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Abstract

While R–R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS–NS tadpoles.
Their presence signals that the background does not solve the field equations, so that these models are in “wrong” vacua. In this Letter we
investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS–NS
tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open–closed duality. We show that, indeed, the
positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level
tadpole resummation, in complete agreement with Sen’s conjecture on open-string tachyon condensation and with the consequent analysis based
on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does
not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is
free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to
superstring models with broken supersymmetry is also discussed.
© 2008 Elsevier B.V. All rights reserved.
1. Introduction

String models with tension in the TeV region [1] are an ex-
citing possibility for physics beyond the Standard Model (for
a review, see Refs. [2,3]). This scenario was made concrete
by the modern understanding of open strings and orientifold
compactifications [4], and by many important subsequent de-
velopments (for a review, see Ref. [5]). In this framework, the
Higgs doublet responsible for the electroweak symmetry break-
ing is typically identified with some massless open-string mode
on D3-branes, that can acquire a negative mass squared via ra-
diative corrections in models without supersymmetry [6,7]. The
scale of electroweak symmetry breaking is essentially deter-
mined by the string tension (and/or by the radii of the compact
space), and this scenario can be a natural dynamical setting
where string effects play a direct role for Particle Physics.

In string models with broken supersymmetry, however, there
is in general a vexing difficulty, the so-called NS–NS tadpole
problem. The existence of tadpoles in the NS–NS closed-string
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sector signals that the assumed background metric and field
configuration (typically flat spacetime with vanishing back-
ground fields) is not a solution of String Theory. On the other
hand, it is quite difficult to construct string models with more
general background metrics or non-trivial fields, so that a pre-
scription to cure this problem proposed in Refs. [8–10] is also
not easy to implement. The actual difficulty manifests itself via
the emergence of infrared divergences in loop calculations of
open string amplitudes.

Tadpole resummation as a possible way to overcome this
problem was proposed in Ref. [11], where several examples
of field theories defined in “wrong” vacua were discussed. In-
deed, barring convergence issues and other subtleties, the cor-
rect value of the vacuum energy can generically be recovered
by the procedure of tadpole resummation. This procedure is
nonetheless quite complicated, since it requires that one add up
all tree-level diagrams involving tadpole contributions.

In this Letter we propose a concrete method to implement
this procedure in String Theory, showing that tadpole resumma-
tions actually lead to the correct answer for open-string tachyon
condensation. To this end, we combine the boundary state for-
malism with some information drawn from the low-energy dy-
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namics of branes. In Section 2 the boundary state formalism
for D-branes and O-planes is thus briefly reviewed. In Sec-
tion 3 we study the vacuum energies (tensions) of Dp-branes
for the bosonic string1 in flat 26-dimensional spacetime as a
first simple example. These Dp-branes have generally tadpoles
for dilaton, graviton and tachyon modes. The conjecture of open
string tachyon condensation [12] claims that they should decay
to the vacuum, so that the actual vacuum energy should van-
ish. This conjecture has received strong support from String
Field Theory [13], although the resulting mechanism appears
rather complicated and rests crucially on the contributions of
open string massive modes. Here we show that, rather remark-
ably, the phenomenon can be understood in somewhat simpler
terms: in the dual closed channel a negative contribution orig-
inating from tree-level tadpole resummations exactly cancels
the positive classical vacuum energy of the Dp-brane. Sec-
tion 4 is devoted to a similar analysis of tadpole resumma-
tions for the D25-branes of the SO(8192) open bosonic string
[14–16]. The absence of massless dilaton and graviton tadpoles
makes somehow this D25-brane–O25-plane system a solution
of String Theory, albeit an unstable one. We show that, indeed,
in this case tree-level tadpole resummations do not produce any
correction to the D25-brane tension, despite the presence of a
tadpole for the tachyon. The last section is devoted to a brief
discussion of the limitations of the method (originating from
the actual neglect of the gravitational back reaction) and of its
application to superstring models with broken supersymmetry.

