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Abstract

We exhibit a small problem kernel for the ONE-SIDED CROSSING MINIMIZATION problem. This problem plays an important
role in graph drawing algorithms based on the Sugiyama layering approach. Moreover, we improve on the search tree algorithm
developed in [V. Dujmović, S. Whitesides, An efficient fixed parameter tractable algorithm for 1-sided crossing minimization,
Algorithmica 40 (2004) 15–31] and derive an O(1.4656k + kn2) algorithm for this problem, where k upperbounds the number of
tolerated edge crossings in the drawings of an n-vertex graph.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and problem definition

A graph G = (V ,E) with vertex set V and edge set E ⊆ V × V is bipartite if there is a partition of V into two
sets V1 and V2 such that V = V1 ∪ V2, V1 ∩ V2 = ∅, and E ⊆ V1 × V2. Here, we study the k-ONE-SIDED CROSSING

MINIMIZATION problem, k-OSCM for short, that is defined as follows.

Given: A simple n-vertex bipartite graph G = (V1,V2,E) and a linear order <1 on V1.
Parameter: A nonnegative integer k.
Question: Is there a linear order < on V2 such that, when the vertices of V1 are placed on a line (also called layer) in

the order induced by <1 and the vertices of V2 are placed on a second layer (parallel to the first one) in the
order induced by <, then drawing a straight-line segment for each edge in E will introduce no more than k

(pairwise) edge crossings?

✩ An extended abstract covering parts of this paper has appeared in the Proceedings of the 11th International Symposium on Graph Drawing
(GD 2003), see [V. Dujmović, H. Fernau, M. Kaufmann, Fixed parameter algorithms for one-sided crossing minimization revisited, in: Proc. of
International Symposium on Graph Drawing (GD’03), Lecture Notes Comput. Sci., vol. 2912, Springer, 2004, pp. 332–344].
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We denote by OSCM the optimization version of this problem, that is, the problem that asks for a linear order < on
V2 that induces the minimum possible number of edge crossings.

1.1. Improving on graph drawing algorithms

(k-)OSCM is the key procedure in the Sugiyama algorithm [12], which is the well-known layout framework for
drawings graphs on layers. After the first phase (the assignment of the vertices to layers), the order of the vertices
within each layer has to be fixed such that the number of the corresponding crossings of the edges with endpoints
in two adjacent layers is minimized. Finally, the concrete position of the vertices within each layer is determined
according the computed order. The crossing minimization step, although the most essential in the Sugiyama approach,
is an NP-complete problem. The most commonly used crossing minimization method is the layer-by-layer sweep
heuristics where, starting from i = 1, the order for layer Li is fixed and an order for Li+1 that minimizes the number
of crossings amongst the edges with endpoints in Li and Li+1 is determined. After increasing index i to the maximum
layer index, this process is repeated from the back with decreasing indices. In each step, an OSCM problem has to be
solved. Unfortunately, this seemingly elementary problem is NP-complete [8], even for sparse graphs [9].

This fundamental graph drawing problem attracted several researchers from the area of fixed-parameter tractable
(FPT ) algorithms [3]. The first approaches to the more general variant of this problem have been published by Duj-
mović et al. in [4] and [5]. The last one has been greatly improved by Dujmović and Whitesides [7] who achieved
an O(1.6182kn2) algorithm for k-OSCM using search tree techniques. There has been a similar race to get better
approximation algorithms for OSCM. To our knowledge, the best one has been reported by Nagamochi [10] with an
approximation factor of 1.4664.

In this paper, we derive an O(1.4656k + kn2) algorithm for k-OSCM. The exponential part of the running time,
resulting from the search tree part of our algorithm, is significantly lower than that of [7]. Moreover, we exhibit a
small problem kernel for this problem, which has not been done before. In particular, with the aid of some reduction
rules, we can arrive at an instance of k-OSCM that has at most 3k2 vertices.

The remainder of the paper is organized as follows. After fixing terminology in Section 2, we derive a problem
kernel for k-OSCM in Section 3. In Section 4, we present our algorithm for k-OSCM. The correctness and the running
time analysis of the algorithm is based on the study presented in Sections 5 and 6. Concluding remarks are found in
Section 7.

