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Cell-free synthetic biology system organizes multiple enzymes (parts) from different sources to imple-
ment unnatural catalytic functions. Highly adaption between the catalytic parts is crucial for building up
efficient artificial biosynthetic systems. Protein engineering is a powerful technology to tailor various
enzymatic properties including catalytic efficiency, substrate specificity, temperature adaptation and

even achieve new catalytic functions. However, altering enzymatic pH optimum still remains a chal-
lenging task. In this study, we proposed a novel sequence homolog-based protein engineering strategy
for shifting the enzymatic pH optimum based on statistical analyses of sequence-function relationship
data of enzyme family. By two statistical procedures, artificial neural networks (ANNs) and least absolute
shrinkage and selection operator (Lasso), five amino acids in GH11 xylanase family were identified to be
related to the evolution of enzymatic pH optimum. Site-directed mutagenesis of a thermophilic xylanase
from Caldicellulosiruptor bescii revealed that four out of five mutations could alter the enzymatic pH
optima toward acidic condition without compromising the catalytic activity and thermostability. Com-
bination of the positive mutants resulted in the best mutant M31 that decreased its pH optimum for 1.5
units and showed increased catalytic activity at pH < 5.0 compared to the wild-type enzyme. Structure
analysis revealed that all the mutations are distant from the active center, which may be difficult to be
identified by conventional rational design strategy. Interestingly, the four mutation sites are clustered at
a certain region of the enzyme, suggesting a potential “hot zone” for regulating the pH optima of
xylanases. This study provides an efficient method of modulating enzymatic pH optima based on sta-
tistical sequence analyses, which can facilitate the design and optimization of suitable catalytic parts for
the construction of complicated cell-free synthetic biology systems.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction

In recent years, considerable progress has been made in the field
of cell-free synthetic biology in both conception and practice [1-3].
Building up multi-enzyme catalytic cascades in vitro is beginning to
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provide an improved toolbox and more efficient processes in
medical diagnostics, synthesis of fuel compounds, drug molecules
and proteins [4—6]. With the excellence of easy to be constructed,
tested and optimized, cell-free synthetic biology system can facil-
itate enzymatic catalysis under non-physiological condition and is
compatible with cytotoxic components. Thus, cell-free synthetic
biology system possesses unique advantages over conventional
in vivo system. However, the construction of cell-free synthetic
biology system relies on recruiting and organizing multiple en-
zymes from diverse organisms to work synergistically, in which
case the overall efficiency is depended on the compatibility of each
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enzyme to the reaction condition. Especially, employing enzymes
with different pH optima requires a compromise in choosing pH
value of the reaction buffering system, which would severely sac-
rifice the biosynthetic efficiency [7,8]. Therefore, shifting enzymatic
pH optima towards desired pH value is crucial for the high per-
formance of a cell-free synthetic biology system.

Protein engineering is powerful in optimizing various enzymatic
catalytic properties, such as catalytic activity, stability, reaction
temperature, substrate specificity, etc. [9—12]. Scientists also try to
use this technique to change the enzymatic pH optima to fulfill the
requirement of harsh industrial conditions [13—17]. Theoretically,
the enzymatic pH optimum is governed by the pK, value of key
catalytic residues, which can be tuned by the mutations adjacent to
the active center. Nielsen and co-workers developed pKD web-
server to predict the pK; changes caused by amino acid sub-
stitutions [18,19]. Ohara et al. described that unique extended
hydrogen bond network in the active site was important for
adaptation to a low pH [15]. Tishkov et al. engineered the pH-
activity profile of GH12 endoglucanase by site-directed mutagen-
esis around the general acid/base Glu catalyst residue [14]. How-
ever, due to the complicated amino acid interaction networks in the
active site, mutations around the active site may also cause unex-
pected interference on substrate binding or catalysis process, which
brings a risk of losing catalytic activity. In addition, since pH value is
an exponential factor, i.e. three-unit shift of pH value corresponds
to 1000-fold change in sensitivity of key residues towards protons,
the physical chemistry requirement for shifting the pK, value is
actually quite large. How to maintain the catalytic activity and
substrate specificity along with dramatically changed pK, value,
leaves the engineering of enzymatic pH optima an extremely
challenging task.

To overcome these issues, strategies require less knowledge
about the structure-function relationship have been employed to
engineer enzymatic pH optima, such as directed evolution
[16,20—22], sequence alignment analysis [17,23—26] and charged
residues implantation [13,27]. For instance, Sugino and co-workers
shifted the pH optimum of Acremonium ascorbate oxidase upward
0.5—1.0 unit by randomly mutagenesis [20]. Li et al. improved the
pH optimum of Aspergillus niger xylanase by site-directed muta-
genesis to charged residues [17]. Qiu et al. tailored the pH depen-
dence of human non-pancreatic secretory phospholipase A2 by
surface charge replacements [13]. Although some successes have
been reported, most of them only achieved little change in pH
optima, probably due to the effect of mutations was neutralized by
the complicated interactions within the enzyme. Therefore,
developing novel efficient protein engineering strategies for shift-
ing enzymatic pH optima is still strongly demanded.

GH11 family xylanases can specially hydrolyze internal linkages
on the B-1,4-xylose backbone and play important roles in food,
feed, paper making and biofuel industries [28—31]. GH11 family is
one of the most well-studied enzyme families that contains more
than 1000 family members, among which 270 enzymes have been
characterized and 29 crystal structures have been resolved (http://
www.cazy.org/GH11.html). All the GH11 family members contain a
catalytic domain with the B-jelly roll fold. They share 40%—90%
sequence identity, with similar active-site geometries and the same
catalytic mechanism. However, their pH optima vary widely from
acidic values as low as 2.0 to alkaline values as high as 11.0 [32],
making this family a suitable model to investigate enzymatic pH
adaptation. It has been reported that mutations introduced close to
the active center may significantly shift the enzymatic pH optima.
However, in many cases the shift of pH optima was quite limited
and accompanied with the loss of catalytic activity (Table 1).
Therefore, the efficiency of rational design still remains to be
improved.