2. Boundary states in the bosonic string

In superstrings, D-branes can be conveniently described by
boundary states for the closed string in the world-sheet the-
ory (for a review, see Ref. [17]). The technique also applies
for the D-branes of the bosonic string, that despite the lack of
an RR charge, bear strong similarities to their supersymmet-
ric counterparts. For the 26-dimensional bosonic string in flat
spacetime, a Dp-brane boundary state at the origin, |Bp〉, satis-
fies the conditions

(1)∂τX
α(σ, τ = 0)|Bp〉 = 0, α = 0,1, . . . , p,

(2)Xi(σ, τ = 0)|Bp〉 = 0, i = p + 1,p + 2, . . . ,25,

where Xμ(σ, τ) is a closed-string coordinate. The boundary
state can be explicitly expressed as a coherent state built from
the string oscillators,

(3)|Bp〉 = ∣∣BX
p

〉∣∣Bgh〉,
(4)

∣∣BX
p

〉 = Npδd⊥(x̂) exp

(
−

∞∑
n=1

1

n
α

μ
−nSμνα̃

ν−n

)
|0〉,

(5)
∣∣Bgh〉 = exp

( ∞∑
n=1

(c−nb̃−n − b−nc̃−n)

)
|0〉gh,

1 These Dp-branes do not carry RR charges, but are nonetheless character-
ized as being locations of the endpoints of open strings.
where d⊥ ≡ d − (p + 1), Sμν ≡ (ηαβ,−δij ), the spacetime sig-
nature is “mostly plus”, and

Xμ = x̂μ + α′pμτ + i

√
α′
2

∑
n�=0

1

n

(
αμ

n e−i(τ−σ)n

(6)+ α̃μ
n e−i(τ+σ)n

)
,

(7)b− =
∞∑

n=−∞
bne

−i(τ−σ)n, b+ =
∞∑

n=−∞
b̃ne

−i(τ+σ)n,

(8)c− =
∞∑

n=−∞
cne

−i(τ−σ)n, c+ =
∞∑

n=−∞
c̃ne

−i(τ+σ)n.

The bc-ghost contribution is determined so that the full bound-
ary state is BRST invariant, while the normalization constant
Np for one Dp-brane is

(9)Np ≡ Tp

2
, Tp ≡

√
π

2(d−10)/4

(
4π2α′) d−2p−4

4 ,

with d = 26 and the 26-dimensional Planck constant κ = 1, so
that the single dilaton and graviton tadpole couplings in the Ein-
stein frame are reproduced [18]. For a collection of n coincident
Dp-branes the normalization factor should be multiplied by n.
The amplitudes for single dilaton or graviton emission are

(10)Adilaton = Aμνε(φ)
μν = TpVp+1

d − 2p − 4

2
√

d − 2
,

(11)Agraviton = Aμνε(h)
μν = −TpVp+1η

αβε
(h)
αβ ,

(12)Aμν ≡ 〈
0; k∣∣αμ

1 α̃ν
1

∣∣BX
p

〉 = −Tp

2
Vp+1S

μν,

where Vp+1 is the Dp-brane world volume and ε
(φ)
μν and ε

(h)
μν

are projection and polarization tensors for the dilaton and the
graviton, respectively. These amplitudes are also determined by
the effective action for a Dp-brane in the Einstein frame,

(13)SDp = −Tp

∫
dp+1ξ e

− d−2p−4
2
√

d−2
φ√−detgαβ,

where we are ignoring both the B-field and the gauge field on
the Dp-brane, for simplicity. With this normalization factor, the
open string one-loop vacuum amplitudes on Dp-branes are sim-
ply obtained as

(14)Ap = 1

2! 〈Bp|D|Bp〉 = 1

2!Vp+1N
2
p�p,

(15)�p ≡ πα′

2

∞∫
0

ds

∫
dd⊥p

(2π)d⊥ e− πα′
2 p2⊥s 1

η(is)24

(16)= πα′

2

∞∫
0

ds
1

(2π2α′s)d⊥/2

1

η(is)24
,

where

(17)D ≡ α′

4π

∞∫
0

dt

2π∫
0

dϕ zL0 z̄L̃0
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is the closed string propagator operator, with z = e−t eiϕ . The
factor 1/2! in Eq. (14) reflects the fact that the amplitude is of
second order in the tadpole insertion.

The boundary state of the O-plane, the crosscap state, is very
similar. For the O25-plane, the crosscap state should satisfy the
condition

(18)Xμ(σ, τ)|C25〉 = Xμ(σ,π − τ)|C25〉, μ = 0,1, . . . ,25.