2. Preliminaries

We start with some formalities. Consider a graph G = (V ,E). For each vertex v ∈ V , let N(v) denote the set of
vertices adjacent to v and let deg(v) := |N(v)| denote the degree of v in G. For U ⊆ V , let N(U) = ⋃

u∈U N(u). The
subgraph of G induced by a set of vertices U ⊆ V is denoted by G[U ].

We will call a bipartite graph G = (V1,V2,E) together with linear orders on V1 and on V2 a drawing of G. This
formulation implicitly assumes a drawing where the vertices of V1 and V2 are represented by distinct points on two
horizontal lines (layers), the line corresponding to V1 being above the line corresponding to V2, with vertices in each
set appearing from left to right according to their respective linear orders. The edges of G are represented by straight-
line segments between their endpoints. A crossing in a drawing is given by a pair of edges that intersect at some point
other than a possible common endpoint. Note that two edges (x, a) and (y, b), with x, y ∈ V1 and a, b ∈ V2, cross in
a drawing if and only if x < y and b < a. If a < b for two vertices in V1 or in V2, then a is to the left of b, and b is to
the right of a. A linear order on V2 that minimizes the number of crossings subject to the fixed linear order on V1 is
called an optimal ordering and the corresponding drawing of G is called an optimal drawing. Since isolated vertices
play no part in edge crossings, in what follows we disregard isolated vertices of the input graph G.

If |V2| = 2, then there are only two different drawings. This suggests the useful notion of a crossing number for
a pair of vertices in V2. Given a bipartite graph G = (V1,V2,E) with |V2| > 1, for any pair of vertices a, b ∈ V2,
define cab to be the number of crossings in the drawing of G[{a, b} ∪ N(a) ∪ N(b)] when a < b is assumed. We say
that {a, b} forms a cab/cba pattern. If cab � cba , then a < b is called the cheaper ordering. Dujmović and Whitesides
[7] have shown that, in any optimal ordering < of the vertices of V2, each pair {a, b} that forms a 0/j pattern where
j > 0, is ordered as a < b. This means that all the pairs that form 0/j patterns appear in their cheaper ordering in any
optimal drawing. The example in Fig. 1 demonstrates some of these notions.
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Fig. 1. Let G = (V1,V2,E) with V1 = (x < y < x′), V2 = {a, b}, and E = {{a, x}, {a, x′}, {b, y}}. This figure illustrates two drawings corre-
sponding to b < a and a < b orderings, and demonstrates that in this case cab = cba = 1. Thus, {a, b} forms a 1/1 pattern. The dashed line is
optional.

A solution to a k-OSCM instance is a linear order on V2 with at most k crossings in the associated drawing, if such
a linear order exists. Our algorithm builds such a linear order, by picking a pair of vertices {a, b} of V2 and ordering
them as a < b or b < a, based on some rules, and reducing k appropriately. Thus at each stage of our algorithm, we
have a poset P = (V2,<). We now recall some notation related to partial orders.

A partial order is an irreflexive, asymmetric and transitive relation. A partially ordered set (or poset), denoted by
P = (V ,<), is a set of elements V taken together with a partial order < on it. For two distinct elements a, b ∈ V , if
either a < b or b < a in P , then the pair {a, b} is comparable in P ; else the pair is incomparable. A partial order is
linear if every pair of elements of V is comparable.

Definition 1. In a poset P = (V ,<), a pair of incomparable elements {a, b} ∈ V is

• dependent with respect to c if at least one of the pairs {a, c} or {b, c} is incomparable in P ;
• dependent (in P ) if there is c ∈ V \ {a, b} such that {a, b} is dependent with respect to c;
• transitive with respect to c if either pair {a, c} or pair {b, c} is comparable but not both;
• transitive (in P ) if there is c ∈ V \ {a, b} such that {a, b} is transitive with respect to c.

For the remainder of this paper, we will consider an annotated version of k-OSCM, where the instance I comprises
of G = (V1,V2,E), a linear order (V1,<1) and a partial order (V2,<). The task is then to find a linear order (V2,<

′)
that extends < and that introduces no more than k pairwise edge crossings. We will also sometimes allow negative
parameter values to indicate a failure case. The size of the parameterized instance 〈I, k〉 of the annotated version will
be measured by size(〈I, k〉) = |V1| + |V2| + |E| + |V2 × V2\ < | + k.