The long history of evolution demonstrates the relationship
between amino acid sequences of enzymes and their optimal cat-
alytic conditions. In this study, we developed a novel strategy for
shifting the pH adaptation of enzymes by means of biomathematics
and biostatistics (Scheme 1). From more than one thousand GH11
xylanase sequences, 113 non-redundant, well-characterized en-
zymes were collected to construct a database with annotated pH
optima. After digitizing the amino acid sequences according to
isoelectric point (pl value) and hydropathy index (Hy value), the
relationship between the sequences and their pH optima was
analyzed by artificial neural networks (ANNs) and least absolute
shrinkage and selection operator (Lasso) algorithms. Five potential
residues related to pH adaptation were identified. By introducing
these single-site mutations to the catalytic domain of a neutral
xylanase from thermophilic bacterium Caldicellulosiruptor bescii
DSM 6725 (CbX-CD), four out of five mutants showed significant
shift in pH optima without disrupting the catalytic activity. Com-
bination of the positive sites further increased the shift of pH op-
timum by 1.5 units. The mechanism on how the mutagenesis affect
enzymatic pH optimum was also discussed.

2. Material and methods
2.1. Material

Beech wood xylan was purchased from Sigma-Aldrich (St. Louis,
USA). Restriction enzyme and T4 ligase were purchased from New
England Biolabs (Ipswich, MA). PrimeSTAR polymerase was pur-
chased from TaKaRa (Dalian, China). The QIAquick PCR purification
kit was purchased from Qiagen (Hilden, Germany). The pET-28a
vector was purchased from Novagen (Darmstadt, Germany).
E. coli BL21-CodonPlus (DE3)-RIL strains were purchased from
Invitrogen (Carlsbad, CA, USA) and was used for DNA manipulation
and recombinant protein production. Caldicellulosiruptor bescii
DSM 6725 was obtained from Deutsche Sammlung von Mikroor-
ganismen und Zellkulturen GmbH (DSMZ).

2.2. Sequences collection, alignment and construction of
phylogenetic tree

Based on the classification of a preliminary release of the CAZy
database (http://www.cazy.org/GH11.html) [39], GH11 xylanase
with characterized data were collected and their sequences were
extracted from NCBI database. According to the analysis of BlastP
and signalP 3.0, carbohydrate binding module (CBM), carbohydrate
binding domain (CBD) and signal peptides were deleted from
xylanase sequences, thus only the catalytic domain (CD) were
reserved. Then, the samples which showed more than
95% sequence identity were further removed using Blastclust
(http://toolkit.tuebingen.mpg.de/blastclust/). By investigating
literature that reported the enzymatic pH-activity profiles, the pH
optima of enzymes were determined as the pH values where the
enzymes showed their highest activities. After filtrating the liter-
ature information, all the collected xylanases have been annotated
a pH optimum, and database containing the data was constructed
(Appendix B). Sequences were assembled manually, aligned by
Clustal X 1.83, [40] and the result was shown by ESPript3.0 [41].
Mega 5.0 was employed to construct the Neighbor-Joining phylo-
genetic tree of 113 GH11 xylanases.

2.3. Data analysis by ANNs and Lasso
Each amino acid in the sequence was digitized by their iso-

electric point (pl value) and hydropathy index (Hy value), respec-
tively (Table 2). Both pl value and Hy value are experimental
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Table 1

Summary of shifting the pH optima of xylanases by protein engineering approaches.

Enzymes Strategies Effects on pH Effects on activity ~PDB Mutagenesis location Reference
optimum
Xylanase from Aspergillus niger Site-Directed Mutagenesis From 5 to 5.5 Similar as WT 1TE1 D117N, located at the cleft's edge [17]
(pH 5.0)
endoxylanase from Aspergillus niger Rational design pKa of From 5.5 to 6.0  Similar as WT - Q178R, near catalytic residue E175  [33]
catalytic residues (pH 5.5)
Xyl1 from Streptomyces sp. S38 Modeling and site-directed From 6 to 4.7 40% of WT - N48D/A134E, N48D near catalytic [34]
mutagenesis (pH optima) residue E191;
A134 far away from catalytic residues
Xyl1 from Streptomyces sp. S38 Structural comparison From 6 to 7.5 30% of WT THIX E128K, far away from active site [35]
(pH 5.0)
xylanase from A. kawachii Site-directed mutagenesis From 2 to 5.0 Similar as WT - T64S/D48N, D48N near the catalytic [36]

xylanase from Bacillus circulans Redesign of electrostatic

potential

xylanase Xyn11A-LC from alkalophilic Structural analysis
Bacillus sp. SN5.

xylnase from Bacillus circulans Structural analysis

Biomathematics and

biostatistics

CbX-CD from Caldicellulosiruptor bescii

From 4.6 to 6.9

From 7.5 to 6.5

From 5.7 to 4.6

From 6.5 to 5.0

(pH optima) E181; T64S

on the protein surface

20% of WT - Q167M, far away from active site [37]
(pH optima)

Lost most of 4IXL R48G, in proximity to the acid/base [26]
activity catalyst

Similar as WT (pH  1XNB N35D, near catalytic E172 [38]
optima)

Higher than WT —  S56D/A166E/D176Y/Q177E, all This
(pH < 5.0) mutagenesis sites study

far away from active site

Database construction
Sequence with pH annotation

|

Sequence digitization
with pl and Hy values

I
v v

( ANNSs analysis ] ( Lasso analysis ]

| |
v

Key amino acid
identification

|

Site-directed mutagenesis
on target enzyme

{

Mutant characterization &
mechanism dissection

Scheme 1. The workflow of shifting enzymatic pH optima by sequence-based statis-
tical analyses.

parameters. The isoelectric point (pl value) is the pH value at which
the zwitterion predominates, but coexists in dynamic equilibrium
with small amounts of net negative and net positive ions (https://
en.wikipedia.org/wiki/Amino_acid.). The pl value can be deter-
mined by the pKj values of 2-COOH, a-NH; and side-chains, which
are measured by titration method, thus the pl value is an experi-
mental parameter. On the other hand, the hydropathy index of an

amino acid is a number representing the hydrophobic or hydro-
philic properties of its side-chain. It was proposed in 1982 by Jack
Kyte and Russell F. Doolittle [42]. The Hy value can be determined
by measuring the water-vapor transfer free energies of side-chains
(AtrGm) and the burying fractions of side-chains when forming
into proteins. Therefore, the Hy value is also an experimental
parameter.