The explicit form of the crosscap state is

(19)|C25〉 = ∣∣CX
25

〉∣∣Cgh〉,
(20)

∣∣CX
25

〉 = Ñ25 exp

(
−

∞∑
n=1

(−1)n
1

n
α

μ
−nημνα̃

ν−n

)
|0〉,

(21)
∣∣Cgh〉 = exp

( ∞∑
n=1

(−1)n(c−nb̃−n − b−nc̃−n)

)
|0〉gh.

The normalization constant Ñ25 is determined as Ñ25 = 213N25
in the same way as Np . The Klein bottle and Möbius strip am-
plitudes read

(22)K = 1

2! 〈C25|D|C25〉 = 1

2!V26Ñ
2
25�25,

M= 1

2!
(〈B25|D|C25〉 + 〈C25|D|B25〉

)
(23)= V26N25Ñ25�̃25,

where

(24)�̃25 ≡ −πα′

2

∞∫
0

ds
1

η̂(is + 1/2)24
.

From Eq. (14) with p = 25, and Eqs. (22) and (23), one can
see that n = 213 = 8192 D25-branes, with the normalization
factor n×N25 for D25-brane boundary state, are necessary and
sufficient to cancel tadpoles in the unoriented bosonic closed
string theory [14–16].

3. Tadpole resummations on Dp-branes

At the classical level, the vacuum energy density on a Dp-
brane coincides with its tension, Λcl

p = Tp , and can be read from
Eq. (13). The open string one-loop correction to the vacuum
energy is given by Eq. (14), and contains divergences due to the
tadpoles of dilaton, graviton and tachyon in �p . These tadpole
contributions can be exhibited expanding the integrand of �p

for large value of s, as

(25)

�p → πα′

2

∞∫
ds

1

(2π2α′s)d⊥/2

(
e2πs + 24 +O

(
e−2πs

))
.

The first term within brackets is the contribution of tachyon tad-
poles while the second is the overall contribution from massless
dilaton and graviton tadpoles. These divergences can in princi-
ple be regularized via an “infrared” cutoff on s (or “ultraviolet”,
from the open-channel perspective), and we shall do it implic-
itly in what follows.
Fig. 1. Closed string bouncing on a Dp-brane.

Fig. 2. Summation of tree-level contributions.

It is important to recognize that, in addition to the cylinder
amplitude, the simplest contribution in the closed-string picture,
there are many other three-level contributions with closed string
contact interactions, as shown in Figs. 1 and 2. There are also
closed-string one-loop and higher-loop contributions, that we
neglect in the present calculations. As we stressed above, the
existence of the contact interactions between dilaton/graviton
and D-branes can be simply inferred from effective action of
Eq. (13).

The effect of the two point contact interaction, that can be
understood as a process in which a closed string bounces off
the D-brane at the origin, can be accounted for inserting the
operator

(26)M̂ ≡
∫

ddx δd⊥(x)
∣∣B̃p(x)

〉
(−Tp)

〈
B̃p(x)

∣∣,
where

(27)
∣∣B̃p(x)

〉 = ∣∣B̃X
p (x)

〉∣∣Bgh〉,
(28)

∣∣B̃X
p (x)

〉 ≡ 1

Tp

δp+1(x̂ − x)
∣∣BX

p

〉
.

The state |B̃p(x)〉 is essentially a Dp-brane boundary state with
a different normalization, with the position of the closed string
on the Dp-brane fixed at the generic point x, and indeed the
integration in the definition of M̂ is over the Dp-brane world
volume. The overall normalization of the operator M̂ is such
that the coupling constant of the dilaton two-point contact in-
teraction coincides with that present in the effective field theory
of Eq. (13).
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The “one-bounce” contribution to the Dp-brane vacuum en-
ergy of Fig. 1 is thus

A1 = 1

2! 〈Bp|DM̂D|Bp〉

(29)

= 1

2!
∫

ddx δd⊥(x)
〈
Bp

∣∣D∣∣B̃p(x)
〉
(−Tp)

〈
B̃p(x)

∣∣D∣∣Bp

〉
.

The quantity 〈B̃p(x)|D|Bp〉 can be calculated in the same way
as the cylinder amplitude:〈
B̃p(x)

∣∣D∣∣Bp

〉
= 〈

Bp

∣∣D∣∣B̃p(x)
〉

(30)= N2
p

Tp

πα′

2

∞∫
0

ds
1

(2π2α′s)d⊥/2
e
− x2⊥

2πα′s
1

η(is)24
.

