JOURNAL OF COMPUTER AND SYSTEM SCIENCES 51, 523-535 (1995)

On the Feasibility of Checking Temporal Integrity Constraints*

JaN CHomick1’

Kansas State University, Manhattan, Kansas 66506

AND

DamiaN NiwiNski?

Warsaw University, Warsaw, Poland

August 10, 1993

We analyze the computational feasibility of checking temporal
integrity constraints formulated in some sublanguages of first-order
temporal logic. Our results illustrate the impact of the quantifier pattern
on the complexity of this problem. The presence of a single quantifier
in the scope of a temporal aperator makes the problem undecidable. On
the other hand, if no quantifiers are in the scope of a temporal operator
and all the quantifiers are universal, temporal integrity checking can be
done in exponential time. € 1995 Academic Press, Inc.

INTRODUCTION

As temporal databases become more widely used in prac-
tice [27, 28], the need arises to address database integrity
issues that are specific to such databases. In particular, it is
necessary to generalize the standard notion of static
integrity (involving single database states) to temporal
integrity (involving sequences of database states).

This work is the first attempt to date to analyze the
computational feasibility of checking temporal integrity
constraints. We consider various sublanguages of first-order
temporal logic (FOTL). The starting point is the class of
biquantified formulas proposed by Lipeck, Saake, and their
students [14, 17, 19, 20]. Biquantified formulas allow only
future tense temporal operators and restricted quantifica-
tion in the following sense: the quantifiers can be either

* A preliminary version of this paper was presented at “12th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, May 1993, Washington, D.C.” Supported by NSF grant IRI-
9110581, KSU Faculty Development Award, and Polish KBN Grants
21192 9101 and 2 P301 009 06.

t Address: Computing and Information Sciences, 234 Nichols Hall,
Kansas State University, Manhattan, KS 66506-2302. E-mail: chomicki
@cis.ksu.edu.

* Work performed mainly while visiting Kansas State University.
Address: Institute of Informatics, Warsaw University, Banacha 2, 00-950
Warsaw, Poland. E-mail: niwinski(@ mimuw.edu.pl.

523

external (not in the scope of any temporal operators) or
internal (no temporal operator in their scope). Moreover,
all external quantifiers are universal. Biquantified formulas
arise as the result of composing propositional temporal logic
with first-order predicate logic [9], i.e., taking a version of
propositional temporal logic in which propositional atoms
are replaced by first-order predicate formulas.
The main complexity results are

» for biquantified formulas with a single internal quan-
tifier (existential or universal), temporal integrity checking
is undecidable ([T9-hard),

» for biquantified formulas with no internal quantifiers
(called universal), temporal integrity checking is decidable
(in exponential time).

Although the time in our framework is infinite, integrity
constraints impose restrictions on finite sequences of database
states. Consequently, temporal integrity violations should be
detectable using finite databases. This intuition is formalized
by the requirement that integrity constraints define safery
properties [1,21]. We are going to adopt this point of view,
thus we consider only formulas that define safety properties.

As a side result we obtain a biquantified formula (defining
a safety property) which is not equivalent to any formula
0O @, where @ is a past formula. It is well known [21] that
every propositional temporal logic formula defining a safety
property is equivalent to a formula in the latter form. Thus,
our result highlights the difference between propositional
and first-order temporal logic.

Our results are applicable both to temporal integrity
checking and to temporal triggers because we show that
trigger firing is a notion dual to constraint satisfaction.

The plan of the paper is as follows. In Section 2, we intro-
duce the basic concepts of FOTL, discuss our framework of
temporal integrity checking, and define the class of biquan-
tified formulas and its subclasses. In Section 3, we show that

0022-0000/95 $12.00

Copyright i 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

524

for biquantified formulas with a single internal quantifier
temporal integrity checking is undecidable. In Section 4, we
show that for universal biquantified formulas (no internal
quantifiers), temporal integrity checking is decidable in
exponential time. In Section 5, we briefly discuss related
work. In Section 6, we conclude and outhne directions for
future research.

2. BASIC NOTIONS

In this section, we introduce the basic concepts of FOTL,
discuss our framework of temporal integrity checking, and
define the class of biquantified formulas and its subclasses.
A comprehensive recent reterence for temporal logicis [10].

Syntax

The expressions of FOTL are built from the following sets
of symbols: a finite set of predicate symbols, a finite set of
constant symbols, a countably infinite set of variables, the
equality connective =, the logical connectives, v, A, 7,
=>, quantifiers: 3, V, future tense temporal connectives: O
and until; and past tense temporal connectives: € and since,
Each predicate symbol is given with an arity r > 1. We refer
to the sets of predicate and constant symbols as the
vocabulary of the language. This part is not fixed; we will
consider languages over different vocabularies. A term is a
constant or a variable. An atomic formula is of the form
t,=t, or p(t,,..,t,), where the t’s are terms and p is a
predicate symbol of arity r. Other formulas are defined by the
following rules: if A, B are formulas and x is a variable, the
following are also formulas: A v B, A A B, 11 A, A= B, 3xA,
VxA, O A (read as “next time A7), 4 until B, € A (“previous
time A7), and A since B. The formulas that do not use tem-
poral connectives at all are referred to as pure first-order for-
mulas. The formulas that use past tense temporal connectives
but not future tense ones are called past temporal formulas.
The formulas that use future tense connectives but not past
tense ones are called future temporal formulas.

Semantics

A first-order structure M over a given vocabulary consists
of a universe |M|, an interpretation ¢™ € {M| for each con-
stant symbol ¢ and an interpretation p™ < |M|" for each
predicate symbol p of arity r. We say that a predicate p of M
is true about a tuple (m,..,m.) of elements of |M| if
(my, ...m,)ep™.

In order to interpret temporal formulas, we assume that
time is isomorphic to the natural numbers, i.e., time instants
form an infinite sequence t =0, 1, 2, An infinite-time tem-
poral database (usually called shorter: temporal database or
Jjust database) is a sequence

D=(D,,D,,D,,..)

CHOMICKI AND NIWINSKI

of first-order structures over the same vocabulary and with
the same universe, which we will call the universe of the
database and denote |D| (so |D|=|Dy|=|D,|=---). We
refer to the structure D, as the database state at time instant
t. We assume that a constant symbol ¢ has the same inter-
pretation in each database state (i.e., ¢? =c™, for each 1)
which we shall denote simply by ¢”. The interpretation of a
predicate symbol may vary from one time instant to
another.

We make the following assumptions about database
states: the universe is infinite and countable, and the inter-
pretation of any predicate symbol is a finite relation. These
are rather standard assumptions in database theory. Note
that the equality is not considered as one of database
predicates {actually it is an infinite relation). For notational
convenience only, we shall also assume that, unless
otherwise stated, the universe of each database state equals
to the set of natural numbers V.