The pl value represents the dissociation ability of amino acids
and the Hy value represents the polarity degree of amino acid side-
chains. Both of them reflect the influence of a particular residue on
the pK, values of adjacent amino acid through molecular in-
teractions, which in turn determine the enzymatic pH optima [43].
Therefore, the effects of amino acids on enzymatic pH optimum can
be evaluate in a more reliable manner, which both parameters were
considered simultaneously.

By digitalization employing pl and Hy values, the amino acid
sequences were converted into sequences of digits. The gaps in the
multi-sequence alignments were filled by figure zero. For example,
the amino acid sequence AGD-HNEKEAA in the alignment can be
converted into pl values as 6.11, 6.06, 2.85, 0, 7.6, 5.41, 3.15, 6.11 and
6.11. The conversion of hydropathy index is similar to plI values, so
the sequence can be converted into hydropathy index
18, -04, -35,0, -3.2, -3.5, -3.5, -3.9, —3.5, 1.8, and 1.8.

2.3.1. ANNs analysis
According to the pH optima, numerical sequences of alkaline,
neutral and acidic xylanases were assigned as 2, 1 and O,

Table 2
Digitization of amino acids by pl and Hy values.

Amino acid Ala Arg Asn Asp Cys Glu GIn Gly His Ile

Hy* 18 —-45 -35 -35 25 -35 -35 -04 -32 45
pl° 6.11 10.76 541 285 505 3.15 565 606 7.6 6.05

Amino Acid Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Hy 38 -39 19 28 -16 -08 -0.7 -09 -13 42
pl 6.01 6.01 574 549 603 568 56 589 564 6

2 Hy values were taken from https://en.wikipedia.org/wiki/Amino_acid.
b pl values were taken from http://www.anaspec.com/html/pk_n_pl_values_of_
aminoacids.html.
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respectively. Using the Analysis of Variance test (ANOVA) in the
statistics software R to carry out the analysis towards every site in
all GH11 xylanases in the library, the sites with p-value<0.01 were
selected. The selected sites were further analyzed by NNET program
in the statistics software R. The preliminary analysis result was
imported into the input layer of NNET, and the parameters were
selected to carry out the training of the classifier. After training, the
weight of each layer was checked. The weight of each edge was
calculated using a simple multiplication method, the impact of each
site on the final classification was calculated, and the important
sites for enzymatic pH adaptation were selected following these
results.

2.3.2. Lasso analysis

(1) Data preprocessing: we eliminated nearly gap sites at which
most sequences have figure zero or variances across all sequences
are < 0.01. (2) Correlation analysis: correlation coefficient was used
to quantify the correlation between pH optimum and pl value or
hydropathy index at each site by statistical software R. The sites
with absolute correlation coefficients less than 0.01 were removed,
and the remaining sites were kept for subsequent feature screening
under a linear regression model. (3) Feature screening through
Lasso: based on a linear regression model between pH optimum
and pl value or between pH optimum and a hydropathy index, we
performed feature screening for key sites through the Lasso by the
LARS software package in statistics software R.

The source codes used in ANNs and Lasso analysis were sum-
marized in Appendix A.

2.4. Recombinant protein expression and purification

Wild type xylanase CbX-CD gene was amplified from genomic
DNA of C. bescii DSM 6725 using primers containing the restriction
sites of Ncol and Xho I (Appendix A, Table A3). Polymerase chain
reaction (PCR) amplification was carried out with PrimeSTAR po-
lymerase and a temperature program consisting of 98 °C for 2 min;
30cyclesof 10 sat 98 °C,15 s at 55 °C, and 1 min at 72 °C; and a final
10-min extension at 72 °C. The PCR product was digested with Ncol
and Xhol and subsequently cloned into pET-28a vector (pET28a-
WT), which was then transformed into the BL21-CodonPlus (DE3)-
RIL cells by electroporation. The mutants were prepared by whole-
plasmid PCR using the primers containing mutagenesis at those
target sites (Appendix A, Table A3). PCR was performed with Pri-
meSTAR polymerase and a temperature program consisting of 98 °C
for 2 min; 30 cycles of 10 s at 98 °C,15 s at 55 °C, and 7 min at 72 °C;
and a final 10-min extension at 72 °C. The PCR products were
digested with Dpnl to remove the parent plasmid and purified with
a PCR purification kit. The PCR products were electroporated into
BL21-CodonPlus (DE3)-RIL cells. The expression and purification of
recombinant protein followed the described method [44]. In brief,
cells were grown at 37 °C in 2YT medium supplemented with
50 pg/ml kanamycin until the optical density at 600 nm (ODggg)
reached 0.6 to 0.8. Gene expression was induced for 16 h at 26 °C by
the addition of 0.5 mM isopropyl-B-p-1-thiogalactopyranoside
(IPTG). The cells were harvested and suspended in 30 mM Tris-
HCI buffer (pH 8.0) containing 150 mM NaCl and 30 mM imid-
azole, and then disrupted by sonication. The recombinant protein
was purified by Ni-NTA affinity chromatography (Qiagen, Hilden,
Germany). Protein concentration was measured by Bradford
method using bovine serum albumin as standard (Thermo Scien-
tific, Waltham, USA).

