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Part  I of this paper described the community unit as one of the 
indirect and implicit means we employ in specifying the behavior of 
a proposed learning system. I t  has been pointed out that,  for com- 
plex problems, the community unit 's vision tends to be too narrow 
and restricted because of its piecemeal manner of attacking problems. 

This second part of the paper describes a planning mechanism 
which attempts to overcome this difficulty by taking a larger view 
of a given task. After surveying the task in general, the planning 
mechanism subdivides the task into a hierarchy of subtasks each by 
itself presumably easier to perform than the original task. This 
hierarchy of subtasks comprises a rough sketch of a possible course 
of action which guides the community unit. 

To manage classes of problems and to make efficient use of past 
experience, an induction mechanism is proposed. The induction 
mechanism will take a still larger view by considering the system's 
past  experience with various problems and by attempting to apply 
that  experience to related problems which have not previously 
been encountered. 

PLANNING: PLACING GUIDEPOSTS ON THE ROAD TO TI-IE 
GOAL 

B y  p lann ing  as an  a id  to  p r o b l e m  solving, we m e a n  ana lyz ing  a given 
p r o b l e m  into  a n u m b e r  of smal le r  subproblems .  People  conf ron ted  wi th  
difficult  p rob l ems  t y p i c a l l y  f ind p lann ing  useful,  indeed  somet imes  in- 
d ispensable .  P l a n n i n g  makes  possible  more  economica l  search t h r o u g h  
a n  immense  space of possible  combina t ions ,  for combina t ions  which  will 
serve as so lu t ions  to  the  g iven  p rob lem.  The  accep tab le  combina t ions  
are  genera l ly  sca t t e red  t h r o u g h o u t  the  space w i thou t  a p p a r e n t  p a t t e r n  
and  w i th  low f requency  in a n y  one sub-space.  M i n s k y  (1961)1 a rguing  
cogen t ly  for the  power  and  i m p o r t a n c e  of p lanning ,  says  t h a t  "genera l ly  

* Part  I appeared in Inform. and Control 5, 347-367 (1962). 
1 Additional discussions and useful suggestions in this area are found in Amarel 

(1962), Minsky (1957), and in Newell et al. (1959, 1960), 
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speaking, a successful division [of a complicated problem into a number 
of subproblems] will reduce the search time not by a mere fraction, but  
by a fractional exponent. In  a graph with 10 branches descending from 
each node, a 20-step search might involve 102o trials, which is out of the 
question, while the insertion of just four lemmas or sequential subgoals 
might reduce the search to only 5 × 104 trials, which is within reason 
for machine exploration . . . .  Note that  even if one encountered, say, 106 
failures of such procedures before success, one would still have gained a 
factor of perhaps 101° in over-all trial reduction[" 

A planning mechanism which views, at an abstract level, a given task 
as a whole and then suggests possible divisions of it into a number of 
subtasks, each of which can be attacked by  a smaller search (or be 
further divided), is proposed for the system. 
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PROPOSED MECHANISM 

Our planning mechanism (Fig. 1) is similar in structure to the com- 
munity unit. In fact, the planning machanism uses, in addition to its own 
records, the same record in memory which the community unit uses. 
We again assume that requested tasks are in descriptive form. (See 
Part I, pp. 349-350.) 

We propose to use a set of characterizing expressions (attributes and 
their values) such that a particular subset of this set serves to define a 
task category. Categorization of a task for the planning mechanism 
may be fine or coarse depending on the amount of detail, i.e., on the 
size of the subset of characterizing expressions. Associated with each 
category, fine or coarse, are names of methods or operations which will 
probably help perform a task belonging to a category. For each asso- 
ciated method or operation there is listed a probable utility value and a 
description of the method in descriptive request form. That description 
shows the input (current state) and output (desired state) of the method 
or operation. The coarser the task category, the more abstract and 
general the corresponding descriptions of methods or operations will 
be; descriptions of input and output will contain parameters and will 
indicate only what is likely to happen when a method or operation is 
applied to a task belonging to the category. 