Let D=(D,, D,, D,, ...) be a temporal database. A valua-
tion 1s 4 mapping v that associates a value v{x) € N with each
variable x. Note that the value of a variable does not change
with time (in other words, all variables we consider are
global or rigid). 1t 1s convenient to extend the valuation to
terms by setting v(c) = ¢?, for a constant symbol ¢. Now we
define the truth value of a formula ¢ at a time instant ¢
under a valuation v by means of the satisfaction relation, “¢
1s satisfied by D at the time instant 7 under the valuation ¢,”
in symbols D, ¢, 1 = ¢, defined inductively as follows:

e D vt t,=t,, whenever t(t,)=r(t,),

o D, vtk plty,..1,), whenever the predicate p of D, is
true about (v(t)), ..., v(1,)),

e Dotk 1A, ffnot D, v, t E A,

e Doyt AV B Mf DuvtEA or DoutkE B
similarly for other logical connectives,
e D v, t = 3Ix4 iff there exists ie N such that

D,v[x<i], t = A, where t[x < {] is a valuation that maps
x to [and otherwise coincides with ¢,

o Dot =VxdiftforallieN, D, v[x«i], t k= A,

e Dot CAMMD, vit+1 = A4,

e D, v,t = A until B iff for some s=¢, D, v, s = B and
forallu, t<u<s, D,v,ul= A,

e Dovt=@AifTt>0and D, v, r—1 FE A,

e D, v, t = Asince Biffforsomes, 0<s<t, D, v, s F B
and forallu, s<u<t,D,v,u = A.

A formula with no occurrences of free variables is said to
be closed or a sentence. Clearly, the truth value of a closed
formula does not depend on the valuation, so if 4 is a sen-
tence, we simply write D, ¢ = A. We also write D, v = 4 or
DE Atomean D, v, 0= 4 or D,0 | A, respectively. In
this last case, we say that D is a model of A.

CHECKING CONSTRAINTS

Other well-known temporal connectives < (“sometimes
in the future”), O (“always in the future™), ® (“sometimes in
the past™), and B (“always in the past™) can be defined
using until or since:

& A = True until A

O4=—C 4
® A= True since A
WA= A

For a past formula A, the truth of 4 at instant ¢ is deter-
mined only by the database states Dy, ..., D,. Therefore, we
shall also consider finite-time temporal databases, of the
form D=(D,, .., D,), with the satisfaction of past formulas
defined and denoted similarly as in the infinite case.

If D=(Dg, D,, D,, ...) is an infinite-time database, then
any finite-time database (D,. ..., D,) is called a prefix of D.
In this case D is an extension of (D, ..., D,).

Examples

Consider a temporal database (D, .., D,) whose every
state D,, 0 <1< t,, contains information about customer
orders submitted or filled at instant 7. For example, Sub(a)
1s satisfied at instant ¢ if ¢ is an order submitted at .

The constraint an order can be submitted only once
(implementing a kind of object identity) can be specified as:

Vx O (Sub(x) = O O —1Sub(x)).

The constraint orders should be filled in the order that they
are submitted (in fact enforcing a queue-like discipline) can
be written as:

VxVy O —(x#y A Sub(x) A O((—Fill{x))

until (Sub(y) A ((O Fill(x))
until (Fill{ y) A 2 Fill(x)))))).

Intuitively, the above formula says that there cannot be two
different orders x and y such that x is submitted before y and
x is not filled before y is filled.

Extended Vocabulary

It is sometimes convenient to extend the above language
by symbols that refer explicitly to the ordering of natural
numbers: the binary relation symbols < and succ, and the
monadic relation symbol Zero. These symbols are assumed
to be interpreted in the same way in any database state,
namely, < is the standard ordering relation on N, succ is
the standard successor relation (i.e., succ(a, b) is true iff
b=a+1) and Zero(a) is true iff @ =0. Note that, like the

525

equality, < and succ differ from other predicate symbols in
that they define infinite relations.

Classification of Formulas

Let us recall in this context the standard classification of
first-order formulas in prefix normal form [2]. It is well
known that every first-order formula can be transformed to
this form. We start with the class of 2, formulas (or equiv-
alently, 77, formulas) consisting of first-order formulas that
do not contain quantifiers or temporal connectives. Note
that X, formulas are just boolean combinations of atomic
formulas of the form ¢, = ¢, or p(t,, t,) where the ¢,’s are
terms and p is a predicate symbol of arity . The classes of
2, and /1, formulas are defined inductively as follows. If 4
is a 2, formula then any formula of the form Vx, ... Vx, A4
isall, , formula. If 4 is a /7, formula then any formula of
the form x, ---3x, A isa X, | formula. Denote by X the
union of all X', for n = 0.

For a class € of formulas, let tense(%) be the class of tem-
poral formulas obtained from % using future temporal and
propositional connectives but no quantifiers (i.e., using the
rules of the definition of formulas). If Qe {3, V}, let Q% be
the class of all formulas of the form QxA, where 4 € 4 and
let O*% be the union of all classes QQ --- Q%. If we take a
class of formulas of the form Q* tense(%), the quantifiers in
Q* are called external and the quantifiers in 4 internal.

We will be mainly concerned with the following classes of
formulas:

o biquantified formulas, in symbols V* tense(Z,),
s universal formulas, in symbols V* tense(ZX,),

» biquantified formulas with a single internal quantifier,
in symbols V* tense(X,).

Note that the 77, formulas are equivalent to the negations
of the X', formulas. Then, since tense(%) is closed under
negation, the V* tense(X) formulas are equivalent to V*
tense(/7,) formulas.

Both the examples given earlier in this section are univer-
sal (ie., V* tense(2;)) formulas.

Temporal Integrity Checking and Triggers

Temporal integrity constraints are imposed on the
current history of a database, i.e., the sequence of states up
to the current one. Such a history is of course a finite-time
temporal database. However, the semantics of a temporal
integrity constraint is defined with respect to an infinite
structure representing a possible future evolution of the
database. The notion of potential constraint satisfaction
(called potential validity in [20]) reconciles those two
views.

526

For a closed FOTL formula C, the set Pref(C) is defined
as

n e Pref(C)if thereisamodel D = (D,. D, ...)
of Csuch thaty =(D,, ... D,).

A constraint C is potentially satisfied at instant ¢ if the
current history (D, ..., D,)ePref(C). In other words, a
constraint is potentially satisfied after an update if the
history ending in the state resulting from the update has an
(infinite) extension to a model of the constraint.

In the database context, considering infinite sequences of
states means that the database is infinitely updatable. This
seems like a desirable characteristic, even though in most
applications databases have only a finite lifetime. Similarly,
in concurrent programming one often studies infinite
behaviors, although every practical program runs only for a
finite time. In both cases infinity provides a convenient
mathematical abstraction. Moreover, the paper [20] that
originated the study of temporal integrity constraints con-
sidered constraints over infinite sequences. As we study
classes of constraints proposed in that very paper, we want
to stay as close to the original motivation as possible. In the
future, 1t may prove worthwhile to study integrity checking
over finite histories, as well as different notions of constraint
satisfaction.

A condition-action trigger [6] “if C then A” fires at
instant ¢ for a (ground) substitution & to the free variables
of C if 1Ch (the result of applying the substitution 8 to
—1C) 1s not potentially satisfied at +. The action executed is
A#. Intuitively, a trigger fires after an update if no extension
of the history ending in the state resulting from the update
can make the trigger condition false. So we can see that the
notion of trigger firing is dual to potential constraint
satisfaction. That corresponds to the intuition that integrity
checking triggers should fire when the integrity is violated.

Safety Properties

Any set of temporal databases over a fixed vocabulary
can be considered a property. We say that a property # is
defined by a (closed) formula A if it consists of all models of
that sentence, ie, Z={D: D = A}.

A property 2 is called a safety property [1] if it satisfies
the condition:

Let D=(D,, D,, D,, ..) be a temporal database. If
any prefix (Dy, ..., D,) of D can be extended to some
D' in 2, then D itself belongs to 2.

A formula defining a safety property is called a safety
Sformula. We note the following.

PROPOSITION 2.1. Any property defined by a formula of
the form LA, where A is a past formula, is a safety property.