3. Getting a small kernel

Our goal in this section is to reduce a given problem instance of k-OSCM to an equivalent problem instance (called
kernel) that has size bounded by a function on the parameter k only. We achieve that by developing a set of reduction
rules. Applying a reduction rule to a parameterized instance 〈I, k〉 results in a parameterized instance 〈I ′, k′〉 with
size(〈I ′, k′〉) < size(〈I, k〉). A reduction rule is valid if I has a solution of size at most k if and only if I ′ has a
solution of size at most k′. If R is a valid reduction rule, then a parameterized instance 〈I, k〉 is called R-reduced if
and only if R is not applicable to that instance.

When settling the ordering between a and b, we also say that we are committing a < b or b < a. In what follows,
whenever we commit a pair of vertices, say a < b, we reduce k not only by cab , but also by ccd for each pair {c, d}
that gets committed to c < d due to transitivity. If this process results in k < 0, we replace the problem instance with
the empty graph with parameter k = −1 to indicate failure. We refer to these operations as parameter accounting.

Dujmović and Whitesides [7] have shown that in any optimal drawing, the pairs that form 0/j patterns appear in
their cheaper ordering. This justifies the following reduction rule.

Reduction Rule RR1: For each pair of vertices {a, b} ⊆ V2 that forms a 0/j pattern with j > 0, commit a < b.

Consider now a set S ⊆ V2 such that, for all vertices v in S, N(v) = N(S). It is simple to observe that arbitrarily
permuting the vertices of S in any drawing cannot affect the total number of crossings. This observation leads to the
following reduction rule.
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Reduction Rule RR2: For each pair of vertices {a, b} ∈ V2 with N(a) = N(b), (arbitrarily) commit a < b, and do the
parameter accounting.

Notice that if cab = cba = 0, then (disregarding isolated vertices) deg(a) = deg(b) = 1 and N(a) = N(b). There-
fore, in any RR1- and RR2-reduced instance of k-OSCM, a pair of vertices {a, b} is incomparable in the poset
P = (V2,<) only if both cab > 0 and cba > 0.

Reduction Rule RRlarge: If cab > k, then commit b < a and do the parameter accounting.

If cba � k, the rule is clearly valid. If cba > k, then the parameter accounting results in the parameter becoming
negative integer and thus a trivially unsolvable instance is returned. Thus the rule is valid. Moreover, if a vertex a ∈ V2
has deg(a) � 2k + 1, then for each vertex b ∈ V2, cab > k or cba > k.

Reduction Rule RRLO1: If a vertex v ∈ V2 is comparable in P = (V2,<) with each vertex of V2 \ v, then remove v

from V2, and let P = (V2 \ v,<).

This rule is clearly valid, since v is comparable with all the vertices of V2 and as such plays no further part in the
cost of an optimal ordering. After having exhaustively applied RRLO1, there is, for each vertex a ∈ V2, another vertex
b ∈ V2 such that the pair {a, b} is incomparable in P . By the positivity assumption, committing a < b or b < a will
reduce k by at least one. Hence, in a RR1-, RR2-, and RRLO1-reduced instance of k-OSCM, |V2| � 2k.

The following rule further reduces the size of V2. More importantly, as will become clear later, RRLO2 plays a rôle
in reducing the base of the exponent in the running time of our search tree algorithm.

Reduction Rule RRLO2: If {a, b} is an incomparable pair that is not dependent in P = (V2,<) with cab � cba , then
commit a < b, and do the parameter accounting.

For any c ∈ V2 \ {a, b}, either α < c or c < α is known for α ∈ {a, b}, since {a, b} is not dependent. Thus either
a < c and b < c, or c < a and c < b. Hence, in every linear order that extends <, a and b will be immediate neighbors.
Thus, the ordering of a and b can only affect crossings of edges incident to a and b; therefore, in any minimal linear
order <′ extending <, we will have a <′ b whenever cab � cba , breaking ties arbitrarily. Thus rule RRLO2 is valid.

Our reduction rules suggest the following kernelization algorithm.