Therefore,

(31)A1 = 1

2!Vp+1N
2
p

(
Np

Tp

)2

(−Tp)�2
p.

The “two-bounce”, “three-bounce” and all the other ampli-
tudes of this type can then be computed in the same way. The
complete “two-point function” is then obtained summing all
these contributions as depicted in Fig. 1.

A(2)
p = 1

2!
{〈Bp|D|Bp〉 + 〈Bp|DM̂D|Bp〉

+ 〈Bp|DM̂DM̂D|Bp〉 + · · ·},
≡ 1

2! 〈Bp|DM |Bp〉

(32)= 1

2!Vp+1N
2
p

�p

1 + Tp(Np/Tp)2�p

.

The result is a geometric series involving the regularized �p .
Notice that, in the limit that the “infrared” regulator for �p is
removed, a simple finite value obtains for the two-point func-
tion:

(33)A(2)
p = 1

2!Vp+1Tp,

so that the corresponding contribution to the vacuum energy
density on a Dp-brane is

(34)Λ(2)
p = − A

(2)
p

Vp+1
= − 1

2!Tp.

Let us now turn to the contributions depicted in Fig. 2. There
is a dilaton three-point contact interaction with the Dp-brane,
that again can be deduced from Eq. (13). In the boundary state
formalism this interaction could be represented via an operator
acting on three states:

M̂(3) ≡ 1

3!Tp

(
Np

Tp

)3 ∫
ddx δd⊥(x)

(35)× ∣∣B̃p(x)
〉∣∣B̃p(x)

〉∣∣B̃p(x)
〉
.

The legs of the resulting “three-point function” should be full
“two-point functions”, namely,

A(3)
p = 1

3!Tp

∫
ddx δd⊥(x)

〈
Bp

∣∣DM

∣∣B̃p(x)
〉

(36)× 〈
Bp

∣∣DM

∣∣B̃p(x)
〉〈
Bp

∣∣DM

∣∣B̃p(x)
〉
,

where 1/3! is a symmetry factor.2

A straightforward calculation gives

(37)
〈
Bp

∣∣DM

∣∣B̃p(x)
〉 = 1

1 + Tp(Np/Tp)2�p

〈
Bp

∣∣D∣∣B̃p(x)
〉
,

and therefore

A(3)
p = 1

3!TpVp+1

(
1

1 + Tp(Np/Tp)2�p

· N2
p

Tp

�p

)3

(38)= 1

3!Vp+1Tp.

The contribution to the vacuum energy density on a Dp-brane
is thus

(39)Λ(3)
p = − A

(3)
p

Vp+1
= − 1

3!Tp.

One can continue this calculation along similar lines for the
“four-point function”, and in fact to all orders. The end result is
very similar to the example of the scalar field with exponential
potential of Ref. [11]:

Atree
p ≡ A(2)

p + A(3)
p + A(4)

p + · · ·

(40)= Vp+1Tp

∞∑
n=1

1

n(n + 1)
= Vp+1Tp,

since the series can be easily shown to add up to one. Therefore,
the total contribution to the vacuum energy density on a Dp-
brane arising from the tree-level tadpole resummation is simply

(41)Λtree
p = −Atree

p /Vp+1 = −Tp,

and exactly cancels the classical energy density Λcl
p = Tp .

4. Tadpole resummations on a D25-brane in the
unoriented SO(8192) theory

The tree-level tadpole resummation of the previous section
is essentially governed by the fact that the open string one-loop
vacuum amplitude, �p , contains a divergent massless contri-
bution. It is therefore interesting to verify that the contribution
vanishes in the absence of massless tadpoles, even if a tachyon
tadpole is present. In this section we thus examine the tadpole
resummation in the SO(8192) theory, where massless tadpoles
are canceled as a result of the cooperative action of the D25-
branes and an O25-plane.

There are three types of open-string one-loop contributions
to the vacuum energy, associated to the cylinder, Möbius strip

2 Its origin is as follows: the vertex carries a 1/3!, the third order of the tad-
pole insertion brings about one more 1/3!, while the number of contractions
gives rise to a factor 3!.
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and Klein bottle amplitudes:

(42)A= 1

2! 〈B25|D|B25〉 = 1

2!V26N
2
25�25,

M= 1

2!
(〈B25|D|C25〉 + 〈C25|D|B25〉

)
(43)= 1

2! · 2〈C25|D|B25〉 = V26N25Ñ25�̃25,

(44)K = 1

2! 〈C25|D|C25〉 = 1

2!V26Ñ
2
25�25.