2.5. Determination of enzymatic activities and properties

The standard assay for xylanase activity was performed at 65 °C

in 40 mM pH 6.8 sodium phosphate buffer in the presence of 1.0%
(w/v) beech wood xylan for 5 min. The amount of reducing sugars
released was determined with the 3,5-dinitrosalicylic acid (DNS)
reagent, using xylose as standard. After incubation, DNS reagent
was added and the samples were heated in a boiling water bath for
5 min followed by cooling on ice. The absorbance was then
measured at 540 nm. Each assay was performed in triplicate. One
unit of xylanase activity is defined as the amount of enzyme
required to release one umole of reducing-sugar equivalents per
minute at 65 °C, pH 6.8.

The effects of pH on enzyme activity were determined at 65 °C
under pH ranging from 4 to 8 using 1% (w/v) beech wood xylan as
substrate. The reaction buffer contained 30 mM each of 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 3-[[1,3-
dihydroxy-2-(hydroxymethyl)propan-2-ylJamino]propane-1-
sulfonic acid (TAPS), 3-(Cyclohexylamino)-1-propanesulfonic acid
(CAPS), 2-(N-morpholino) ethanesulfonic acid (MES) and acetic
acid, and was adjusted to the appropriate pH at 65 °C with 1M
NaOH.

2.6. Calculation of the apparent pKal and pKa2 values

The apparent pK,1 and pKj; values were calculated by fitting the
pH-activity profiles of wild-type CbX-CD and its mutants using
non-linear fitting software 1stOpt. The fitting equation is shown in
Eq. (1).

. Vimax
V = 00k pm 4 100HKa) M

Where Vi is the pH-independent maximum reaction rate, and
apparent pK,1 and pKj are the dissociation constants of the key
catalytic residues, respectively.

2.7. Homology modeling

The 3D structure model of CbX-CD and its mutants were
generated using SWISS-MODEL (http://swissmodel.expasy.org/). A
xylanase from Dictyoglomus thermophilum Rt46B.1 (PDB ID 1F5])
was selected as the template with identity of approximately 88%.
The geometry of the loop regions was corrected using Refine Loop/
MODELER. The quality of the model was evaluated by PROCHECK
[45] and Profile-3D of DS 3.0. Structural figures were generated
using PyMOL (http://www.pymol.org/).

3. Results
3.1. Sequence analyses of GH11 xylanase family

More than one thousand GH11 family xylanase sequences were
reported on CAZy database, and more than 260 of them had basic
function annotations. After literature investigation, 113 xylanase
sequences (<95% sequence identity) from eukaryotic or bacterial
species with experimentally measured pH optima were collected.
The pH optima of the enzymes vary widely from pH 2.0 to 9.0 [46].
Among those sequences, 67 were annotated as acidic xylanases (pH
optimum < 6.5), 36 were annotated as neutral xylanases (7.5 > pH
optimum > 6.5) and 10 were annotated as alkaline xylanases (pH
optimum > 7.5).

To study the evolutionary relationship within GH11 xylanase
family, signal peptides, carbohydrate binding modules (CBM) and
carbohydrate binding domains (CBD) were predicted using online
software Signal 3.0 and SMART, respectively. These sequences were
removed and only the catalytic domain (CD) of xylanases was
remained for sequence alignment. The multi-sequence alignment
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Fig. 1. Neighbor-Joining phylogenetic tree of GH11 xylanases (red, xylanases with acidic pH optima; grey, xylanases with neutral pH optima; blue, xylanases with alkaline pH
optima). For each enzyme, both the numbering and the pH optimum were provided. The detailed information for each enzyme is listed in Appendix B.

was performed by using Clustal X1.83 and the alignment result was
shown in Appendix C. Based on the alignment, Neighbor-Jointing
phylogenetic tree was constructed using Mega 5.0. As shown in
Fig. 1, the enzymes were clustered in branches with different pH
optima. The majority of zone A was neutral xylanases, with a small
portion of acidic and alkaline enzymes. Acidic and neutral xyla-
nases was the major part in zone C, with several alkaline enzymes
sporadically distributed. While in zone B and D, all the members
were acidic Xylanases. These results indicated that the pH optima of
GH11 xylanase were relevant to divergent evolution, but it was hard
to get a clear evolutionary relationship from the phylogenetic tree.
Instead, the fact that alkaline xylanases are distributed among
acidic and neutral enzymes suggested that some site mutations
occurred during evolution might have significant impact on enzy-
matic pH adaptation.

3.2. Statistical sequence analysis by ANNs and Lasso

Statistical procedures are playing an increasing important role
in extracting evolutionary rules from the vast ocean of protein se-
quences. Before employing statistical procedures, it is necessary to
digitize amino acid sequences. We used two amino acids physical
chemistry characteristics, isoelectric point (pl value) and hydrop-
athy index (Hy value), for the digitalization, because they are
important for determining the protonation state of an amino acid.
After this conversion, the effect of each residue in protein sequence
can be quantitatively evaluated by statistics algorithms.

Artificial neural networks (ANNs) are statistical machine
learning models. By emulating the processing estimate or approx-
imate functions that depend on a large number of inputs and are
generally unknown, ANNs can analyze data in a way which gen-
eralizes its mapping to new data [47,48]. Therefore, ANNs are
suitable for searching the possible sequence-function divergence
‘hot spots’, especially for navigating the possible mutagenesis for
enzymatic pH adaptation among the numerous evolution data.

After analysis by ANNs towards pH-pl values and pH-Hy index
correlation, 51 sites from pl library and 57 sites from Hy library
were considered to be important for pH adaptation, and those sites
were ranked by their weights (Appendix A, Table A1).