Algorithm 1 (Kernelization for k-OSCM).
Compute the crossing numbers cab and cba for all pairs {a, b}.
Apply reduction rules RR1, RR2 exhaustively.
Apply reduction rules RRLO1, RRLO2, RRlarge exhaustively.

Theorem 1. Given an instance of the k-OSCM problem, Algorithm 1 computes its problem kernel G = (V1,V2,E)

with |V1| � 3k2, |V2| � 3
2k, and |E| � 3k2 in O(kn2) time.

Proof. Applying RR1 and RR2 to k-OSCM results in a poset P = (V2,<) where each incomparable pair of vertices
has both crossing numbers positive. Thus there are at most k incomparable pairs of vertices in P . After exhaustive
application of rules RRLO1 and RRLO2, each vertex in V2 is dependent in P , and thus |V2| � 3

2k. If a vertex a ∈ V2
has deg(a) � 2k + 1, then for each vertex b ∈ V2, cab > k or cba > k. Therefore, after exhaustive application of
RRlarge in combination with RRLO1, each vertex in V2 has degree at most 2k. Thus |E| � 2k|V2| � 3k2 and
|V1| � 2k|V2| � 3k2.

Since computing the crossing numbers is the predominant computational part (taking time O(kn2) [7]), the kernel-
ization algorithm runs in O(kn2) time. �

Notice that, strictly speaking, we are getting an annotated kernel by our reduction rules, see [1] for a further
discussion on variants of the notion of a kernel in parameterized complexity. However, since we will continue with a
search tree algorithm that deals with the annotated version of k-OSCM, this is the appropriate notion of kernelization.
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4. The search tree algorithm

As is the standard practice when developing search tree based FPT algorithms, each node of a search tree is
associated with a problem instance of the annotated version of k-OSCM. all the pairs of vertices of V2 committed thus
far, and the parameter k′ gives the remaining number of allowed edge crossings, that is, k′ = k − ∑

v<u cvu. Before
a recursive call of the search tree algorithm itself, committing one case (out of possibly two cases) involves updating
P and doing the parameter accounting. After having processed the branches, NO will be returned if and only if all
branches yielded NO.

Algorithm 2 (A parameterized algorithm for k-OSCM).
// PREPROCESSING:
– kernelize (Algorithm 1)
– apply reduction rule RR3 exhaustively;

// SEARCH TREE: (Recursive calls start at step 0.)
FOREACH node of the search tree with annotated instance

(G = (V1,V2,E),<1,P = (V2,<), k′) DO
0: Apply RRLO1, RRLO2, RRlarge exhaustively.
1: IF k′ < 0, THEN return NO.
2: IF in P there is an incomparable i/j pattern {a, b} with i + j � 4,

THEN branch on two cases: a < b and b < a;
3: ELSE IF in P there is a dependent 2/1 pattern {a, b},

THEN branch on two cases: a < b and b < a;
4: ELSE IF there is a 1/1 pattern {a, b} in P

THEN commit a < b and recurse;
5: ELSE return YES.

The remainder of this paper is dedicated to proving the correctness and the claimed running time of Algorithm 2.
Before diving into details, we now give a brief overview for each issue.

Correctness. The correctness of the algorithm is easily verified assuming the correctness of reduction rule RR3 and
step 4 of the algorithm. Consider a pair of incomparable vertices {a, b} in step 4 of the algorithm. By the kernelization
and steps 2 and 3 of the algorithm, {a, b} forms either a 2/1 pattern that is not dependent, or a 1/1 pattern. Since
RRLO2 commits all the pairs that are not dependent, {a, b} forms a 1/1 pattern. Thus, all remaining incomparable
pairs in step 4 form 1/1 patterns. Therefore, no matter how these pairs are ordered, the resulting ordering has the same
cost. To complete the proof of correctness of Algorithm 2 we need to verify that the rule RR3 is valid. That will follow
from the analysis given in Section 5.3.