The divergences due to the tadpoles emerge from

(45)�25 → πα′

2

∞∫
ds

(
e2πs + 24 +O

(
e−2πs

))
,

(46)�̃25 → πα′

2

∞∫
ds

(
e2πs − 24 +O

(
e−2πs

))
.

Notice that the tachyon contributions have the same sign, while
the massless dilaton/graviton contributions have opposite signs,
in these two quantities. One can define two divergent quantities
related, respectively, to the tachyon and dilaton/graviton tad-
poles, as

(47)�T ≡ πα′

2

∞∫
0

ds e2πs,

(48)� ≡ πα′

2

∞∫
0

ds24,

that can be regulated introducing an “infrared” cutoff on s. One
can then write

(49)�25 → �T + � + finite,

(50)�̃25 → �T − � + finite.

In order to obtain the full “two-point functions”, “bounce
effects” on both D25-branes and the O25-plane should be in-
cluded. The “bounce effect” on the O25-plane can be accounted
for inserting the operator

(51)M̂O =
∫

d26x
∣∣C̃25(x)

〉
(+T̃25)

〈
C̃25(x)

∣∣,
that is obtained in the same way as the operator M̂ , where

(52)
∣∣C̃25(x)

〉 ≡ 1

T̃25
δ26(x̂ − x)

∣∣C25(x)
〉

and T̃25 ≡ Ñ25/2 is the tension of O25-plane.
The full “two-point function” with both edges on D25-

branes and without O25-bounces was already given in Eq. (32),
and is

A
(2)
zero-O = 1

2! 〈B25|DM |B25〉

(53)= 1

2!V26N
2
25

�25

1 + T25(N25/T25)2�25
,

where N25 and T25 include the number of D25-branes, n =
213 = 8192. Therefore, Ñ25 = N25 and T̃25 = T25.
The “two-point function” with both edges on D25-branes
with one O25-bounce but without D25-bounces is

1

2! 〈B25|DM̂OD|B25〉

= 1

2!
∫

d26x
〈
B25

∣∣D∣∣C̃25(x)
〉
(+T̃25)

〈
C̃25(x)

∣∣D∣∣B25
〉

(54)= 1

2!V26N
2
25�̂25

(
N25

T25

)2

(+T25)�̂25.

There are two contributions to the “two-point function” with
both edges on D25-branes with one O25-bounce and one D25-
bounce:

1

2!
1

2
〈B25|DM̂ODM̂D|B25〉 and

(55)
1

2!
1

2
〈B25|DM̂DM̂OD|B25〉,

where the overall 1/2 is a symmetry factor, so that

1

2!
(

1

2
〈B25|DM̂ODM̂D|B25〉 + 1

2
〈B25|DM̂DM̂OD|B25〉

)

(56)

= 1

2!V26N
2
25�̂25

(
N25

T25

)2

(+T25)�̂25

(
N25

T25

)2

(−T25)�25.

These results can be understood in terms of Feynman rules
for the “propagator” and the “mass insertion”. The “propaga-
tors” 〈B|D|B〉 and 〈C|D|C〉 give �25, and the “propagators”
〈B|D|C〉 and 〈C|D|B〉 give �̂25. On the other hand, the “mass
insertions” determined by M̂ and M̂O give (N25/T25)

2(−T25)

and (N25/T25)
2(+T25), respectively. Certain symmetry fac-

tors should be included, and there is also an overall factor
(1/2!)V26N

2
25. It is then straightforward to compute the “two-

point function” with both edges on D25-branes, with one O25-
bounce and full D25-bounce:

A
(2)
one-O = 1

2!V26N
2
25�̂25

(
N25

T25

)2

(+T25)�̂25

×
(

1 +
(

N25

T25

)2

(−T25)�25

+
((

N25

T25

)2

(−T25)�25

)2

+ · · ·
)

= 1

2!V26N
2
25�̂25

(
N25

T25

)2

(+T25)�̂25

(57)× 1

1 + T25(N25/T25)2�25
.