Least absolute shrinkage and selection operator (Lasso) can
provide sparsity inducing estimation of regression coefficients by
adding penalty functions to the trait-associated subset of markers
into the model when the number of markers is larger than the
number of individuals in the sample [49,50]. By feature screening
through Lasso under linear regression models, it was noticed that pl
or Hy values of some amino acid sites differed obviously at xyla-
nases with different pH optima. In this case, these sites (indepen-
dent variable) could better explain the model and their coefficients
estimated by Lasso turned out to be nonzero even at higher Lasso
constraints. On the contrary, sites whose pl or Hy values showed
little difference at different pH optima were considered to have
weak explanation to the model. And the coefficients of this kind of
sites were prone to be zero at higher Lasso constraints. When
loosening the Lasso restriction conditions gradually, the number of
nonzero independent variables (sites) increased continually. To find
key sites related to pH optima, we chose restriction conditions
K =40 and K = 26 to preform Lasso analysis on pl and Hy database,
respectively. The suitable restriction conditions ensured that about
20 target sites could be selected on CbX-CD. As shown in Appendix
A, Table A1, 23 sites for pl value and 21 sites for Hy value were
identified and were ranked by their weights.

Then, the prediction results from ANNs and Lasso were
comprehensively analyzed. The amino acid sites identified simul-
taneously by both algorithms were considered as important sites
that may contribute to the pH adaptation of GH11 xylanase family.
As shown in Appendix A, Table A1, some amino acid sites located at
N terminal and C terminal (marked by asterisk) were also identi-
fied. These terminal sites were considered as false positive and
were removed for further consideration. Eventually, six sites (Trp21,
Thr102, Thr120, Thr137, Ala166 and Asp176) were identified by Hy
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index and eight sites (Asp23, Leu48, Ser56, Trp100, Thr102, Ala108,
Ser153 and GIn177) were identified by pl values (Appendix A,
Table A1).

3.3. Design of the mutations

After identification of key sites in GH11 family, the next step is to
investigate the mutation mode of each site. To figure out amino acid
species with potential effects on pH optimum, we first summarized
the amino acid abundance on each site in the family (Appendix A,
Table A2). The amino acid abundance was further analyzed by on-
line software Weblogo 3 to make the data visible. As shown in
Fig. 2, enzymes with different pH optima exhibited different amino
acid preference on some sites. For instance, on site 166, the alkaline
enzymes preferred Glu and Arg while the acidic and neutral en-
zymes preferred Ala. However, on some sites, the amino acid spe-
cies was consensus. For example, on site 21, Trp was the consensus
residue for most of the enzymes.

By analysis of the amino acid abundance in GH11 family, we
designed the mutations of CbX-CD with the expectation of shifting
pH optimum. Firstly, the consensus residue at a particular site was

CbX-CD WDLSW
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regarded as optimized in GH11 family, so it was chosen for mutation
if CbX-CD had a different residue other than the consensus one.
Secondly, ionizable amino acids might have greater effect on pH
optima than aliphatic ones, so the mutations to ionizable amino
acids were preferable. Based on these two criteria, the design of each
mutation site was listed as following (also summarized in Table 3):

For site 21, 23, 102, 120, 137, they showed strong consensus in
GH11 family, and the consensus were the same as their corre-
sponding residues in CbX-CD. So these sites were not considered for
further mutagenesis. Site 100 had consensus (Trp) in neutral and
alkaline enzymes, but was equally preferred as Tyr and Trp in acidic
enzymes. Since site 100 in CbX-CD was also Trp and an aliphatic
mutation was not likely change the pK; value too much, this site
was not considered for mutagenesis. Site 108 and 153 had no
obvious consensus and their top three amino acid species were all
aliphatic or non-ionizable amino acids, so they were not considered
for further mutagenesis.

Site 48 had obvious consensus as Asn in neutral and acidic en-
zymes, and was equally preferred as Lys and Asn in alkaline en-
zymes. In CbX-CD, site 48 was Leu, which was different from the
consensus Asn. So we designed a mutation at this site, i.e. L48N.
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Fig. 2. Amino acid distribution of 21/23/48/56/100/102/108/120/137/153/166/176/177 sites in all, alkaline, neutral, and acidic groups GH11 family xylanases. In the weblog chart, the
word size of the amino acid was proportional to the abundance of this amino acid species in the database. If one site was dominated by one or two amino acids, this site was
considered to be conserved (e.g. site 21 and 23). For comparison, amino acids at corresponding sites of CbX-CD were also listed on top of the chart.
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Table 3

Design of the mutations, their effects on shifting pH optimum and potential mechanisms.

AA" site Description of AA* AA® on CbX-CD Mutation on CbX-

Effect on pH optimum Possible mechanism on pH optimum shifting

distribution cD
21 Conserved residue W None - -
23 Conserved residue D None - -
48 Consensus as N or K L L48N No shift -
56 Prefer N, T and D S S56D 0.5 unit acidic Deprotonating residues surrounding catalytic residues
100 Conserved residue W None - -
102 Conserved residue T None - -
108 No obvious consensus A None — -
120 Conserved residue T None - -
137 Conserved residue T None - -
153 No obvious consensus S None — —
166 Consensus as E or A A A166E 0.5 unit acidic Same as S56D
176 Prefer N, Y and D D D176Y 0.75 unit acidic Undefined indirect long-distance effects
177 Consensus as E or Y Q Q177E 0.75 unit acidic Deprotonating a residue adjacent to catalytic residues by a salt bridge

2 AA, amino acid.

Similar case were also found at site 166 and 177, and their muta-
tions were designed as A166E and Q177E, respectively. Amino acids
at site 56 had no consensus in the family. The top three amino acid
preference at this site were Asn, Thr and Asp, respectively. Ac-
cording to the criteria, the Ser56 at CbX-CD was mutated to be an
ionizable Asp (S56D). Similar considerations were posted on site
176, which was designed as D176Y. In order to check the accuracy of
sequence-based algorithm, S1371 and S153T consistent with
consensus amino acids were also selected as negative controls.
Therefore, five mutants with the potential change in pH adaptation
were designed as L48N, S56D, A166E, D176Y and Q177E.