Following task analysis and categorization by the task analyzer, the 
subtask provider proposes to the current-state producer, another part 
of the planning mechanism (Fig. 1), a set of subtasks in the form of 
methods or operations with input and output expressed in descriptive 
form. The input of a proposed method or operation must somehow be 
similar to the current state of the given task. Criteria for similarity are 
relaxed or tightened depending on the coarseness of task categorization 
being used. The current-state producer uses the output descriptions of 
the proposed subtasks to determine current states of new tasks and lists 
possible values for each parameter if there are any. The task analyzer 
records the output of the current-state producer as branches of the state 
graph as shown below and chooses one of them as defining the next task 
to be analyzed. The choice is made on the basis of externally provided 
criteria. For instance, the choice might be made on the basis of some 
rough measure of "how far" each proposed current state is from the 
desired state of the original task. (Cf. The Newell, Shaw, and Simon 
General Problem Solver.) Given the new task, defined by the chosen new 
current state and the originally given desired state, the same sequence 
of steps is repeated. 



58 HORMANN 

current 
state 

FIG. 2. State graph at a planning stage 

desired 
state 

Shaded nodes of the graph (Fig. 2) indicate grouping of "similar" 
states using coarse task categorization during the early planning stages. 
Under the control of a higher-level program which specifies the level of 
detail at each planning stage, a rough plan is developed first with only 
a few guideposts inserted; then subplans are developed connecting the 
guideposts (nodes on the graph, taken two at a time consecutively upon 
re-entering the planning mechanism) and using finer categories; then 
subsubplans are developed using still finer categories, etc. 

Objects manipulated by the planning mechanism are state descriptions 
representing stepping stones; actual operations which make these 
state changes possible are not the direct concern of the planning mecha- 
nism. It  should be noted that although the process of performing the 
given task eventually has to be discovered in detail, in executable form, 
fine details and exact matches need not be sought until a reasonably good 
plan is obtained. 

Subtasks, defined by pairs of states, are matched roughly with ab- 
stracted input-output descriptions of available methods or operations 
belonging to the category. Matching current states of proposed sub- 
tasks with the desired state of a previously chosen subtask is done only 
roughly in the early planning stages. However, as the planning progresses 
and subtasks are divided into smaller subtasks, similarity criteria are 
tightened and the match of states must be made more and more exact. 
As the descriptions of states or of subtasks become more concrete and 
more detailed, the system may ascertain that methods or operations 
specified for a particular subtask do not exist in the system's memory. 
Depending on the estimate of the difficulty of the subtask, which de- 
pends on the number of unmatched parameter values and their positions, 
a higher-level program decides whether or not to (1) activate the 
community unit to work on this particular subtask by modifying existing 
programs whose abstracted description previously matched the state 
descriptions of the subtask, (2) look for a possibility of further sub- 
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FIG. 3. The Tower of Hanoi puzzle 

division, (3) modify the current plan by considering other possible sub- 
tasks to replace this subtask, possibly resulting in changes in subsequent 
subtasks, or (4) back up one level of planning stages by relaxing the 
similarity criteria and coarsening the categories in order to start a new 
direction of exploration and to proceed with planning again. Note that 
in case (1), the abstracted description of methods or operations, which 
have been matched previously with the subtask, already narrowed 
the search for programs to which the required program must be "similar." 
Furthermore, places where matching fails after finer details are supplied, 
automatically indicate where the modification effort should be focused. 

AN ILLUSTRATION OF PLANNING MECHANISM OPERATION 

TOWER OF HANOI PUZZLE 

A puzz]e called the "Tower of Hanoi ''2 is used here to illustrate some 
of the features discussed in connection with the planning mechanism. 
We shall first introduce the puzzle independently of the mechanism. 

The problem posed in the Tower of Hanoi, illustrated in Fig. 3, is to 
transfer the tower of disks from one peg to either of two empty pegs in 
the fewest possible moves, moving one disk at a time and never placing 
a disk on top of a smaller one. It has been proved that the fewest possible 
moves for n disks is 2 ~ - 1. 

