179	-178	171
	Ŷ	-119	-105	-109	-135	-152	-114	-133	-133	-113	62	-140	-114	6
¢1.,	Ψ ~	128	145	120	132	144	131	122	127	134	152	150	133	13
GIU	$\frac{1}{\chi}$	- 120	-122	-100	-130	-67	-161	-156	-160	-159	-74	- 76	-161	-172
	x 3	75	92	80	89	104	95	86	91	92	-175	-177 84	-97	-150
	φ	-166	-150	-113	-153	-71	-131	-148	-150	-136	-102	-94	-135	- 104
His	ψ	39	43	- 36	59	-22	116	49	39	107	- 32	-33	110	-28
	\times 1	40	- 39	-41	40	75	- 44	- 58	40	-42	60	60	-40	60
	× 2	-82	85	81	-80	80	-61	81	-80	-81	-80	-81	-80	, 80
Fhc	φ	-122	-137	-138	-144	-53	31	-116	-110	34	-142	-141	34	- 37
	Ψ	-46	- 54	143	-49	- 35	78	-41	-41	83	140	136	83	-44
	$\frac{\gamma_1}{\gamma_2}$	- 58 99	-76	87	-76	-/4 97	-61 92	-42 101	-40 104	-57	179 81	-177	-58 97	-80 96
Arg	2	_												
	9	-117	-112	-96	-118	-92	-140	-103	-105	-135	-134	-136	-137	-123
	φ ×	-49	- 7 9	- 10	-73	-23	- 78	+67	-73	-70	- 76	- 76	- 71	- 78
	× 1	145	143	-165	143	-174	-177	161	170	-173	174	171	-174	153
	x	-80	-81	171	-81	-154	-139	-151	-78	-160	170	173	-159	-78
	× 4	104	109	-84	105	145	140	89	111	143	126	144	144	-90
	φ	-116	-114	-107	-81	-154	-128	-153	-141	-135	~133	-136	-130	-117
Trp	φ	146	152	129	-47	144	150	145	143	- 54	140	132	127	-49
	× 1 v.	1/8	-1/5	40	-100	-178	83	-101	-79	-41	98	97	101	-81
	~ 2				100				.5				 	
Gly	φ ψ	51	82 -65	ъ3 51	- 73 - 38	-45	32	-66 99	- 34 - 27	- 39	46	53	-43	-02
	¢	-109	-130	-105	-124	-135	-146	-123	-111	-125	-132	+131	-86	-143
Lys	ψ	135	102	130	113	136	143	111	146	140	142	121	137	133
	ý,	-163	- 70	-162	-67	-72	-71	-62	-76	-61	- 7.3	-72	-55	54
	× 2	179	175	-171	162	162	147	163	180	94	170	178	156	-171
	× 3	-172	-173	166	-169	-171	-162	-169	180	-139	-173	-175	-157	-177
	γ. 4	167	177	-175	165	1/2	175	164	180	1/1	179	-1//	104	- 105
Pra	Ŷ	- 32	119	- 32	128	- 30	-31	- 39	110	140	- 28	-35	129	-40
	Ŷ	-109	-137	-106	-123	-120	-110	-124	-134	-118	-106	-109	-119	-113
Val	Ý	129	132	132	132	137	143	137	134	133	138	129	133 -175	129
	×1	-1/8	1/6	180	-1/9	-1/9	-1//	-1/6	1/0	-1/0	-1//	-1/7	-175	-1/4
∆U, kcal/mol 0.		0.0	4.4	5.0	5.0	5.4	6.6	ь.7	/.0	8.0	9.3	9.8	10.9	11.3
atomic C	5 Glu ^{-C} År	8 ^{3.3}	3.3	3.8	3.4	3.1	5.3	4.4	3.4	5.5	4.0	4.1	5.5	3.7
i c	d Clu- ^N Ly Clu-C	s 8.8	10.9	3.5	8.5	4.4	2.9	3.8	12.4	3.4	3.5	3.5	3.0 7 e	3.6
с	Tyr ^{-C} Tr	р 9.5	A.A	10.7	9.3	6.0	1.3	12.7	/.0	/.0	9.7	5.7	1.5	10.1
nent 6-9 bone		BRRB	BRRB	RBRB	BRRR	RRRB	BLRB	BRRB	BRRB	BLRR	RBBB	RBBB	BLRB	RRBH