3.4. Biochemical characterization of CbX-CD xylanase mutants
The designed mutants of CbX-CD were generated and con-

structed into pET28a plasmid. All the recombinant proteins were
abundantly expressed in E. coli with similar expression level with

the wild type enzyme, suggesting that the mutations didn't affect
protein folding. After purification by Ni-NTA affinity chromatog-
raphy, the molecular weight and the purity (95%) of recombinant
proteins was evaluated by SDS-PAGE (Appendix A, Fig. A5).

The pH-activity profile of each enzyme was measured using
beech wood xylan as substrate. Compared with the pH optimum of
wild type CbX-CD (pHope = 6.5), S56D, A166E, D176Y and Q177E
exhibited obvious acidic shift in pH-activity curves (Fig. 3), espe-
cially D176Y and Q177E had the shift up to 0.75 unit. Moreover, the
overall pH-activity curve of each mutant shifted to the acidic side,
indicating that the mutations do not just simply improve the
enzymatic tolerance against acidic pH, but authentically altered the
pK;, values of the catalytic residue. On the other hand, L48N didn't
cause much change in the pH-activity profile (Appendix A, Fig. A.6).
As expected, the control mutants S1371 and S153T also didn't
change the pH optimum (Appendix A, Fig. A.6). Remarkably, all the
positive mutants retained a considerable level of catalytic activity
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Fig. 3. The pH-activity profile of the wide-type CbX-CD and its mutants. The activity data were obtained from triplicate (at least) assays using 1% (w/v) beech wood xylan as
substrate at 70 °C and defined pH ranging from 4.0 to 8.0. The activity data were obtained from triplicate (at least) assays using 1% (w/v) beech wood xylan as substrate at 70 °C.
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(approximately 60—90% of the wild-type activity at their pH
optima).

Next, the positive mutants were combined to further explore
their functions on pH adaptation. Because mutants S56D, A166E
and Q177E introduced charged amino acid substitutions, they were
firstly taken as a group for the combination and resulted in four
mutants: M21 (A166E/Q177E), M22 (S56D/Q177E), M23 (S56D/
A166E/Q177E) and M24 (S56D/A166E). Enzymatic characterization
showed that their pH-activity profiles further shift to the acidic side
(Fig. 3). Later, D176Y was introduced and resulted in a mutant M31
(S56D/A166E/D176Y/Q177E) with pH optimum of 5.0, which was
1.5 units shift towards acidic side compared to the wild type (Fig. 3).

The enzymatic property changes along with molecular design
process was shown in Fig. 4. The best mutant M31 maintained
approximately 90% maximal activity of the wild type. While at pH
5.0, it exhibited even higher specific activity (3500 U/mg) than the
wild type enzyme (3100 U/mg). In fact, several of the mutants
showed a higher catalytic activity at pH 4.0 than the wild type
enzyme (Appendix A, Fig. A.7), which clearly showed the efficiency
of our design. In addition, same as the wild type enzyme, all the
mutants showed high thermostability that with half-lives more
than 24 h at 70 °C (data not shown). Therefore, we obtained the
mutants possessing altered pH optima without sacrificing catalytic
activity and thermostability.

3.5. Calculations of the pKa changes

The enzymatic pH optimum is determined by the pK; values of
the key catalytic residues. To accurately measure the pK, changes of
the catalytic residues (Glu93 and Glu183), the ApK, was validated by
comparing the experimental ApK, values of the wild-type CbX-CD
and its mutants. According to the pH-activity profile of wild type
and mutants, the apparent pK,; and pK; were calculated by non-
linear fitting using Eq. (1). As shown in Table 4, the pK;; of four
single-site mutants S56D, A166E, D176Y and Q177E decreased 0.2,
0.2, 0.28, 0.15, 0.35 pH unit, respectively. Whereas only D176Y and
Q177E had obvious decline in pKy, with 0.49 and 0.27 unit shift,
respectively. Combinational mutants exhibited similar shift in pKj1.
However, except M24 (S56D/A166E), other four mutants showed
obvious shift in pK;; for 0.66, 0.66, 0.67 and 0.49 pH units,

respectively. This was consistent with the observation that combi-
national mutagenesis further changed the enzymatic pH optima.

3.6. Structural modeling and mutational analysis

The modeling structure of CbX-CD was constructed by SWISS-
MODEL using Rt46B.1 from Dictyoglomus thermophilum as a tem-
plate (PDB ID IF5], 88% sequence identity). The quality of the
modelled structure was analyzed by PROCHECK and Profile-3D
(data not shown). Calculated Ramachandran plot suggested 98%
and 2% residues in the derived model are in favored and allowed
regions. To further validate the reliability of this modelled struc-
ture, we performed a parallel modeling using another xylanase
from Bacillus sp. 41M — 1 (PDB ID 2D(J) with lower identity of ~64%.
The comparison of two structures was illustrated in Appendix A,
Fig. A.8. The two structures exhibited remarkable consistency
with each other (with a root mean square deviations (RMSD) of
0.633 A), confirming the reliability of the modelled structure of
CbX-CD. The model of CbX-CD showed a canonical B-jelly roll
structure, the acid/base catalyst is Glu183 (pK, 7.20) and the
nucleophile is Glu93 (pK, 5.36), the pK, value were predicted using
Propka software. Nucleophile Glu93 was surrounded by a series of
protonated residues, including Arg50 (pK, 14.6, distance between
Arg50NH1 and GIu930E2 is 6.9 A), Tyr84 (pK, 16.52, distance be-
tween Tyr840H and GIu930E2 is 2.6 A), Tyr95 (pK; 21.30, distance
between Tyr950H and Glu930E2 is 4.0 A) and Arg128 (pK, 13.15,
distance between Arg128NH1 and Glu930ET1 is 3.0 A). Those pro-
tonated residues form hydrogen bonds and salt bridges with
nucleophile Glu93, thus could stable the deprotonated state of
Glu93. This interaction might be in favor of nucleophile attack of
Glu93 during the catalysis. Comparing to nucleophile Glu93, only 2
hydrogen bonds were formed between Glu183-Ans46 and Glu83-
Tyr95, which endowed Glu183 suitable pK, as acid/base catalyst
(Fig. 5).