This puzzle was chosen as the first testing vehicle for our system for 
several reasons. Its solution is relatively simple but not trivial. In an 
experiment using human subjects, the time required for solution ranged 
from minutes to days. For some it was unsolvable. Another reason for 
choosing the Tower of Hanoi puzzle is that the solution is known to the 

2 GARDNER, MARTIN, (1959), "Mathematical Puzzles and Diversions," pp. 
57-59. Simon & Schuster, New York. 
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FIG. 4. 3-Disk case in the  descript ive request  form 

experimenter, so that evaluation of performance is easier. In addition, 
the puzzle can be varied by altering the number of disks and pegs 
(currently we always use three pegs) thus allowing a training sequence 
from the simple to the more difficult within the same class of tasks. The 
puzzle also has the important property that the methods for simple 
eases, with suitable abstraction, do provide some help in solving harder 
eases in a fairly non-trivial way. 

The puzzle was given to the system in the descriptive request form. 
Figure 4 illustrates the task for the three-disk ease. Rules of the game 
were presented in the form of a program which generates legal moves 
when the current state is given. 

Columns A, B, and C in the request form diagrams above represent 
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the three pegs in the puzzle and the circled O, (~), and (~) are numbered 
disks from the smMlest to the largest. The symbol ¢ indicates the column 
is empty. Both states are stored as list structures, i.e., the current state 
is a list whose elements are A, B, and C; A itself is a list made up of the 
elements G,  @, and (~; and B and C are empty lists prior to the first 
move. 

If there are more alternatives than one for the desired state as shown 
above, this is internally indicated by a code and by having two or more 
elements in a list named "desired states." Each element is then ex- 
panded as a list. For the Tower of Hanoi experiment, we varied the 
problem either by giving two alternatives for the desired state or by 
making the desired state unique. 

Figure 5 depicts the list structure (move tree) for some of the legal 
moves generated by the program. There are always three legal moves 
at each node of the move tree but only two are indicated because the 
third one lust reverses the move which leads into the node. The top line 
of each box shows the symbolic representation of the particular move; 
for example, 1B means "Move disk Q to column B." The bottom of 
the box shows the current state of the puzzle after the move is made. 
Heavy lines indicate a minimal path; for the three-disk puzzle as stated, 
there are two minimal paths, one ending with three disks in column B, 
the other in column C (not shown in Fig. 5). 

How many nodes (moves and current-state configurations) exist for 
an exhaustive search? It  can be shown that the total number of nodes in 

x-,~-i 2 i the complete tree for n disks is z_~ l  = 22" -- 2. This gives us 254 
for the three-disk case, 65,534 for the four-disk case, 4,294,967,294 for 
five disks, and 18,446,744,073,709,551,614 for six. 

PLANNING FOR THE TOWER OF HANOI PUZZLE 

Suppose the system is currently given the four-disk case after having 
accomplished the three-disk case, and channels this information to the 
planning mechanism. Figure 6 is a schematic representation of a task 
given in descriptive form. The task analyzer uses the system's abstraction 
routine to find that the given task has one more element, (~), than the 
previously accomplished task, everything else being identical. It  then 
uses the system's replace routine to represent three disks, (~), (~), and 
(~), by one dement. 

The subtask provider, using a legal move generator, produces both of 
two possible legal moves (M1 and M2 in Fig. 7). Note that three disks 
are moved together as if they were one disk even though it is illegal to 
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move more than one disk at a time. This is done in the planning stage 
only because the system has a record of previous accomplishment in the 
three-disk ease and because moving three disks from one peg to another 
can ultimately be expressed in terms of legal moves. This is analogous, 
in the community unit, to a subroutine being treated as a single operation 
even though it may be composed of a number of elementary operations. 

Each M~ is stored by the mechanism as a subtask in descriptive request 
form, the top part of an arrow in Fig. 7 pointing to its current state and 
the bottom part pointing to its desired state. From these subtasks, the 
current-state producer finds and outputs the desired states to the task 
analyzer as current states of new subtasks. The task analyzer chooses 
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M1 instead of M2 because of the information on the previous task. But 
this choice, leading through Ms and M4, does not work out because it 
does not lead to the right end state. The planning mechanism returns 
to M2 and thus finds its way to M5 and M8. 