CHOMICK] AND NIWINSKI

A property # is a liveness property [1] if it satisfies the
condition:

Any finite-time temporal database D=(D,, D,,
D,, .., D,) can be extended to an element of A

A formula defining a liveness property is called a liveness
Sormula.

It should be clear that a liveness formula is useless for
integrity checking because it does not produce any integrity
violations (it is always potentially satisfied). For an example,
consider the formula < 3Jxp(x). [1] shows that every
property is an intersection of a safety property and a live-
ness property. Only the safety property (defined by a tem-
poral formula) is useful for temporal integrity. Intuitively,
this can be explained as follows: Integrity checking is always
done using a finite history. Therefore, if an infinite sequence
of states violates a constraint. the integrity checking
mechanism should be able to discover that after looking at
some finite prefix of this sequence. The behavior “at infinity”
is not known at the time of checking the constraint because
future updates may be arbitrary. This should be contrasted
with the situation in the area of concurrent programming
[21], where formulas that are not safety formulas are very
useful. Such formulas usually describe properties of a given
concurrent program whose behavior “at infinity” is known.
Following this line of thought, liveness formulas may be
useful as integrity constraints if the database changes in a
controlled manner, for example, when all the updates are
performed by predefined procedures. Then a priori integrity
verification may become possible [7, 18].

The restriction to safety formulas is essential for the
technical results presented in this paper, particularly for the
positive results in Section 4 which do not hold for non-
safety formulas.

Propositional Temporal Logic

We shall also consider a propositional version of the logic
presented above. The vocabulary of the propositional tem-
poral logic of linear time (propositional TL) consists of a set
of propositional letters that are used as atomic formulas of
the logic. Other formulas are formed from atomic formulas
using the Boolean operators and temporal connectives. The
semantics is given in terms of infinite sequences of proposi-
tional states, where a state is a mapping from the set of
propositional letters to the set { true, false}. The interpreta-
tion of the temporal connectives is similar as in the first
order case presented above [8].

Propositional temporal logic has attracted much attention
as a formalism for reasoning about concurrent programs,
since the basic properties of this logic (satisfiability, validity,
equivalence of formulas) are elementarily decidable (see [8]
for a survey). We shall see in Section 4 that in some special

CHECKING CONSTRAINTS

cases decision problems for FOTL can be reduced to the
propositional case.

3. INTERNAL QUANTIFICATION

In this section, we study the complexity of the extension
problem, ie., of Pref(a), for a biquantified formula « with a
single internal quantifier (a V* tense(X,) formula). It is easy
to see that it does not matter whether this quantifier is
universal or existential because a universal quantifier can be
replaced by an existential one and vice versa. For example,
0 Vxp="< Ix —1 9. We assume that the internal quan-
tifier is existential. We show that there is a V* tense(Z,) for-
mula @ for which the extension problem is /72 -complete. We
also show that @ is a formula that defines a safety property
but cannot be transformed to the form (04, where 4 is a
past formula.

The vocabulary of @ consists of monadic predicate sym-
bols only. As the first step we construct another formula ¢
that is universal but over the extended vocabulary (cf., Sec-
tion 2). The argument uses an encoding of the computations
of a deterministic Turing machine for which some temporal
property is shown 77%-complete.

Repeating Computations

We now describe a problem about Turing machines and
prove its /T3-completeness. We consider deterministic Tur-
ing machines with a single tape infinite to the right over an
alphabet X including BeZX as a blank symbol and
{0, 1} = 2 as an input alphabet.

We say that a word we {0, 1}* induces a repeating
behaviour of a machine M if the computation of M starting
with w as an input is infinite and also the machine’s head
visits the leftmost cell of the tape infinitely often.

LemMma 3.1. There exists a Turing machine M such that
the set of words w which induce a repeating behaviour of M
is I1S-complete.

Proof. Let us fix a IT;-complete language 4 < {0, 1} *.
By a well-known characterization of the 179 sets (cf. Rogers
{23, Chap. 14]), there exists a recursive relation R(x, y, z),
such that

xeA<Vy3Iz R(x, y, z).

Clearly, we can have a Turing machine, say M, over an
alphabet {0, 1, $}, which halts for every input and accepts
a word w$vSu iff w, v, and u are words in {0, 1} * satisfying
the relation R.

We shall construct a machine M with the input alphabet
{0, 1} such that a word we {0, 1} * will induce a repeating
behaviour of M iff w e A.

527

Given an input w, the machine first shifts it one cell to the
right and marks the second cell of the tape in some special
way; this is in order to prevent visiting the origin of the tape
except in the situations to be described below.

Now M enters into a infinite loop in which it will examine
all the words ve {0, 1} * in some fixed linear order. For each
such v, the machine M starts another loop in which it
enumerates all the pairs («, m), where ue {0, 1} * and m is
(an encoding) of a natural number. For each such (u, m), M
simulates m steps of the computation of the machine M, on
the input wvu (remember that w is the original input of
the machine M). If it happens that the simulated machine
M, stops and accepts within m steps, then the machine M
exists from the loop enumerating the pairs (u, m) for this
given v and goes to the origin of its own tape. Next, it passes
to an examination of the successor of v. Note that if, for
some v, no attempt of simulating M, is successful, then M
will loop forever for that v and will not visit the origin of the
tape any more, neither will it examine any successor of v.
This may happen, however, only if there is no u such that
R(w, v, u) holds.

Then, it is easy to see that an input w induces a repeating
behaviour of M iff, for all v, there is some u such that the
relation R(w, v, #) holds, that is, iff we 4. |

Remark. For some nondeterministic Turing machines,
the problem of deciding whether a word induces a repeating
behaviour is not arithmetical. This fact has been used in the
proof that the satisfiability problem for first-order temporal
logic is X'} -complete [15].

Formula ¢

We are now going to show that the repeating behaviour
of a Turing machine can be expressed in the framework of
first-order temporal logic over a vocabulary extended by the
symbols <, succ, and Zero.

Let us fix a Turing machine M satisfying the property of
the preceding lemma. Recall that the alphabet X of the tape
symbols used by M includes the input alphabet {0, 1} and
the special blank symbol B. Let Q be the set of states of M
including the initial state g,. We encode configurations of M
(ie., sequences of the form agfB®, where o, fe I * and
ge Q) by database states in the following way: the
vocabulary will include a monadic symbol P, for each state
g€ Q and a monadic predicate symbol P_ for each g€ X,
except for B. The intuitive meaning of a formula P_(x) (resp.
P,(x)) is: the xth symbol of the actual configuration is o
(resp. ¢). It will be further convenient to use the notation
Pp(x) as an abbreviation for A. o x (g T P.(x). The
intuitive meaning of this is: the xth symbol of the actual
configuration is the blank symbol.

The formula which forces a temporal database to encode
a repeating computation of M will express the following
database properties. First, for any element x of the universe,

528

in any database state (i.e., always in the temporal sense),
at most one of the monadic predicates P., where
zeQuZ—{B}, is true about x. Second, the initial
database state encodes some initial configuration of M.
Third, subsequent database states encode subsequent con-
figurations. Finally, there are infinitely many database
states which encode configurations with the machine’s head
scanning the leftmost tape cell.