The structures of the mutants were constructed by similar
method. Superimposing the mutant structure onto the wild type
structure revealed that the root mean square deviations (RMSD)
were less than 0.01 A (data not shown). In spite of L48N, all the
other mutations were close to each other, located on the protein
surface, and far away from catalytic residues. The L48N mutation
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Fig. 4. Summary of a 3-stage rational evolution process of CbX-CD with gradually decreased pH optimum. In stage 1, 5 mutants were designed through biostatistical prediction
followed by consensus and residue preference analysis. Mutant characterization showed that 4 out of 5 mutants exhibited significant shift in pH optima (0.5—0.75 unit toward acidic
area). In stage 2 and 3, stepwise combination of the positive mutations was performed, obtaining the final 4-site mutant, M31, with its pH optimum shifting toward acidic area by 1.5
units. The specific activities of mutants at pH 5.0 were also illustrated. M11, S56D; M12, A166E; M13, D176Y; M14, Q177E; M21, A166E/Q177E; M22, S56D/Q177E; M23, S56D/A166E/
Q177E; M24, S56D/A166E; M31, S56D/A166E/D176Y/Q177E. The activity data were obtained from triplicate (at least) assays using 1% (w/v) beech wood xylan as substrate at 70 °C

and pH 5.0.
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Fig. 5. Modeling analysis of CbX-CD variants. (A) The structures of CbX-CD wild type, the target mutation sites were shown in purple. (B) The structure of mutant L48N, the distance
between Asn48ND2 to Glu1830E1 is 4.4 A. (C) The structure of mutant S56D. (D) The structure of mutant A166E. (E) The structure of mutant D176Y. (F) The structure of mutant
Q177E. The catalytic amino acids were shown in green, protonated residues around catalytic amino acids were shown in white. The novel hydrogen bonds introduced by mutation
were shown in yellow dash, the distance between the mutation sites to catalytic amino acids were measured by PyMOL.

located near the acid/base catalyst 183, with distance between
Asn48ND2 to Glu1830E1 ~ 4.4 A. The substitution of Ser56 by Asp
forms a new hydrogen bond between Asp560D1 and Arg88NH1
(31 A). And A166E mutation introduced a charged side chain,
which resulted in the formation of a new hydrogen bond
Glu1660E2 - Leul72NH (2.6 A). The original hydrogen bond
Asp1760D2 - Arg88NH2 was replaced by Tyr1760H - Lys54NZ
(2.9 A) due to the D176Y mutation. The original hydrogen bond

Asp1760D2 - GIn177NE2 was replaced by Glu1770D2 - Lys54NZ
(3.6 A) due to the Q177E mutation (Fig. 5).

4. Discussion

Employing protein engineering to shift enzymatic pH optima
would facilitate the highly adaption between catalytic parts and
further improve the operating efficiency of cell-free synthetic
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Table 4

Summary of the pH optima of CbX-CD mutants and their apparent pK, values.
Entry Enzyme PHopt ApHopt pPKa1 ApKa1 pPKaz ApKao
0 WT 6.5 / 433 / 7.84 /
M11 S56D 6 -0.5 413 -0.2 7.79 —0.05
M12 A166E 6 -0.5 4.05 —0.28 7.81 —0.03
M13 D176Y 5.75 -0.75 418 -0.15 7.35 -0.49
M14 Q177E 5.75 -0.75 3.98 -0.35 7.57 —0.27
M21 A166E/Q177E 5.5 -1 3.9 -0.43 7.18 —0.66
M22 S56D/Q177E 5.5 -1 3.97 —0.36 7.18 —0.66
M23 S56D/A166E/Q177E 5.5 -1 3.94 -0.39 717 -0.67
M24 S56D/A166E 5.5 -1 3.97 —0.36 7.76 —0.08
M31 S56D/A166E/D176Y/Q177E 5 -1.5 3.74 -0.59 7.09 -0.75

biology system [7,8]. In this study, we proposed a structure-
independent biostatistics strategy for shifting enzymatic pH opti-
mum. Based on sequence analyses of xylanase family using ANNs
and Lasso algorithms, we identified five amino acid sites with po-
tential effects on the pH optima of GH11 glycosidases. Enzymatic
characterization revealed that mutations on four sites shifted the
pH optimum of the target enzyme CbX-CD. Combination of the
mutation sites obtained further altered pH optimum without
compromising the catalytic activity and the thermostability.
Structure analyses revealed that all the mutation sites located far
away from the active site and could be difficult to be identified by
regular rational design approaches.

Cell-free synthetic biology systems often involve non-
physiological pH conditions, therefore, reprograming pH adaption
of enzymes has always been an important goal. Since pH optimum
is mostly governed by the ionization states of the side chains of the
catalytic residues, common strategies for changing pH-activity
profiles was done by introducing mutations around the active site
based on structural analysis [15,35,51,52] and computational pre-
dictions [33,53]. Although these studies have successfully identified
some mutations that shifting enzymatic pH optima, there is risky of
losing catalytic activity to introduce mutations near the catalytic
residue. Besides, low accuracy is usually happened during the
design of pH optima. Qiu et al. tailored the pH-active profile
through replacing its surface charged residues, only three out of
nine candidates showed shift pH optimum [54]; Yang et al. changed
pH optimum of Bacillus circulans xylanase based on molecular
modeling and sequences alignment, three out of six mutants
showed changes in pH optimum, but each mutant losing almost
70% of the wild-type activity [55]. Impeded by the difficulty of
rational design, most successful cases on shifting enzymatic pH
optima were based on random mutagenesis and screening [56—60],
which is also quite limited because it could not provide a general
guideline for pH engineering.