The final sequence of subtasks is presented schematically in Fig. 8. 
The original task is represented by the space from the top to the 

bottom rectangles (Fig. 8), and the gaps, indicated by M2, Ms, and 
M6, are subtasks created by the planning mechanism. The broken 
horizontal lines indicate steps yet to be filled in. The current and the 
desired states for both M2 and Ms do not match those of the task pre- 
viously accomplished; the operation which worked before is for three 
disks starting at column A as the current state and ending at column B 
as the desired state. These "before" and "after" states of the known 
operation are then abstracted so that column names can be unspecified. 
At this level of abstraction, even though only one variation is known, 
all six variations s of the three-disk puzzle are treated the same and are 
solved, and are represented by an abstracted form we will call M 3. 
Successful accomplishment of M~ and Ms now requires instantiating on 
the abstract form, i.e., supplying values to parameters. The instantiation 
is not a matter of trial and error but is directed by the requirement of 
exactly matching current and desired states of the sequentially ordered 

3 For  each n-disk case, there  are six var ia t ions ;  for the  cur ren t  s ta te ,  the re  
are three  possible co lumn posit ions and  for each of these,  the  desired s t a t e  may  
take  one of the  two remain ing  column posit ions.  
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subtasks. For our example, the actions necessary for accomplishment 
of Ms and M6 are significantly fewer (in number of operations and 
execution time) than if they were performed without using the system's 
past experience in one of the six variations. 

In the example, the planning mechanism has to examine all possible 
subtasks 4 before it finds the right sequence. This is an exhaustive search. 
However, planning of this kind is relatively cheap-- i t  takes six exami- 
nations at  this planning stage to find the path. But  if we were to consider 
individual moves instead of the larger steps we know how to make on 
the basis of past experience, an exhaustive search for the correct path at  
this stage would take 65,534 examinations. 

A CASE OF MECHANICAL INDUCTION 

Induction may be defined as the formulation of general rules about 
observed cases of a phenomenon and the application of these rules to the 
making of predictions. There are a number of useful articles discussing 
inductive inference from the standpoint of artificial intelligence, e.g., 
Amarel (1962), Kochen (1960) Solomonoff (1957, 1960), and Watanabe 
(1960). 

The inductive procedure observed in humans may be described in 
general terms: when a human wants to formulate general rules about a 
class of phenomena, he first makes a guess to form a hypothesis; next he 
deduces certain consequences of his hypothesis and tests them against 
new and old evidence; and then he increases his confidence in the hy- 
pothesis, modifies the hypothesis, or forms a new hypothesis and repeats 
the procedure. 

For our experiment, we give to the proposed system, as a training 
sequence, simple inductive tasks. A set of general rules to be formulated 
by the system is unique and is known to the experimenter, so that  he 
can provide the system with information about the degree of its success 
and can suggest lines of investigation which may result in the modifi- 
cation of a previously formed hypothesis or in the forming of a new 
hypothesis, by the system. 

The mechanism proposed has a structure similar to tha t  of the corn- 

4 There are two legal moves generated by the legal move generator at each 
node, but the other moves possible instead of Ms and M6 involve moving of the 
group (D-(~-(~) just moved (see Fig. 7). We assume here, for simplicity, that the 
system has learned or has been told that moving of the same item twice in succes- 
sion is wasteful because a single move can obtain the same result. 
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munity unit. Here we shall present it in the context of solving one par- 
ticular task, but it is to be hoped that at least some useful generalization 
beyond this particular task is possible. We say this despite claims that 
the main difficulty with artificial-intelligence research is that it cannot 
generalize beyond the very specific tasks for which programs are written 
and systems designed. (See (Kelly and Selfridge, 1962).) 

The inductive task we examine is that in connection with the Tower 
of Hanoi puzzle. The system is given a sequence of tasks of increasing 
difficulty and is asked to discover how to solve the puzzle for n disks 
when methods of solving the puzzle for 3, 4, • •., n - 1 disks are known. 