We sketch the construction here. It 1s given in detail in the
Appendix. Each of the above conditions can be expressed by
a temporal formula of the form Vx, ---Vx s, where is
quantifier-free. For example, the last statement (concerning
the repeating behaviour of the machine) can be formalized
as

Yy Zero(x)= 0O \/ Pfx).
qe @

Indeed, this formula forces that, for the least element of the
database universe, infinitely often some predicate P, is true.
This corresponds to the fact that, in the encoded computa-
tion, the first symbol of a configuration is infinitely often a
state, i.e., the machine’s head visits the origin of the tape
infinitely often. Moreover, for all these formulas k& <3,
Then, using the standard transformations of predicate
calculus, we can write the entire formula in the form Vx,
Vx, Vxi, where i is quantifier-free. We can summarize the
above considerations in the following.

PROPOSITION 3.1. There is a temporal formula ¢ over the
vocabulary described above, and of the form @ =Vx, Vx,
Y, where is quantifier-free, such that any temporal
database over this vocabulary satisfies ¢ if and only if it is an
encoding of a repeating computation of the machine M.

PROPOSITION 3.2
Proposition 3.1 is a safety property.

Proof. Since the machine M is deterministic, any finite
sequence of database states of length >1 has at most one
extension to a temporal database. Thus the safety condition
holds obviously. |}

But the main feature of the above-defined formula ¢ 1s the
following.

THEOREM 3.1. The problem of deciding whether a given
Sinite-time temporal database over the vocabulary considered

above can be extended to a (infinite-time) temporal model of

@ is ITS-complete.

Proof. We show a Turing reduction of the problem dis-
cussed in Lemma 3.1. Let we {0, 1} *. Consider a database
state which encodes the initial configuration of the machine
M with the input w. Now the one element sequence consist-
ing of this database state can be extended to a temporal

The property defined by a formula of

CHOMICKI AND NIWINSKI

model of ¢ iff w induces a repeating behaviour of M. Thus
the problem is 779-hard.

In order to see that the problem is actually in the class
175, we can give it an alternative formulation as follows.
Given a finite sequence of database states, determine if for
each n there is a finite prolongation of this sequence which
encodes an initial segment of some computation of M in
which the machine’s head visits the leftmost cell of the tape
at least n times. Since finite sequences of database states can
be encoded by integers and it is clearly decidable if a finite
sequence of database states encodes some initial segment of
a computation of M then the latter problem is clearly in 775.
In order to see that it is equivalent to the original one,
observe that a finite sequence of database states has at most
one prolongation of a given length to a sequence which
actually encodes an initial segment of some computation
of M. |

COROLLARY 3.1. The formula @ is not equivalent to any
Jormula of the form [0, with 8 being a past formula.

Proof. Suppose to the contrary that ¢ is equivalent to
[J0. The set of finite sequences of database states that satisfy
 cannot coincide with the set of prefixes of temporal models
of ¢ since the former set is clearly decidable while the latter
was shown to be 775-complete. This, however, is not yet a
contradiction, since the mere satisfaction of 4 by a sequence
of database states does not imply that the sequence can be
extended to a temporal model of [J0. We have to proceed
more subtly.

Let we {0, 1} * and let C, be the initial configuration of
the machine M with the input w. We claim that the follow-
ing condition is equivalent to the statement that w induces
a repeating behavior of M:

For each n, the computation of M on the input w
does not terminate within » steps and, for each
finite-time database D =(D,., D,, .., D,) such that
D, is the encoding of the ith configuration of the
computation of M on w (the quantifier “for each”
stands here for formal reasons; in fact there may
be at most one such database), D satisfies the past
formula 8.

One implication 1s plain and the other follows from our
hypothesis and the fact that the initial configuration has at
most one prolongation to a computation of M of length ».

Now, using appropriate encodings of finite sequences of
database states by natural numbers, one can easily see that
the last problem is in the class /79 which contradicts
Lemma 3.1. |

Formula ¢

The formula @ will force that a database encodes a repeat-
ing computation if considered with an ordering of type @ on

CHECKING CONSTRAINTS

the universe which is not explicitly present but can be
defined by means of temporal formulas. Definability of such
an ordering in temporal logic is a standard construction
used in the proofs of the incompleteness of FOTL [11].

Thus, we transform the above formula ¢ into a V°
tense(.X,) formula @ written over a vocabulary consisting of
monadic symbols only. Let W be a new monadic symbol.
Consider the following temporal formulas:

W1, VxVyO(W(x) A W(y)=>x=y)
W2, O 3IxW(x)
W3, ¥xO(W(x)= OO W(x)).

Note that W1 and W3 are universal formulas, while W2
is a tense(2') formula. The formula W1 forces that for each
database state there is at most one element of the universe
satisfying the predicate W; W1 and W2 induce that, for each
database state, there is exactly one such element. W3 forces
that, for each element of the universe, the predicate W is
true in at most one database state. Whenever W1 and W3
are true in a temporal database D, they induce a total order-
ing of type @ on the set W? of those elements of the universe
that satisfy the predicate W in some database state, defined
as follows: 1 <, j iff W{(i) happens not later than W{(). This
ordering can be expressed by a temporal quantifier-free
formula:

X< ¥ =g O(Wx) A OW(p)).

Moreover, if D satisfies W2 then the set W7 is infinite, and
the successor relation corresponding to =,,- can be defined
by

Su(x, y) =4 C(W(x) A OW(y))
while the initial (“zero”) element is clearly distinguished by
Zw(x) =4 W(x).

We shall consider the vocabulary of monadic symbols of
the previous subsection (induced by the Turing machine M)
extended by the symbol W. Now, if we restrict our attention
to models of W1 A W2 A W3, we can define the encoding of
configurations of M by database states in the similar way as
before, but now with respect to the new ordering < .. Also,
the property “a database encodes a repeating computation
of M w.r.t. <, can be defined in a similar way.

Let the formula ¢ = Vx, Vx, Vx; be as in the previous
subsection. Let ¢ - be

(Vx, Vx5 Vx3) O Wix) A OW(x,y) A OW(x3) =Yy,
where ¢, is a formula obtained from ¥ by replacing

each subformula x <y by x <, y, suce(x, y) by Su.(x, y),
and Zero(x) by Z,(x). Consider the formula

571;51/3-13

529

@w A WL A W2 A W3, This formula can readily be trans-
formed to the form @ = Vx, Vx, Vx,, where ¥ is tense(Z,).
Note that @ uses only monadic predicate symbols of the
database vocabulary.

Consequently, we have new versions of Propositions 3.1
and 3.2, Theorem 3.1, and Corollary 3.1.

PROPOSITION 3.3. A database D satisfies ¢ iff D encodes
a repeating computation of the machine M, w.r.t. the ordering

<w-

PROPOSITION 3.4. The property defined by the formula
is a safety property.

Proof. Let D=(Dg, D,, D,, ...) be a temporal database
such that any prefix (D, .., D,) of D can be extended to a
model of @. It is easy to see, that D must satisfy
WI A W2 A W3 We have to show that D= ¢,. By
Proposition 3.3, any prefix of D can be extended to a tem-
poral database encoding some repeating computation of M.
In all these encodings, the database state D, encodes an
initial configuration of the corresponding computation.
Note that this configuration is not entirely determined by
D, itself and not even by the whole D, but it depends also
on the interpretation of the predicate letter 1 in the actual
extension. We show, however, that if we consider sufficiently
large prefixes then the initial configurations in question are
equal. Indeed, consider the first time instant ¢ such that, for
all a, if some P_(a), ze Qu Z, holds in D, then W(a) holds
in some database state D, with i<t or it holds in no
database state of D at all. Let b be the element such that
W(b) holds in D, (there is such an element since D satisfies
W2). Observe that, for any extension of the prefix
(Dyg, ..., D,) that encodes a computation of the machine M,
if we consider the initial configuration of this computation
then b “encodes” the first position of the machine’s tape
holding the symbol blank. (Intuitively, the information
about the initial configuration encoded by D, has been
completed by ¢.) Then it is not difficult to see that all the
computations encoded by the extensions of the prefix
(Dy, ..., D,) start with the same initial configuration and
consequently are equal. Using a similar argument for subse-
quent configurations, one can further see that D itself
encodes this unique computation in question. Thus, by
Proposition 3.3, we are done. ||

THEOREM 3.2. The problem of deciding whether a given
finite-time temporal database over the vocabulary considered
above can be extended to a temporal model of ¢ is
3-complete.