Running time. The running time of the preprocessing is dominated by the kernelization. Thus, by Theorem 1,
the preprocessing runs in O(kn2) time. However, the running time of FPT algorithms is dominated by the part
exponential in parameter k. In our case, that part is bounded by the number of nodes in the search tree. Denote that
number by s(k). Then the running time of Algorithm 2 is O(s(k) + kn2)—Niedermeier and Rossmanith’s analysis
[11] of the related rekernelization method implies that this is true despite the fact that more than a constant amount of
work is done in each node of the search tree. Each internal node of our search tree has two branches. If one branch
lowers the parameter k′ by b1, and the other by b2, we denote the corresponding branching vector by (b1, b2). We
will prove that each internal node of our search tree obeys b1 + b2 � 4 and b1, b2 > 0, which in turn will allow us to
prove that s(k) < 1.4656k—we do that next. This is in contrast to the search tree with b1 + b2 � 3 and b1, b2 > 0, as
derived in [7], that gives s(k) < 1.6181k .

Suppose that we know that in each node of our search tree, b1 + b2 � 4, and b1, b2 > 0. Then in the worse case,
each node has a branching vector (2,2) or (3,1). The recurrence corresponding to the (2,2) branching vector is
s(k) = 2s(k − 2) + O(1). Solving this recurrence gives s(k) < 1.4143k . The recurrence corresponding to the (3,1)

branching vector is s(k) = s(k − 3) + s(k − 1) + O(1). Solving this recurrence gives s(k) < 1.4656k . Thus in the
worst case, s(k) � 1.4656k . Therefore, to complete the running time analysis we need to prove that in each node of
our search tree, b1 + b2 � 4, and b1, b2 > 0.



318 V. Dujmović et al. / Journal of Discrete Algorithms 6 (2008) 313–323
Clearly, b1 + b2 � 4 for all the internal nodes of the search tree created by step 2 of the algorithm. If all the
2/1 patterns could be committed deterministically, then step 3 would never be executed and it would immediately
follow that b1 + b2 � 4 for all the nodes of the search tree. Unfortunately, not all 2/1 patterns can be committed
deterministically, as will become clear from the analysis in Section 5.3. However, we show in Section 5.3 that some
2/1 patterns can be committed deterministically, giving rise to rule RR3. For those remaining 2/1 patterns for which
step 3 does get executed, we prove in the main lemma (Lemma 4) that each such pair is transitive. Thus, an additional
pair gets committed due to transitivity, allowing us to conclude that b1 + b2 � 4 in step 3, as well. Having rule RR3 is
instrumental in the proof of the main lemma, and thus in bounding the size of the search tree.

In order to derive and prove the correctness of rule RR3, as well as prove that b1 + b2 � 4, we need to analyze 1/1
and 2/1 patterns. This is exhibited in the next section.

5. 1/1 and 2/1 patterns

5.1. Structural properties of 1/1 and 2/1 patterns

In the following illustrations, as a convention, we will label vertices from the first layer by letters x, y and vertices
from the second layer by letters a, b. Furthermore, we will draw neighbors of a as non-filled circles and neighbors of
b as filled-in circles, allowing also overlays as in Fig. 3.

Lemma 1. Suppose an instance of k-OSCM has a pair {a, b} that forms a 1/1 or a 2/1 pattern and has cba = 1. Then
such a pair must be a part of the subgraph as depicted in Fig. 2, where each remaining neighbor of a (if any) must
be to the right of y (or y itself ), while each remaining neighbor of b (if any) must be to the left of x (or x itself ).
(Otherwise, cba > 1.)

For the relatively simple combinatorial proofs of the following two lemmas, refer to [6].

Lemma 2. Suppose an instance of k-OSCM has a pair {a, b} that forms a 1/1 pattern, that is cab = cba = 1. Then
such a pair must be part of one of two distinct subgraphs. (The two basic subgraphs depicted in Figs. 3 and 4 can be
obtained by enhancing the situation sketched in Fig. 2.)

(1) a and b are each adjacent to x and y only. In other words, deg(a) = deg(b) = 2 and N(a) = N(b), as illustrated
in Fig. 3.

(2) Two sub-cases arise: (a) If deg(b) = 1, then a has (besides x) another neighbor x ′ to the right of y. In addition
to x and x′, a may only be adjacent to y. (b) If deg(a) = 1, then b has (besides y) another neighbor y ′ to the left
of x. In addition to y and y′, b may only be adjacent to x. Both situations are illustrated in Fig. 4.

Fig. 2. An elementary crossing. Fig. 3. A simple enforced crossing.