We have set up two experiments with this puzzle. The second experi- 
ment is a more realistically designed extension of the first experiment; 
the system is given only the basic "knowledge" of the puzzle itself and 
three "hints," two of which are helpful only a part of the time, and is 
asked to find a successful sequence of moves for the three-disk case. A 
great deal of trial-and-error action results at first, but the manner of 
growing and examining move-trees becomes less and less aimless as the 
system gains experience with the three-disk case, the four-disk case, the 
five, etc., until finally, with this induction mechanism, the general 
pattern of successful moves for any n-disk case is discovered. 

Since the first experiment, although rather unrealistically restricted, 
makes direct use of the induction mechanism, it will be described in 
detail. A "mechanical trainer," which knows everything about the 
puzzle, is stored outside the learning system in the computer memory; 
its purpose is to eliminate actual human intervention as much as possible 
in order to use computer time efficiently. 

The trainer simply "gives" one of the successful sequences of moves 
for the three-disk case together with the corresponding task represen- 
tation in the descriptive request form. Let us employ a shorthand 
notation, H(n, A, B), for the case in which n disks are transferred from 
column A to column B, and H(n, A, B/C) to indicate the disjunctive 
case having two alternatives B and C for its desired state. 

The first information given to the system is that the task is 
H(3, A, B/C) and the successful sequence of moves which accomplishes 
H(3, A, B) is 

1 2 1 3 1 2 1 
B C C B A B B' 

where the top line shows particular disks moved and the bottom line 
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stance, B means that disk (~) was moved to column B. 

The four-disk case H(4 ,  A, B/C) is now given, and the system is 
asked to find the successful sequence for the new case. The induction 
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mechanism then goes to work. Figure 9 shows the structure of the 
mechanism with its members: the task analyzer, the conjecture gener- 
ator, and the consequence generator. 

OBSERVATION AND ANALYSIS 

The first phase of any inductive process is performed by the task 
analyzer of the induction mechanism. For the Tower of Hanoi puzzle, 
the task analyzer begins by comparing the descriptive request form of 
the three-disk and four-disk cases (see Fig. 10) by means of the ab- 
straction routine. The conclusion is that both cases are identical except 
for the additional disk, disk Q,  in both the current and desired states 
of the four-disk case. For the next step the elements in the successful 
sequence of moves for the three-disk case and the elements appearing 
in the description of the case are compared by the abstraction routine. 
The conclusion is that the kind and number of distinct elements are the 
same, i.e., that the third abstracts of both contain A, B, C, Q,  Q,  and 
Q and nothing else. The conjecture is made that the sequence of moves 
for the four-disk case must contain the additional element Q if it is to 
match the elements appearing in the description of the four-disk case. 
Furthermore, in examining the sequence of moves, it is discovered that 
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some elements appear more than once. The task analyzer now outputs 
the results of its analyses and a category, "cyclic," to the conjecture 
generator. 

CONJECTURE GENERATION 

Using the information from the task analyzer, the conjecture gener- 
ator, with the aid of its own subunit, produces programs which repre- 
sent conjectures (see Fig. 9). The requests, which the conjecture gener- 
ator constructs and gives to its program-generating subunit, constitute 
a special case of the generalized request form different from the special 
case given as the descriptive request form. Each request is represented 
by a list which contains three pieces of information: 

(1) A sequence of symbols in a list form. 
(2) A symbol indicating that the desired output is a program to 

regenerate the sequence given in (1). 
(3) Symbols representing restrictions and characterization on the task 

which the task analyzer of the induction mechanism is able to supply. 
In our example, the conjecture generator receives the category, 

"cyclic," together with the sequence of successful moves for the three- 
disk case, i.e., 

1 2 1 3 1 2 1 
B C C B A B B 

The conjecture generator separates the top from the bottom line and 
makes two requests of its subunit. In each of the requests, the infor- 
mation on the task stipulates that the sequences produced by the 
generated programs are to have a cyclic pattern. 