Proof. The argument is analogous as in the proof of
Theorem 3.1. However, in the reduction, given w e {0, 1}*,
we have now to construct a finite-time temporal database,
say D, =(Dy, D, .., D,), that usually has more than one
state. It is easy to construct D, in such a way that D, is the

530

encoding of the initial configuration of M on the input w,
in any possible extension of D, satisfying @ (due to
appropriate choice of the predicate W in the database states
Dy, Dy,..D,) 1

The following is obtained by a slight modification of the
proof of Corollary 3.1.

CoROLLARY 3.2. The formula ¢ is not equivalent to any
Jormula of the form 08, with 0 being a past formula.

4. UNIVERSAL FORMULAS

We now fix an arbitrary finite vocabulary L. Recall that,
by definition, the universe of a database is infinite and coun-
table and, by convention, it coincides with N. In what
follows, we will sometimes relax this last convention. Let A4
be an infinite subset of the universe of a database D contain-
ing the interpretations of all the constant symbols of L. The
restriction of D to 4, in symbols D | A, is a database with the
universe A in which the interpretation of a predicate symbol
p of arity r at a time instant ¢ is given by p” n 4". Clearly,
one could find a database with the universe N isomorphic to
D| A. The following property will be useful: if D is a model
of a universal temporal sentence, so is D | A.

Let D=(D,, D,, .., D,, ...) be a finite- or infinite-time
temporal database with the universe N. We call an element
me N relevant to D if m is an interpretation of some con-
stant symbol or m is in the domain of the interpretation of
some predicate symbol in some state of D. Otherwise, an
element m is irrelevant to D. Let R, be the set of all elements
relevant to D. Let I,,=N— R,,. Clearly, for a finite-time
temporal database D, R, is finite and [, is infinite.

LEMMA 4.1. Let ¢ be a universal safety sentence. Sup-
pose that a finite-time temporal database D= (D, D,, ..,
D,) has an extension to an infinite-time temporal database
satisfying @. Then D can be also extended to some D' satisfy-
ing @, such that R, = R,.

Proof. Let D" be an extension of D satisfying ¢. We
define D' by setting D; =D, for i=0, 1, ..., ¢, and for each
n > t, each predicate symbol p of arity r, and a,, ..., 4, € N:

pPa,,a)iff pPa,, ..,a,)and a,, ..,a, € Ry.

Clearly R, = R,. In order to verify that D' E ¢, it is
enough to show that for each n e N, the prefix (Dy, ..., D)) of
D’ has an extension satisfying ¢. We can assume n > t. Let
I,,; be the set of those n € N that are not relevant to D" in the
prefix (Dg, ..., D;). That is, m e I, iff m is neither an inter-
pretation of a constant symbol nor is it in the domain of the
interpretation of a predicate symbol in some state D, for
m < n. Consider the temporal database E obtained by the
restriction of D" to the set R, U I ;. Because ¢ is a universal
formula, E is also a model of ¢. But the prefix (E,, ..., E,)) is

CHOMICKI AND NIWINSKI

clearly isomorphic to (Dy, ..., D;). Then, we can infer that
(Dyg, ..., D)) itself has the desired extension. |

The important point in the above lemma is that the
universe of the model D' in consideration must be infinite,
according to our usual requirement about databases. (In
particular, the restriction of the above D" to R, although
it is obviously a model of ¢, cannot be considered a tem-
poral database unless we allow temporal databases with
finite universes.)

To illustrate the importance of the above point, we show
an example of a universal temporal formula that has models
with arbitrary large finite universes but does not have a
model with an infinite universe. Let the formulas W1 and
X =<y y be as in Section 3. Define

W4 (VX ((—W(x) until (W(x) A OO W(x))).

This formula forces that any element of the universe
satisfies the relation W in exactly one database state. Let Q
be a fresh monadic predicate letter and let Q1, Q4, and <,
be defined like W1, W4, and =(,;.. respectively, except that
all the occurrences of W are replaced by Q. Take the con-
junction of W1, W4, QI, Q4, and the formula

(Vx, Y UX <oy =y <Xy X).

The last formula asserts that the ordering of the universe
induced by Q is the inverse of the ordering induced by W.
Together with Q4 it forces the existence of a <}, -decreasing
chain formed by all elements of the universe.

THEOREM 4.1. Given a finite-time temporal database
D=(Dy, D,,.,D,) and a universal safety sentence
@=Vx,---Vx, one can construct a finite sequence of
propositional states w® = (wq., w,, .., w,) and a formula ¢ , of
propositional TL such that D can be extended to an
infinite-time temporal database satisfving ¢ iff w? can be
extended to an infinite sequence of propositional states
satisfying @p. The formula ¢, can be chosen of the size
O((@| - |[Rp1N™5,-r where r is the maximum arity of
database relations.

Proof. Let ¢ =Vx, ---¥x, 4. Without loss of generality,
we can assume that R, = {0, 1,2, .., mD} for some m, € N.
Let C, be the (finite) set of constants symbols of the
vocabulary L. We also fix some k symbols, say z,, ..., z,,
disjoint from R, and C, (intuitively, they will represent
the elements of the universe outside R,). Let
M=Rpu iz, ... z). We define a vocabulary of the
propositional temporal logic as a set L, consisting of the
following propositional symbols:

e (a=b)foreacha beMuUC,,

e play, ..,a,,,) for each predicate p of L and each
SEqQUENCE a, ..., Ay, EM U Cp.

CHECKING CONSTRAINTS

(Note that we have intentionally chosen some well-formed
first-order formulas to denote the propositional letters in
Ly.)

Now let f: {x|, .., x,} = M be any mapping. For each
atomic formula « over L with variables among {x,, .., x.},
let o[f] be the result of the substitution of f(x,) for x,. For
example, if f(x,;)=35 and f(x,)=2z; then (x,=x,)[f]=
(z;=5). Note that each «f f] can be identified with a
propositional symbol in L,. The «f f] operation can be
extended in a natural way to all quantifier-free first-oder

temporal formulas over L, with variables among
{x1...x,}; a[f] is then a formula of the propositional
temporal logic over L,,. Let
¥vo=AvLSf]
s

where f ranges over all mappings from the set {x,, .., X}
to M.

We also define the propositional temporal formula
Axiomy,, as the conjunction of the following:

e (¢=a)foreachaeMuC,,

o (a=b)<>(b=a)foreacha, beMuC,,

e (a=b)An(b=c)=(a=c)foreacha, b,ce ML,

. (al =bl) A A (aar(p)=bar(pl) =>p(a[a ey aar(p))¢
plby, .., b, ,) for each predicate p of L and each
Ays s Ay pys D1y o Dy EM O C

o (i=c)for each i<mp and ce C,, such that i=c?,

e (c=d)foreach c,de C,, st c?°=d™,

o (i=j)foreach i, j<mp,i#],

e —i=c)foreachi<mpand ceC, st i#c™,

e —(c=d)foreach c,de C,, s.t.c? #dP,

e —(z;=j) for each z, and each j<m,

e (z;=2z,) for each z;, z;, such that i #,

o Tplay, .., 4., for each predicate p of L and each

e gy EMUCy st at least one a; is among
-

We set
¢p =4 ¥p A OAxiomy,.