Fig. 4. A second case for a 1/1 pattern; the dashed lines are optional.
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Fig. 5. 2/1 patterns, case 1.

Fig. 6. 2/1 patterns, case 2.

Fig. 7. Schematic analysis for a 1/1 pattern.

Lemma 3. Suppose an instance of k-OSCM has a pair {b, a} that forms a 2/1 pattern, that is cab = 1 and cba = 2.
Then such a pair must be a part of one of the two distinct subgraphs as described in the two cases below.

(1) In the first case, illustrated in Fig. 5, neither a nor b can have any other neighbors.
(2) In the second case, illustrated in the left part of Fig. 6, in addition to x, x′ and x′′, vertex a may only be adjacent

to y, while b has no other neighbors. Hence, a has degree three or four and b has degree one. The second case,
illustrated in the right part of Fig. 6, can be symmetrically interpreted.

5.2. The tabular analysis technique

The reduction rule RR2 presented in Section 3 commits the 1/1 patterns characterized in the first case of Lemma 2.
Unfortunately, the second type of 1/1 patterns characterized in Lemma 2 does not admit a similar simple resolution.

The following analysis of 1/1 patterns is included for pedagogical reasons mainly: it presents the simplest example
of a schematic tabular analysis and is therefore one step on the way of a systematic analysis of all possible situations.
Admittedly, in this case the analysis fails in the sense that it does not show that one of the two possible ways to commit
1/1 pattern is always better. Nonetheless, a lesson learned here is that in order to improve on the earlier search tree
algorithm [7], we have to take special care of this case.

We now demonstrate the schematic tabular analysis on the 1/1 pattern {a, b} as characterized in the second case of
Lemma 2. The following refers to Fig. 7. Let I denote any drawing where b < a and let II denote the drawing obtained
from drawing I by swapping the ordering of a and b. Let the total number of crossings in I and II be denoted by cI

and cII , respectively. We partition the remaining vertices on the first layer into vertex sets X1 through X4. Similarly,
we partition the remaining vertices on the second layer into vertex sets A1, A2, A3.

For each of the two drawings we create the tables TI and TII (see Fig. 8). (The tables correspond to drawings I

and II in Fig. 7 without the dotted edges.) These tables read as follows: if there are mi,j edges connecting vertices
from Xi with vertices from Aj then there are Tx[i, j ] · mi,j crossings between these mi,j edges and the edges shown
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Fig. 8. The tabular analysis for Fig. 7.

Fig. 9. Schematics for the second 2/1 pattern.

in the above sketches for case x ∈ {I, II}. It is clear that the columns labeled A1 and A3 are identical in both tables:
swapping a and b can only affect the relative order of vertices in A2 compared to a and b. The entries that differ in
the two tables are framed by boxes.

Tables like these can help decide when a pair of vertices can be deterministically committed, and here is how. Let
the total number of crossings in drawing I and II be denoted by cI and cII , respectively. Then,

cI − cII = cba − cab +
∑

i,j

mi,j

(
TI [i, j ] − TII[i, j ])

and similarly,

cII − cI = cab − cba +
∑

i,j

mi,j

(
TII[i, j ] − TI [i, j ]).

Note that the terms in the sum are non-zero only for the framed numbers in the two tables. If we can show that cI −
cII > 0, then we could conclude that any optimal drawing shows a < b and we could commit {a, b} deterministically
(similarly if we can show cII − cI > 0). Unfortunately, such conclusion is not possible in case of the above 1/1
patterns. That is because cI − cII = −m1,2 + m2,2 − m3,2 + m4,2 and cII − cI = m1,2 − m2,2 + m3,2 − m4,2, and
thus, whether cI − cII > 0 or cI − cII > 0 may depend on the values of mi,j s. Thus we cannot give any unconditional
deterministic choice rule in this situation. Similar problems arise when the “optional” dotted edges between a and y

are present.

5.3. Analyzing 2/1 patterns

Consider first the 2/1 patterns {a, b} characterized in the second case of Lemma 3. That case is similar to (but more
complicated than) the second pattern of Lemma 2 and hence may not admit a deterministic solution. This is confirmed
by the schematic tabular analysis depicted in Figs. 9 and 10. The tables TI and TII in Fig. 10 correspond to drawings
I and II without the dotted edges in Fig. 9.