~)ERFORMANCE OF THE SUBUNIT 

We now examine what the subunit does in the case of the top line. 
Since a cyclic pattern is requested, the task analyzer of the subunit 
looks for the first recurrent position of the first item on the list 
"1 2 1 3 1 2 1" and finds it to be the third item. It  now takes the first 
two items "1 2" as defining a cycle phase and asks the program provider 
to construct a program which will generate "1 2 1 2 1 2 • • . "  

The program provider now constructs a sequence of instructions which, 
when executed, would generate the symbols (~) and (~ repeatedly, and in 
alternation, any number of times until stopped. This sequence of in- 
structions is then given to the executor-monitor. 
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Let us examine the interaction between the executor-monitor and the 
task analyzer when these instructions are monitored. The proposed 
program, under monitored execution, brings the symbol @ and the 
symbol @ alternately to the task analyzer for examination. The task 
analyzer compares each symbol it receives with the corresponding 
symbol in the given sequence, keeping track of the order and the corre- 
spondence. The first three elements, @, @, and @, presented by the 
program agree with the given sequence, but the fourth one, @, does not. 

Upon detecting this discrepancy, the task analyzer of the subunit 
looks for the second recurrence of the first item. This turns out to be the 
fifth item. It  then uses the first four items "1 2 1 3" as defining a cycle 
phase. This time the program provider constructs a program which, 
when executed, would generate symbols @, @, @, @ repeatedly. 

Interaction between the executor-monitor and the task analyzer this 
time shows that results agree with the given sequence "1 2 1 3 1 2 1." 
The task analyzer now outputs the program to its higher-level program, 
the conjecture generator (see Fig. 9) with a "success" signal. As far as 
the subunit is concerned, the task is successfully accomplished, although 
the produced program is proved to be inadequate by the higher-level 
programs at a later stage. 

Notice that in this method of generating a cycle-producing program, 
the subunit will always find a program which fits the given sequence; it 
is sure to succeed when it takes the entire given sequence as defining a 
cycle. 

When the same procedure is used for the bottom line of the original 
information, "B C C" is the first cycle phase tried, "B C C B A "  is the 
second, and the final accepted one is "B C C B A B." The conjecture 
generator now combines these two programs so that they will produce 
together a sequence of pairs of the desired form and outputs the result 
to the consequence generator. 

THE CONSEQUENCE GENERATOIg AND ITS INTERACTION WITH THE TASK 
ANALYZER 

The consequence generator, together with the task analyzer, step by 
step examines programs supplied by the conjecture generator. The 
examination consists of monitored execution. Each item proposed as a 
member of the solution sequence is in turn proposed to the environment 
by the task analyzer as a prediction of the next move needed to solve 
the four-disk case. 
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The mechanical trainer, serving as the environment of the mechanism 
first checks the legality of a suggested move by means of the legal move 
generator. If illegal, the information is fed back to the task analyzer. If 
legal, the trainer compares it with its stored "knowledge" of the puzzle, 
and feeds back information whether the move is right or wrong. 

In our example the first seven, the ninth and the eleventh suggested 
moves turn out to be right but the eighth, tenth and twelfth moves are 
wrong. A comparison of the suggested and correct moves is: 

1 2 1 3 1 2 I ~ 1 2 1 3 1 2 1 
suggested moves: B C C B A B B C C ~ A [ ]  B C C 

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 
correct moves: 

B C  C B A B B C C A A C B C C 

Squared items indicate where the task analyzer is informed of illegal or 
wrong moves. 

After the complete sequence of correct moves becomes known to the 
task analyzer, the unmatched elements in the suggested sequence and 
the correct-move sequence are then determined and given to the con- 
jecture generator. The conjecture generator modifies previously con- 
structed programs by parameterization, i.e., it replaces unmatched 
places with parameters. The resulting programs, when executed, would 
produce a sequence like this: 

1 2 1 P1 1 2 1 P1 1 2 

B C C P2 A P3B C C P2 

Underlined parts represent cycle phases. P1, P2, and P~ are names of 
sublists. PI contains Q and G,  P2 contains A and B, and P3 contains B 
and C. The fact that G is used for the four-disk puzzle is consistent with 
the eoniecture made earlier that successful moves for the four-disk case 
must contain the element Q. Up to this point, however, this conjecture 
has not been implemented. Our system learns! Next time it immediately 
makes use of the corresponding coniecture. When the five-disk case is 
presented, the task analyzer tentatively includes O as one of the possible 
values of P1. Comparison of suggested and correct moves for the five- 
disk case is: 

suggested moves: 