We are now going to define the sequence of propositional
states wP = (wy, w,, .., w,). Recall that a propositional state
is a mapping from the set of propositional letters to the set
{ true, false}. Intuitively, w, is a description of the database
state D,. Recall that the interpretation of a constant symbol
¢ is the same in each database state, in symbols c”. We set

o w,(c=d)=true iff c®=d? for all constant symbols
¢, deCp,

o wilc=i)=wli=c)=trueiff c?=iforce C,,i<mp,

531

o w,(i=1i)=true,

o w,(i=j)=false for i #/,

o w,(z,=2z;)=true,

e wy(z;=z;)="false for i #j,
o wi(z;=c)=w)(c=z,)=false for ce C,,
o wi(z;=j)=w,(j=z;)=Talse,

o wi(p(ay, ., uyp))=truefora,, ., a,.,, €{0,1,. ., mp}
v C, iff the predicate p is true for the vector (a,, ..., a
in the database state D,

urtp))

o wi(play, ..., G,) = false whenever at least one of the
a;’sis in among {z, .., z,}.

Suppose now that if D= (D, D,, .., D, has an
extension to an infinite-time temporal database D'=
(Dy, Dy, .., D,, ..) satisfying ¢. By Lemma 4.1, we can
assume that R, = Rp,. Let

D ,)
W =(Wos Wiy oy Wes W,y Wopoy o)y

where for > ¢, w, is defined in the same way as for / < 1 (see
above). We will verify that w? satisfies ¢ .

Clearly, w2 satisfies O Axiom,. Now let f: {x, ... x;}
— M. Fix some distinct k elements b, ..., b, € N— R, and
define a valuation v, by

_ S(x) if f(x)eRp
v(x,-)——{bj’ if flx,)=z,

Now it is easy to verify by structural induction that for any
quantifier-free temporal formula a(x,, ..., x;), and for any
time instant s

D,v,skEaif w2, sk o[f]

Since by our assumption D', v, 0 = ¥, we can conclude that
w2 = Y[f]. Because f was arbitrarily chosen, we have
w? = ¢p, and hence also w2 | ¢, as required.

To show the other direction, suppose w” can be extended
to to an infinite sequence that is a model of ¢,. Then in
order to obtain an extension of D satisfying ¢, we need to
“decode” propositional states into relations. Suppose that
the sequence w? = (wy, w,, ..., w,) can be extended to an
infinite sequence of propositional states, say

W2 = (Wo, Wi, oy Wi W, o W, s,y)
which satisfies ¢ 5. For each i > ¢, we define a database state
D, as follows. The interpretation of the constant symbols is
the same as in D. For a predicate symbol p and

Ay Ay EN, pPiay, . @) hOMds iff ay, . a,,,, € Rp
and the propositional symbol p(a, .., a,,,) evaluates
to true in the propositional state w;; otherwise

pPiay, .., auy,) does not hold. We will show that the

532

resulting infinite-time database D =(D,, D\, ...D,, D, |,
D, ., ..} satisfies ¢. Let v be a valuation. Suppose that the
values v(x,), i=1, .., k, which are not in R, form a set

{b,,...b,} (this set can be empty). Fix some embedding ¢
of this set into {z, .., z;}. Define /> {x,, ... x,} = M as
L ey, if vix;))eR,
Jxi = {e((X)), otherwise.

Now, using the fact that w” = OAxiom,, it is easy to
verify by structural induction that, for any quantifier-free
temporal formula a{x |, ..., x;), and for any time instant s,

D,.v.skEa iff w2 s E alf]

Since, by our assumption w? , 0 &= [] for any f, we have
D, ,v,0 ¢ for any v, and consequently D, | ¢, as
required.

The polynomial upper bound on the size of ¢, follows
directly from the proof. The exponent is due to the fact that
the size of Axiom, ts O(| R, |™*x*). |

The above theorem will allow us to reduce the question
if a finite-time temporal datbase can be extended to a model
of a universal safety sentence to the question of satisfiability
of some propositional temporal formula. By the results on
propositional temporal logic, this will yield decidability of
the extension problem.

LEMMA 4.2. Given a sequence of propositional states
w=(wy, Wy, .., w,) and a formula « of propositional TL, one
can decide if w can be extended to a model of x in time
O(t - |a|) + 299" and space t - |a| ",

Proof. The algorithm consists of two phases. The first
phase is deterministic: we check whether the propositional
states wy, w,, ..., w, are consistent with «, r.e., whether they
can form a prefix of a model of «. This can be done using
the approach of Sistla and Wolfson [26]. The essence of
this approach consists of building a formula «,. on the basis
of x and w = (wy, w,, w,) for £ =0, I, ..., t. This formula will
be tested for satisfiability in the second phase.

We show how to build the formula x,. Start with the
expression [a],. We will push the subscript (denoting the
state index in the prefix w) inside the formula. If « = § until
y, then it will be rewritten to [y]o v [fo] A 2], If
a=f Ay, then it will be rewritten to [f], A [y],. If
a= f, then several cases are distinguished. If f=—y,
then [a], is rewritten to [y]e. If f=3 A 4, then [a], is
rewritten to [1y], v [0], If f=7 until J, then the
result of the rewriting is [8], A ([Ty]o v [a])) If
B= Oy, then [a],is rewritten to [1y],. Finally if a = Of,
then [a], is rewritten to [§],. Subsequently, the expres-
sions with subscript 0 are further rewritten using the same
rules. It should be clear that as the result of the rewriting,
we obtain a boolean combination of propositional atoms

CHOMICKI AND NIWINSKI

with subscript 0 and expressions of the form [f],, where f§
is a subformula of the original formula or its negation. Now
atoms of the first kind can be replaced by true or fulse
depending on the propositional state w,, and the resulting
formula simplified. In this way we obtain the formula «,. In
the next step expressions with subscript 1 are rewritten and
the resulting formula simplified to obtain a, etc. Finally, the
formula «, 1s obtained.

The second phase verifies the satisfiability of «, using the
nondeterministic polynomial space procedure of Sistla and
Clarke [25].

[t is easy to see that every formula a,, 0 <i <1, 1s of size
at most O(]x|}. Thus the first phase takes O(¢-|x]) time,
and the second phase takes 29" time. |

From this and Theorem 4.1, we can infer our main result
about universal formulas.

THEOREM 4.2, Given a finite-time temporal database
D=(D,,D,,..D,) and a universal safety sentence ¢ =
Yx,---Yx, 0, one can decide if D can be extended to an
infinite-time temporal database satisfying @ in time
Ot - (|@] - |Rp|ymaxkrry 4 2000l 10N S ohore v is the
maximum arity of database relations.

In the formulation of Theorem 4.2 it is essential that ¢ be
a safety sentence. For universal sentences that are not safety
sentences, e.g., Yx < p(x), Lemma 4.1 fails and the proofs
of Theorem 4.1 and Theorem 4.2 do not go through. This
fact provides an additional justification for considering only
safety formulas as integrity constraints.