Recently, with the dramatic accumulation of genomic
sequencing data, successful molecular engineering cases guided by
natural evolutionary information are booming [61—64]. In this
study, we used abundant sequence information of GH11 xylanase
family for the design of pH adaptation for the first time. By means of
ANNSs and Lasso linear regression analyses of a well-characterized,
digitalized GH11 database, we identified several key residues with
significant effects on the pH optimum of a thermophilic xylanase
CbX-CD. The biostatistics method developed in this study possesses
high success rate, in which four positive sites out of five signifi-
cantly shift the enzymatic pH optimum. Moreover, since our
method is based on natural sequence analyses, the mutation sites
designed for each site are all naturally occurred in GH11 family and
thus they are relatively unlikely compromising the enzymatic ac-
tivity. Most importantly, prediction based on this method doesn't
rely on the structural information, making the extracted informa-
tion is applicable to many other xylanase family members.

Xylanases are always important models for investigating pH
adaption due to their industrial valuable applications. In previously
reported works, sites with effects on enzymatic pH optima are
usually identified close to the active center. While in our work, by
employing biostatistics method, we have identified four amino acid
sites which are distant from active center, but have significant ef-
fects on enzymatic pH optimum. Indeed, data from this study
showed that CbX-CD mutants with obvious shift to acidic limb
could be generated by mutations far from the active site. All four
mutation sites (S56D, A166E, D176Y and Q177E) are dispersed on
the protein surface and influenced enzymatic pH optimum by
different mechanism, which cannot be easily identified by struc-
tural based rational design approaches.

Replacement of Ser56 by Asp exhibits only modest influence on
the enzyme backbone structure. The mutation introduces an extra
hydrogen bond between Asp56 and Arg88, which is far away from
catalytic Glu93 and Glu183. Therefore, the change of pH optimum is
not directly caused by this hydrogen bond. Because electrostatic
effects decrease proportional to the reciprocal of the radius, charge
changes far away from the active site may still affect the pK, value
of key residues. The distance between Asp560D1 to GIu930E2 and
GIu1830E1 is 17.9 A and 22.4 A, respectively, therefore weak elec-
trostatic repulsion between Asp56 and catalytic residues (Glu93
and Glu183) might cause pKj raise of catalytic residues. In addition,
there are a series of protonated residues around catalytic residues
Glu93, including Arg50, Tyr84, Tyr95 and Argl128 (the distance
between electrostatic interactions is 14.6 A, 16.6 A, 21 A and 20.9 A,
respectively). The electrostatic attraction between Asp56 and these
residues would endow them a more stable deprotonation state,
which might decrease the pK, value of Glu93 and Glu183. We
reasoned that the latter effect is more remarkable than the former
one because of its short distance and more interactions. Similar to
the mutation Ser56Asp, Ala166Glu mutation introduced charged
amino acid far away from active site, which might also provide
more stable protonation state of protonated residues around cata-
lytic amino acid and showed similar change in pK;; (0.28 unit
decline) and pKj,, values (0.03 unit decline).

Introduction of Tyr at position 176 substitute the charged Asp
side chain to Tyr. The distance from Tyr1760H to Glu930E2 and
Glul1830E1 is 13.2 A and 17.3 A, respectively. The elimination of
charged side chain abolished the electrostatic repulsion between
Asp176 and catalytic residues (Glu93 and Glu183), while increase
the pKj, values of catalytic amino acids. Interestingly, distance be-
tween Tyr1760H and GIu1830ET1 is longer than the distance be-
tween Tyr1760H and Glu930E2, which means that the influence of
mutation toward Glu93 should be more remarkable. However, ac-
cording to the results of ApKj, calculations, small extent change in
pKa1 (0.15 unit decline) but big extent change in pKj;, values (0.49
unit decline) is evident, which demonstrated that the mutation
may change the pH adaptation by some other indirect long-
distance effects or by some unexpected interactions that we did
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not find.

The Q177E mutation shift enzymatic pH optimum downward
significantly. The distance from Glu1770E2 to GIu930E2 and
Glu1830E1 is 8.1 A and 10.7 A, respectively. The weak electrostatic
repulsion between Glul77 and catalytic residues (Glu93 and
Glu183) may cause the pK; upward shift. However, the mutation
introduced a strong salt bridge between Glu177 and Arg50 (the
distance between Glu1770E2 to Arg50NH2 is 2.8 A), which might
stable the protonated state of Arg50. Furthermore, Arg50 is the
nearest positive charge around catalytic residues, the distance be-
tween Arg50NH2 and Glu930E2 and Glu1930E1 is 7.2 A and 8.1 A,
respectively. The stronger protonated state of Arg50 further stabi-
lizes the deprotonated state of catalytic residues, and results in
modest change in pK31 (0.35 unit decline) and pKj, values (0.27 unit
decline).

Above mentioned single point mutations altered enzyme pH
optimum in different ways (also see Table 3 for summarization).
F55W, S56D and A166E major downward shift toward pKs;, D176Y
and Q177E downward change both in pK;; and pKj;. Further
investigation revealed multiple mutations influenced both pKj;
and pKj; simultaneously, which means pKj shift guided by different
mechanism could work collaboratively.

In this study, we constructed an elaborate GH11 xylanase
database with pH annotation, and developed a data driven protein
engineering strategy to redesign the pH adaptation of xylanase.
Based on the analysis of ANNs and Lasso, four out of five mutation
sites located far away from catalytic residues showed modest
capability in pH optimum shift, highlighting the robustness of this
data driven protein engineering strategy. This would also be helpful
in further understanding the pH regulation mechanism of this
important enzyme family. However, it should be noticed that this
biostatistics method rely on well-characterized data for a large
number of enzymes, which is still lacking for most of the enzyme
families. Therefore, besides further enriching sequence information
of enzyme families, developing high throughput techniques for
expression and characterization of new enzymes would also make
this method feasible and consummate [65—70]. The data showed in
this study will help elucidate the mechanism that confer pH
adaptation and thus may pave the way for redesigning biocatalysts
with desired pH optimum for cell-free synthetic biology systems.
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