Dihedral angle values in accordance with [14]

the side chain of lysine is in many cases directed 'outside' the fragment 6–9 (e.g., fig.1) which can acts as the 'active centre' of the molecule and allegedly provides direct binding to specific receptors [8]. This peculiarity of the molecule's space organization agrees well with the high melanotropic activity of α -MSH analogues, where Lys₁₁ is substituted by Nle, Ser or even Gly [9,10]. Furthermore, it can elucidate the reasons for the drop in lipolytic activity found for ACTH 2–19 analogues with cystine bridges of (2,10), (3,10) or (5,10) type [11]. Typically, the data in table 1 frequently imply the retention of BRRB or BRRR structures for the fragment 6–9 backbone, thus indicating considerable conformational rigidity of this 'active centre'.

The data given in table 1 are also in keeping with the results of physico-chemical studies on the ACTH space structure which indicate the presence of α -helix elements [12] in the peptide backbone as well as with the estimation of experimental values (~10 Å) found for the distance between the side chains of Tyr₂ and Trp₉ residues [13]. Consequently, it can be assumed that the set of low-energy conformations found in this study contains sufficient information concerning the main features of α -MSH space organization and can be therefore applied to the study of conformationfunction relationships for α -melanotropin and adrenocorticotropin.

References

- [1] Scheraga, H. A. (1968) Adv. Phys. Org. Chem. 6, 103-183.
- [2] Galaktionov, S. G., Nikiforovich, G. V., Shenderovich, M. D., Chipens, G. I. and Vegner, R. E. (1976) in: Peptides-1976 (Loffet, A. ed) pp. 617-624, Bruxelles.
- [3] Balodis, Yu. Yu., Nikiforovich, G. V., Grinsteine, I. V., Vegner, R. E. and Chipens, G. I. (1978) FEBS Lett. 86, 239-242.
- [4] Nikiforovich, G. V., Leonova, V. I., Galaktionov, S. G. and Chipens, G. I. (1979) Int. J. Pept. Prot. Res. 13, 363-373.
- [5] Nikiforovich, G. V., Rosenblit, S. A. and Chipens, G. I. (1980) in: abst. 3rd USSR-FRG Symp. Peptide Chemistry, p. 39, Moscow.
- [6] Akhrem, A. A., Golubovich, V. P., Galaktionov, S. G., Nikiforovich, G. V., Shenderovich, M. D. and Sherman, S. A. (1976) Izv. Akad. Nauk BSSR, chem. ser. 5, 82-93.
- [7] Nikiforovich, G. V., Shenderovich, M. D. and Balodis, Yu. Yu. (1981) Bioorg. Khim. in press.
- [8] Otsuka, H. and Inouye, K. (1964) Bull. Chem. Soc. Japan 37, 1465--1471.
- [9] Eberle, A. N. (1976) Dissertation ETH 5735, Zurich.
- [10] Geiger, R., Sandow, J. and Kastin, A. J. (1977) Hoppe-Seyler's Z. Physiol. Chem. 358, 1475-1481.
- [11] Blake, J., Rao, A. J. and Li, C. H. (1979) Int. J. Pept. Prot. Res. 13, 346–352.
- [12] Low, M., Kisfaludy, L. and Fermandjian, S. (1975) Acta Biochim. Biophys. Acad. Sci. Hung. 10, 229–231.
- [13] Eisinger, J. (1969) Biochemistry 8, 3902-3908.
- [14] IUPAC-IUB Commission on biochemical nomenclature (1974) Pure Appl. Chem. 40, 293-307.