5. RELATED WORK

It seems safe to say that FOTL :s the preferred language
for the specification of temporal integrity constraints as
evidenced by the following papers (the list is by no means
complete) [3-5, 7, 14, 17-20, 22, 26].

Lipeck, Saake, and their students [14, 17, 19, 20] intro-
duced the class of biquantified formulas (although they did
not use this term), proposed several constraint checking
methods for this class, and were the first to define a notion
equivalent to potential constraint satisfaction. It is clear
from the lower recursion-theoretic bounds established in the
present paper that checking potential constraint satisfaction
for the full class of biquantified formulas i1s not computa-
tionally feasible. Therefore, the methods of Lipeck and
Saake implemented by necessity a weaker notion of con-
straint satisfaction, namely one in which constraint viola-
tions are always detected but not necessarily at the earliest
possible time.

In our earlier work [3] we introduced Past FOTL
(FOTL with past operators only) as the language for
specifying temporal integrity constraints and proposed an

CHECKING CONSTRAINTS

efficient method to evaluate such constraints (again, under
a weaker notion than potential constraint satisfaction). We
have also extended Past FOTL to Past Metric FOTL in
order to be able to formulate real-time constraints (con-
straints that refer to the values of a clock).

Qian and Waldinger [227] also recognized the need for
efficient checking of temporal constraints. They presented
many compelling examples but no general method.
Castilho, Casanova, and Furtado [7] and Kung [18] dealt
mainly with the issue of consistency of temporal constraints
with action specifications and did not study integrity check-
ing in the presence of arbitrary updates.

Sistla and Wolfson [26] discussed triggers whose condi-
tions are temporal formulas. However, instead of standard
first-order quantifiers, they used freeze quantifiers with non-
standard semantics. The expressive power of their trigger
language depends on the query language of the underlying
DBMS. It is interesting to note that if the latter language is
a first-order query language like relational calculus or
algebra, the trigger language of [26] is as expressive as the
class 3* tense(2',) of FOTL formulas, i.e., the class of nega-
tions of biquantified formulas. The integrity checking
method of [26] implements, like [20], a notion of con-
straint satisfaction that is weaker than potential constraint
satisfaction.

In the object-oriented context Gehani, Jagadish, and
Shmueli [12, 13] discussed triggers that are fired by event
occurrences. They introduced a language of extended
regular expressions for specifying composite events.

6. CONCLUSIONS AND FURTHER WORK

We have analyzed the computational feasibility of check-
ing temporal integrity constraints formulated in some sub-
languages of FOTL. Our results illustrate the impact of the
quantifier pattern on the complexity of this problem. The
presence of a single quantifier in the scope of a temporal
operator makes the problem undecidable. On the other
hand, if no quantifiers are in the scope of a temporal
operator and all the quantifiers are universal, temporal
integrity checking can be done in exponential time.

The most immediate question is whether one can remove
R, | (the size of the set of relevant domain elements) from
the exponent in the time bound for universal formulas. Most
probably no, as shown by the following argument. Consider
a deterministic Turing machine M that decides the problem
SAT within polynomial space and exponential time. Using
techniques similar to those used in Section 3, we can encode
an initial configuration of this machine by a single database
state D,. We can make this initial configuration as large as
the maximal space needed for the computation. Then, it 1s
not difficult to write a universal formula ¢, defining a safety
property, such that the singleton sequence (D,) can be

533

extended to a model of ¢ iff M accepts. {Note that we are
now dealing with a machine operating in a bounded space.
It is enough that the successor relation will be correctly
defined in D,; the formula ¢ can force that this relation
remains the same throughout the other database states.
Therefore, the problem resulting from the impossibility of
axiomatizing the successor relation by a universal formula,
that we have encountered in Section 3, does not arise here.)
Now, if we could answer the extension question within a
time polynomial in the size of D, then we could solve SAT
in polynomial time, which is believably not possible.

It is essential that a universal sentence be a safety sentence
for the exponential upper bound to hold. Sistla [24]
showed that propositional safety formulas can be charac-
terized syntactically. He also proved that recognizing
propositional safety formulas is decidable. We conjecture
that his results generalize to universal biquantified formulas.

To make temporal integrity checking more practical,
weaker notions of constraint satisfaction should be con-
sidered and their computational complexity analyzed. An
important notion in this area is that of a history-less con-
straint evaluation [3,4] Intuitively, the complexity of
history-less constraint evaluation does not depend on the
length of the database history but only on the number of
different attribute values that appear in it. A history-less
evaluation method for Past FOTL implementing a notion
weaker than potential constraint satisfaction is presented in
[37]. It remains to be seen whether a history-less method can
be devised for universal biquantified formulas.

APPENDIX: A TEMPORAL FORMULA ENCODING
REPEATING COMPUTATIONS OF A TURING MACHINE

We are going to describe a way in which the computa-
tions of Turing machines can be encoded by temporal
databases and to present a temporal formula expressing the
property that the encoded computation is repeating. This
will be the formula ¢ that is required in Proposition 3.1.
Recall that, in this formula, we are allowed to use the
extended vocabulary (cf., Section 2). More specifically, our
vocabulary will consist of a finite number of unary predicate
symbols and the specific predicate symbols < (binary),
succ(binary), and Zero(unary) interpreted over the universe
N in the standard way. Note that the interpretation of any
unary predicate symbol in any database state is finite.

Let us fix a Turing machine M satisfying the property of
Lemma 3.1. We may assume that M has one tape infinite to
the right. Recall that the alphabet X of the tape symbols
used by M includes the input alphabet {0, 1} and the special
blank symbol B. Let Q be the set of states of M including the
initial state g,.

We assume the reader is familiar with the concept of con-
Siguration of a Turing machine (also called instantaneous

534

description [16]). For our purpose, it is convenient to

slightly modify this concept and to present a configuration-

as an infinite, rather than finite, sequence of elements in
2w Q. Such a sequence is of the form agfB®, where
o, fe2* and ge Q. Note that there is exactly one
occurrence of a machine’s state symbol and that all but
finitely many symbols in the sequence are B. Thus a con-
figuration corresponds precisely to an actual content of the
Turing machine’s tape, and the position of ¢ indicates the
actual position of the machine’s head: it is supposed to be
scanning the first symbol of fB*. {Note that we do not for-
bid B to occur in « or B.) An initial configuration is of the
form g,wB®“, where w e {0, 1} *. Now, for a configuration C,
there i1s at most one configuration C' resulting from C by
one move of M. If it is the case and C=cyc,---;
C" = ¢y -5 then each three consequtive letters ¢;¢;, ¢ >
determine uniquely ¢;, ,, and ¢,c, determines uniquely cj,.
Now a computation of M with an input w can be identified
with a sequence of configurations C,, C,, ..., where C, is an
initial configuration, say C, =g wB®, and for each ¢. C, , ,
results from C, by one move. Moreover, the input w induces
a repeating behaviour of M if the computation sequence is
infinite and contains infinitely many configurations of the
form gaB®. We call such a sequence a repeating computation
(of M).

Our vocabulary will include a monadic symbol P, for
each state ge Q and a monadic predicate symbol P, for
each g € X, except for B. We say that a database state
encodes a configuration C = ¢yc, - - - if for each i€ N, at most
one monadic predicate is true about /i and, for each
e Qu X —{B} the predicate corresponding to the symbol
P is true about i iff ¢;=z. Note that ¢,= B if and only if
none of the predicates P_ is true about i. Since B is the only
symbol that can occur in a configuration infinitely often,
each configuration is indeed encoded by a database state. It
will be further convenient to use the notation Pg(x) as an
abbreviation for A..o z_ 1z, TP.(x).