1 2 1 P l l  2 1 P l l  2 1PI1  2 1 P l l  2 1 P1 1 2 1 P l l  2 1 P l l  2 1 
B C C P 2 A P ~ B C  CP2AP3BCCP~AP~B[-~ CP2AP~BCCP2AP~B 
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correct moves: 

1 2 1 3 1  2 1 4 1 2  1 3 1 2 1 5 1  2 1 3  1 2 1  4 1 2 1 3  1 2 1  
B C C B A B B C C A A C B C C B A B B A C A A B B C C B A B B  

When the task analyzer specifies the possible values for the parameters, 
ia every case only one of the possible moves is legal so the correct move 
is automatically determined without trial and error for each of the 
parameter positions. This is, of course, a singular feature of the Tower of 
Hanoi puzzle. If such a convenient feature were not present, a secondary 
pattern within each list of parameter values would have to be detected, 
using the same mechanism but at a different level of analysis. Among 
the moves suggested for the five-disk ease, there is only one move which 
is wrong, a move at a nonparameter position, position 20. The task 
analyzer gives this information to the conjecture generator which modi- 
fies the existing programs so that they will use an additional parameter. 
The resulting sequence of moves looks like this: 

1 2 1 P1 1 2 1 P1 1 

B P4 C P2 A P~ B P4 C 

where P4 contains A 
phases. 

and C and underlined elements indicate cycle 

When the new programs are used to suggest moves for the six-disk 
case, all turn out to be correct. In fact the parameterized program which 
has now been constructed will solve any n-disk case for three pegs, as 
long as the current state has n disks in column A and the desired state 
is disjunctive, i.e., H(n, A, B/C) in our shorthand notation. Of course, 
the system itself will never know the fact unless told by the trainer. 
However, as the system gets more and more experience with the puzzle, 
and the conjecture (the program) is used successfully more and more 
times, utility values of the conjecture increase so that the task analyzer 
will tend toward directing a straightforward use of the program. 

However, when the system is given the four-disk case, H(4, A, B) 
with B indicating a desired state differing from that of the previously 
accomplished task, H(4, A, C), the situation changes. The task analyzer 
must undergo more analyses and formulate a new conjecture, although 
it can make use of the previously formulated, already successful con- 
jecture. This particular case is not described here since it involves very 
little participation of the induction mechanism. 
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SUMMARY ON THE INDUCTION MECHANISM 

A few important features of the induction mechanism deserve empha- 
sis: 

1. Parameterization in the abstraction process is one way to separate 
more relevant from less relevant information without ignoring the latter. 
In our example, the second pattern was first suggested as B C C B A B, 
next it was parameterized to B C C P2 A P~, and finally to 
B P4 C P2 A P~. At each stage, constants indicate items which are un- 
affected by the change of task. Finally an unchanging pattern is revealed. 

2. Two-level usage of the feedback structure permits the initial ad hoc 
manner of generating conjectures to become less arbitrary each time 
the mechanism is given more information. Note that the program- 
generating subunit is requested to regenerate a given sequence under 
conditions imposed by the conjecture generator; the subunit simply 
obeys. The given sequence and conditions may change each time the 
subunit is used, but such changes are decided by the coniecture gener- 
ator, not by the subunit. Decisions made by the conjecture generator 
are influenced by analyses made by the task analyzer which, in turn, 
are influenced by higher-level programs. 

3. Conjectures are represented by executable programs. The con- 
iecture program is executed and tested directly while it is being formed 
by the subunit and also while it is being used to generate consequences. 
A program which embodies a generating principle provides a compact 
and direct means of representing the inductive process of extrapolating 
beyond recorded instances. 

4. What about problems whose complexity is beyond the direct reach 
of such a mechanism? Suppose, at the higher level, the system can ob- 
serve the function of the induction mechanism and the way in which 
puzzles have been presented from the simpler to the more complex, 
ultimately resulting in a general workable strategy for n-disk puzzles. 
It  is extremely important that the system be able to imitate the over-all 
process in the future. 