The situation is more favorable for 2/1 patterns {a, b} characterized in the first case of Lemma 3. Consider first the
sub-case where a has a neighbor distinct from x and y, that is, refer to the left drawing in Fig. 5. Again, let I denote
any drawing where b < a and let II denote the drawing obtained from drawing I by swapping a and b (see Fig. 11).
Let the total number of crossings in I and II be denoted by cI and cII , respectively. Figs. 11 and 12 correspond to this
case, that is, the first case of Lemma 3.
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Fig. 10. Tabular analysis for the situation from Fig. 9.

Fig. 11. Schematics for the first 2/1 pattern.

Fig. 12. Tabular analysis for the situation from Fig. 11.

It follows that cI − cII = cba − cab + m4,2 + 2m5,2 + m6,2 > 0, since m4,2 + 2m5,2 + m6,2 � 0 and cba − cab = 1.
This implies that whenever this situation described in Lemma 3 arises, any optimal drawing shows a < b.

The first case in Lemma 3 where b has a neighbor distinct from x and y is symmetric; the same analysis applies.
This justifies the following reduction rule.

Reduction Rule RR3: For each pair of vertices {a, b} ∈ V2 that forms a 2/1 pattern as characterized in the first case
of Lemma 3, commit a < b, and do the parameter accounting.

6. Putting it all together

The analysis presented in the previous section proves that rule RR3 is valid. Therefore, by the arguments presented
in Section 4, Algorithm 2 is correct.
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By the running time arguments presented in Section 4, to complete the running time analysis for Algorithm 2, we
need to show that the branching vector (b1, b2) in each internal node of the search tree has b1 + b2 � 4 and b1, b2 > 0.
We do that in the next two lemmas.

Lemma 4 (Main Lemma). Let {a, b} be a pair of dependent vertices that forms a 2/1 pattern in step 3 of Algorithm 2.
Then {a, b} is a transitive pair.

Proof. Since {a, b} is dependent in P , there must be a vertex c such that {a, c} or {b, c} are incomparable in P .
It suffices to show that one of these two pairs are comparable in P . In step 3 of the algorithm, the only remaining
incomparable pairs are 1/1 patterns of the second type in Lemma 2 and 2/1 patterns of the second type in Lemma 3.
Therefore, let without loss of generality deg(a) = 3 (or deg(a) = 4) and deg(b) = 1. If deg(c) � 2, then1 cac +cca � 4
and {a, c} is comparable either by RR1 or by step 2 of the algorithm. Therefore, deg(c) = 1. In that case, the pair {b, c}
forms a 0/i pattern and its ordering is settled by either RR1 or RR2. �
Lemma 5. The branching vector (b1, b2) in each internal node of the search tree associated with Algorithm 2 has
b1 + b2 � 4 and b1, b2 > 0.

Proof. Based on the reduction rules RR1 and RR2, in each node of a search tree all the incomparable (and dependent)
pairs form i/j patterns such that i > 0 and j > 0. Thus in each node b1, b2 > 0. Furthermore, all the nodes branched
in step 2, have i + j � 4 and thus have b1 + b2 � 4. The remaining nodes are branched in step 3. Each such node
branches on a dependent 2/1 pattern {a, b}. By the previous lemma, committing either a < b or b < a determines,
without loss of generality, the ordering of a pair {a, c}. Having been incomparable at step 3 initially, the pair {a, c}
has cac, cca � 1. Therefore, we have b1 + b2 � 4 in this case, too. �

Finally we can conclude:

Theorem 2. Algorithm 2 solves the k-OSCM problem in O(1.4656k + kn2) time.

7. Conclusions

In this paper, we present a new search tree based parameterized algorithm for the k-OSCM problem that runs in
O(1.4656k +kn2) time. It remains to be determined whether further progress is possible, especially in further lowering
the base of the exponent in the running time. Our present case analysis shows at two places a branching behavior which
matches the above time complexity bound, namely when branching at 3/1 and at 2/1 patterns. A detailed analysis
of 3/1 patterns may be worthwhile, but would probably be very tedious, requiring considerations of all possible
configurations.
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