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1. Introduction 

The study of conformation-function relationships 

in biologically active peptides requires a detailed knowl- 
edge of their space structure. Semi-empirical confor- 
mational analysis is one of the methods providing the 
necessary information [ l-41. This communication 
describes the set of low-energy structures of a-melano- 
tropin (a-MSH) peptide backbone determined by that 
method. cr-MSH (Ac-Serr-Tyra-Sera-Met4--Glus- 
His,-Phe,-Args-Trp,-Glyro---Lysrr-ProIz-Valra- 
NH2) is the natural oligopeptide which in many respects 
can be regarded as a natural analogue of corticotropin 
(ACTH). 

2. Methods and results 

The intramolecular conformational energy U in- 
volved the non-bonded, electrostatic and torsional 
potentials along with the hydrogen bond potentials 
[4]. The ionogenic side chains of the molecule (Glu, 
Arg, Lys) are assumed completely ionized [5]. The 
sets of local energy minima of the peptide backbone, 

i.e., B (up - -140”, II/ - 140”) R (cp -6O”, j, - -60”) 
L (p - 60”, J/ - 60”) and H (for the Glyr, residue; 

cp - 80”) I) -80”) conformations and all the Xr - 60”) 
180”, -60” angle rotamers were considered as possible 
molecule conformations. The values of dihedral angles 
X*-.X4 were chosen in accordance with the calcula- 
tion results obtained for tha appropriate monopep- 
tides [6]. The principal steps involved in the selection 
of low-energy backbone structures are as follows: 

(1) Determination of the set of low-energy backbone 
structures for molecule fragment l--6 using the confor- 
mational energy ZJ calculations for all possible di- and 
tripeptide conformations and consecutive estimation 
of ‘near-neighbouring’ interaction energies in tetra-, 
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penta- and hexapeptide fragments (see [2]). The final 
stage involves the refinement of side chain spacing for 
each of the selected hexapeptide backbone structures 
using an algorithm for the selection of energetically 
optimal dihedral angles X [7]. As a result, 46 backbone 
structures of fragment l-6 were found to meet the 
requirement AU = I/-Urni,, < 10 kcal/mol. 

(2) The preliminary evaluation of the ionized group 

electrostatic interaction energy, fi@, and the energy of 

‘near-neighbouring’ interactions in the backbone, Eb, 
resulted in -750 structures of the fragment 5-11 
backbone for which A(Eb + IF’) < 20 kcal/mol. At 
the same time, only 84 of them appear to satisfy the 
criterion AU < 15 kcal/mol, as judged by the results 
of energy U calculations for the structures of the 
‘model fragment’: Glu-Ala-Ala-ArggAla-ugly-Lys. 
The optimal backbone conformations of fragment 
12213 have been determined for each of the 84 struc- 
tures based on the calculation results for the fragment 
7-13 (selection of the backbone structures satisfying 
the criterion AU < 10 kcal/mol according to the 
scheme: 8-l 1 + 8-13 + 7-13 accompanied by the 
refinement of the side chain spacing at each step). 
This was followed by the determination of 34 backbone 
structures for the fragment 5-13 which meet the 
requirement AU < 15 kcal/mol when the side chains 
are optimally spaced. 

(3) All the possible variants of the fragment l-4 
backbone contained in the earlier selected set of frag- 

ment l-6 backbone structures were examined for 

each of 34 backbone structures of fragment 5-I 3 at 
the level of complete a-MSH molecule. The final step 
of the calculations including the refinement of side 
chain spacing led to the selection of 36 (out of > 200 
calculated) types of lowenergy backbone structures 
of (w-MSH (AU< 12 kcal/mol). Table 1 demonstrates 
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structures characterized by the optimal backbone con- 
formation of fragment l-4 with respect to backbone 
structure of fragment 5-13. Structure 1 from table 1 
is depicted in fig.1. 

3. Discussion 

The most remarkable feature of the structures 
presented in table 1 is the close spacing of the side 
chains of Glus and Arga residues. At the same time, 

Fig.1. The ol-melanotropin structure with lowest energy 

Table 1 

The set of lowenergy a-MSH structures 
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the side chain of lysine is in many cases directed ‘out- 
side’ the fragment 6-9 (e.g., fig.1) which can acts as 
the ‘active centre’ of the molecule and allegedly pro- 
vides direct binding to specific receptors [8]. This 
peculiarity of the molecule’s space organization agrees 
well with the high melanotropic activity of (Y-MSH 
analogues, where Lysr, is substituted by Nle, Ser or 

even Gly [9,10]. Furthermore, it can elucidate the 
reasons for the drop in lipolytic activity found for 
ACTH 2-l 9 analogues with cystine bridges of (2,10), 
(3 ,I 0) or (5 JO) type [ 111. Typically, the data in 
table 1 frequently imply the retention of BRRB or 
BRRR structures for the fragment 6-9 backbone, 
thus indicating considerable conformational rigidity 
of this ‘active centre’. 

The data given in table 1 are also in keeping with 
the results of physico-chemical studies on the ACTH 
space structure which indicate the presence of o-helix 
elements [ 121 in the peptide backbone as well as with 
the estimation of experimental values (~10 A) found 
for the distance between the side chains of Tyr2 and 
Trpg residues [ 131. Consequently, it can be assumed 
that the set of low-energy conformations found in 
this study contains sufficient information concerning 
the main features of a-MSH space organization and 
can be therefore applied to the study of conformation- 
function relationships for a-melanotropin and adreno- 
corticotropin. 
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