Students in natural sciences often learn, by imitation, clever heuristics 
for finding suitable simplification. They observe scientists making de- 
liberate oversimplifications of a situation by considering only a few 
variables and by restricting the behavior of these variables to simple 
known functions. Scientists usually study simple cases first and then 
vary them to more complex cases, study the effects of changes, make 
conjectures, and repeat the process. If our system had learned these 
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processes, and if the eight-disk case of the Tower of Hanoi puzzle were 
given at the outset, it might have tried out the two-disk or three-disk 
puzzle of its own accord. Note that at this stage, solving the puzzle even 
by the exhaustive method is feasible. For the three-disk puzzle, the 
exhaustive method would require 254 examinations of the current state 
configuration whereas such a method for the eight-disk case would be 
out of the question. 

In order for the system to be able to learn from a carefully selected 
training sequence and use the experience toward creating its own trial 
sequence of simplified tasks, the system must be able to construct and 
modify its "cognitive map" with temporal sense. In addition, effective 
utilization of the cognitive map is necessary; this may be realized by a 
special higher-level program, "master monitor," which ruminates peri- 
odically and takes a bigger view of the tasks given in the past rather 
than focusing on one task at any given moment. 

CONCLUSION 

A system of programs with three mechanisms has been proposed. To 
discover capabilities and limitations of such a system, a study is being 
made to see how it works in specific, relatively simple situations. We 
shall try several experiments to see in what ways the system falls short 
of the intended "learning system." There can be no doubt that before we 
can achieve such a system there is a great deal of learning we must do. 

We begin with a simple system and give it simple tasks. I t  is our hope 
that we shall discover principles applicable to a complex system which 
can work at different levels of abstraction as well as in different problem 
situations. We are aware, however, that methods which work on simple 
cases may not necessarily work on more complex ones. 

We are interested in discovering how higher-order composite capa- 
bilities might evolve from a given set of a priori capabilities. Our interest, 
however, is not in discovering what can be made to evolve from a 
minimum endowment. If a powerful learning mechanism becomes avail- 
able, we shall probably want to preprogram the system to the limit 
of our capabilities before we turn it loose. 

EXTERNAL FEEDBACK: COMMUNICATION BETWEEN THE SYSTEM AND ITS 

TRAINER 

.~VIost of our discussion of feedback has been in terms of internal 
communication among units and subsystems. We assumed only a limited 
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amount and a very restricted form of feedback from outside the system. 
Ultimately, however, we wish to give the system lessons, exercises, and 
hints in much the same way as we do for human learners. McCarthy 
(1959) points out, "In order for a program to be capable of learning 
something it must first be capable of being told it." The main difficulty 
in computer communication is that the transformation of descriptive 
information into instructions is not a simple trick, as it seems in human 
communication. It is one thing to "tell" the machine what to do by 
inputting programs and letting it execute them, but it is another to 
"describe" what is to be done and expect the machine to do it. Execut- 
able programs must somehow be produced by the machine before it can 
perform the task. 

EPILOGUE 

This epilogue describes the current status of the implementation of 
the system by means of IPL-V programs. 

Both experiments with the Tower of Hanoi puzzle mentioned ia the 
section on the induction mechanism have been successfully completed. 
Members of the community unit have been programmed and the 
monitored mode of some operations tested, but none of the sophistica- 
tions for generalization have been incorporated. Our experience with the 
Tower of Hanoi puzzle and with the simple version of the community 
unit indicates that more appropriate internal representation and manipu- 
lation schemes are necessary for what amount to construction, modifica- 
tion, and utilization of a "cognitive map. ''5 (We have so far used IPL-V 
for both external and internal languages.) 

Before we can start concerted effort toward full-scale implementation 
of the system, much more research is necessary on techniques related 
to characterization of tasks and methods and to a distance concept 
which, in turn, links together other concepts such as similarity iudgment, 
partial success, and difficulty estimates. We are currently working on 
each mechanism somewhat independently with research emphasis on 
the techniques mentioned above. However, for more complex problem 
situations, all mechanisms must be coordinated and work together. 
A rudimentary attempt at such coordination is described by Hormann, 
Shaffer and Van Wormer (1963). 

RECEIVED: July 13, 1962 

See p. 354 in Part I of this paper. 
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