Now, we say that a temporal structure D=(D,, D, ...)
encodes a computation C,, Cy, ..., if each D, encodes C,, for
i=0,1, ..

We will construct a formula which will force a temporal
database to encode a repeating computation of M. At first,
we construct several formulas, each one of them capturing
one of the desired properties:

1. For any element i of the universe, in any database
state at most one of the monadic predicates P, g€ Q,
P,,ceX —{B} is true about i:

vx O A

abeZ\{Btw Q. a#b

—‘(P(I('Y) A Pb('\’))'

2. The nitial database state encodes some initial con-
figuration of M:

CHOMICK] AND NIWINSKI

Vx,y Zero(x)= P (x)

A (M1 Zero(x) A x <y A TIPR(Y))

= ((Py(¥) v Pi{¥)) A (Pylx) v Py(x))).

(Note that we do not need to express the property that there
is some B since it follows from our proviso that the interpreta-
tion of any of the predicate symbol P,,a € X' U Q, is finite.}

3. Subsequent database states encode subsequent con-
figurations. For this, we shall use the fact that any three con-
secutive positions of a configuration determine uniquely the
content of the middle position in the next configuration.
More specifically, we shall need a formula for each tran-
sition of M. Suppose there is a transition of the form
g, o —p, p, R (ie, if the machine is scanning symbol o in
state ¢ then in the next move it changes state to p, replaces
o by p and moves the head right). Then the corresponding
formula is

vx, y, 2 A\ O(suce(x, y) A suce(y, =)
celd
N Pq(.‘f) A Pﬂ(),) A P('(Z)
= O(P,(x) A P(y) A PL2)))
Formulas for other transitions are similar. Also, we will

have a formula for the case where none of the three con-
secutive positions contains a state. This formula will be

Yy,),z /\ O(suce(x, y) A succ(y, z)
ab.cer
APAX)APU(YYAPLZ)
= OPyy))

4. There are infinitely many database states which
encode configurations with the machine’s head scanning the
leftmost tape cell.

Vx Zero(x)=0<C \/ P (x).
qe @

Now, it is easy to see that a temporal database satisfies
the conjunction of all the above formulas iff it is an encoding
of a repeating computations of the machine M, in the sense
explained above. Note that any of the above formulas can
be written in the form ¢ = Vx,Vx,Vx;y, where { is quan-
tifier-free. Moreover, the conjunction of those formulas can
be also written in such a form. Thus, the proof of Proposi-
tion 3.1 is completed.

ACKNOWLEDGMENTS

The comments of the anonymous referees are gratefully
acknowledged.

11

12.

CHECKING CONSTRAINTS

REFERENCES

. B. Alpern and F. Schneider, Defining Liveness, fnform. Process. Lett.
21 (1985), 181-185.

. C. Chang and H. Keisler, “Model Theory,” North-Holland, Amster-
dam, 1977.

. J. Chomicki, History-less checking of dynamic integrity constraints, in
“IEEE International Conference on Data Engineering,” Phoenix, AZ,
February 1992.

. J. Chomicki, Real-time integrity constraints, in “ACM Symposium on
Principles of Database Systems, San Diego, CA,” June 1992.

. J. Chomicki, Temporal integrity constraints in relational databases,
IEEE Data Engrg. Bull. 17, No. 2 (1994), 33-37.

. U. Dayal, et al., The HiPAC Project: Combining active databases and
timing constraints, SIGMOD Record 17, No. 1 (1988), 51-70.

. J. De Castilho, M. Casanova, and A. Furtado, A temporal framework
for database specifications, in “International Conference on Very
Large Data Bases, 1982,” pp. 280-291.

. E. Emerson, Temporal and modal logic, in “Handbook of Theoreti-
cal Computer Science,” Vol. B, {J. van Leeuwen, Ed.), Chap. 16,
pp. 995-1072, Elsevier, New York/MIT Press, Cambridge, MA, 1990.

. M. Finger and D. Gabbay, Adding a temporal dimension to a logic
system, J. Logic Lang. Inform. (1992).

. D. Gabbay, L. Hodkinson, and M. Reynolds, “Temporal Logic: Math-

ematical Foundations and Computational Aspects,” Oxford Univ.

Press, Oxford, 1994.

J. Garson, Quantification in modal logic, in “Handbook of Philo-

sophical Logic” {D. Gabbay and F. Guenthner, Eds.), Chap. ILS,

pp. 249-307, Reidel, Dordrecht, 1984.

N. Gehani, H. Jagadish, and O. Shmueli, Composite event specifica-

tion in active databases: Model & implementation, in “International

Conference on Very Large Data Bases, 1992,” pp. 327-338.

. N. Gehani, H. Jagadish, and O. Shmueli, Event specification in an
active object-oriented database, in “ACM SIGMOD International
Conference on Management of Data, 1992,” pp. 81-90.

. M. Gertz and U. Lipeck, Deriving integrity maintaining triggers from
transition graphs, in “IEEE International Conference on Data
Engineering, 1993.”

15.

16.

17.

20.

21

22.

24.

25.

26.

27.

28.

535

D. Harel, Recurring dominoes: Making the highly undecidable highly
understandable, Ann. Discrete Math. 24 (1985), 51-71.

J. Hopcroft, and J. Ullman, “Introduction to Automata Theory,
Languages and Computation,” Addison-Wesley, Reading, MA, 1979.
K. Hiilsmann and G. Saake, Theoretical foundations of handling large
substitution sets in temporal integrity monitoring, Acta Inform. 28, 4
(1991).

. C. Kung, On verification of database temporal constraints, in “ACM

SIGMOD International Conference on Management of Data, Austin,
TX, 1985,” pp. 169-179.

. U. Lipeck, M. Gertz, and G. Saake, Transitional monitoring of

dynamic integrity constraints, /EEE Data Engrg. Bull. 17, No. 2
(1994).

U. Lipeck and G. Saake, Monitoring dynamic integrity constraints
based on temporal logic, Inform. Systems 12, No. 3 (1987), 255-269.
A. Pnueli, Applications of temporal logic to the specification and
verification of reactive systems: A survey of current trends, in “Current
Trends in Concurrency,” Lect. Notes in Comput. Sci., Vol. 224,
Springer-Verlag, New York/Berlin, 1986.

X. Qian and R. Waldinger, A transaction logic for database specifica-
tion, in “ACM SIGMOD International Conference on Management of
Data, 1988,” pp. 243-250.

. H. Rogers Jr,, “Theory of Recursive Functions and Effective Computa-

bility,” MacGraw-Hill, New York, 1967.

A. Sistla, On characterization of safety and liveness properties in
temporal logic, in “ACM Symposium on Principles of Distributed
Computing, 1985.” pp. 39-48.

A. Sistla and E. Clarke, The complexity of propositional linear
temporal logics, J. Assoc. Comput. Mach. 32, No. 3 (1985), 733-749.
A. Sistla and O. Wolfson, Temporal triggers in active databases, IEEE
Trans. Knowledge Data Engrg. 7, No. 3 (1995), 471-486.

R. Snodgrass, Temporal databases, in “Theories and Methods of
Spatio-Temporal Reasoning in Geographic Space,” Lect. Notes in
Comput. Sci., Vol. 639, pp. 22-64, Springer-Verlag, New York/Berlin,
1992.

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass,
(Eds.), “Temporal Databases: Theory, Design, and Implementation.”
Benjamin/Cummings, Redwood City, CA, 1993