The “two-point functions” with both edges on D25-branes
with two O25-bounces and full D25-bounce are more compli-
cated. The contribution without D25-bounces is

1

2! 〈B25|DM̂ODM̂OD|B25〉

(58)

= 1

2!V26N
2
25�̂25

(
N25

T25

)2

(+T25)�25

(
N25

T25

)2

(+T25)�̂25.
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The next contributions with one D25 bounce have three differ-
ent forms:

1

3

1

2! 〈B25|DM̂ODM̂ODM̂D|B25〉

= 1

3

1

2!V26N
2
25�̂25

(
N25

T25

)2

(+T25)�25

(
N25

T25

)2

(59)× (+T25)�̂25

(
N25

T25

)2

(−T25)�25,

1

3

1

2! 〈B25|DM̂ODM̂DM̂OD|B25〉

= 1

3

1

2!V26N
2
25�̂25

(
N25

T25

)2

(+T25)�̂25

(
N25

T25

)2

(60)× (−T25)�̂25

(
N25

T25

)2

(+T25)�̂25,

1

3

1

2! 〈B25|DM̂DM̂ODM̂OD|B25〉

= 1

3

1

2!V26N
2
25�25

(
N25

T25

)2

(−T25)�̂25

(
N25

T25

)2

(61)× (+T25)�25

(
N25

T25

)2

(+T25)�̂25.

Although the first and the third of these coincide, the second
is different. Taking only the dominant divergence due to the
tachyon tadpoles, so that �25 → �T and �̂25 → �T , the sum
of the above three contributions becomes

1

2!V26N
2
25�T

(
N25

T25

)2

(+T25)�T

(
N25

T25

)2

(62)× (+T25)�̂T

(
N25

T25

)2

(−T25)�T .

It is then straightforward to calculate the contribution from two
or more D25-bounces, and finally the result with full D25-
bounce becomes

A
(2)
two-O = 1

2!V26N
2
25�T

(
N25

T25

)2

× (+T25)�T

(
N25

T25

)2

(+T25)�T

×
(

1 +
(

N25

T25

)2

(−T25)�T

× +
((

N25

T25

)2

(−T25)�T

)2

+ · · ·
)

= 1

2!V26N
2
25�T

(
N25

T25

)2

(+T25)�T

(
N25

T25

)2

(63)× (+T25)�T

1

1 + T25(N25/T25)2�T

.

It is now straightforward to obtain the contribution with full
O25 and D25 bounces:

A
(2)
full = 1

V26N
2
25

�T

2
2! 1 + T25(N25/T25) �T
×
(

1 +
(

N25

T25

)2

(+T25)�T

(64)+
((

N25

T25

)2

(+T25)�T

)2

+ · · ·
)

= 1

2!V26N
2
25

�T

1 + T25(N25/T25)2�T

(65)× 1

1 − T25(N25/T25)2�T

.

Recalling that �T is a divergent quantity, one can thus see
that the “two-point function” with both edges on the D25-brane
(cylinder with bounces), vanishes. The other two types of “two-
point functions”, with both edges on the O25-plane (Klein bot-
tle with bounces) and with one edge on the D25-brane and the
other on the O25-plane (Möbius strip with bounces), are exactly
identical and thus also vanish. Since all “two-point function”
vanish, the “three-point functions” and in fact all higher-point
functions vanish, as can be simply understood by the arguments
in the previous section. In conclusion, there is no contribution
to the vacuum energy resulting from tadpole resummation, de-
spite the presence of the tachyon tadpole.

If we neglect the divergence introduced by tachyon tadpoles
(or if we define it by analytic continuation as �T = −α′/4), let-
ting �25 → � and �̂25 → −�, the contribution of the cylinder
with bounces equals the contribution of the Klein bottle with
bounces, while the contribution of cylinder with bounces equals
−1/2 of the contribution of Möbius strip with bounces. This
is easily understood, since the replacement of one D25-brane
boundary state to one O25-place crosscap state gives rise to a
sign change, due to �25 → �̂25. Therefore, again, all contribu-
tions to the vacuum energy arising from tadpole resummations
add up to a vanishing result, just like the tadpole contributions,
in the SO(8192) theory.

5. Conclusions

It is interesting that these simple calculations give the re-
sult expected by Sen’s conjecture of open-string tachyon con-
densation from a closed-channel perspective. The calculations
combine the boundary state formalism with some information
drawn from the low-energy effective field theory. It would be
interesting to try and extend this method to closed-string field
theory, since there is no proof that this method gives the exact
result. The key problems to be considered are the following.

In open-string tachyon condensation in String Field Theory,
the tachyon potential is obtained integrating out the open string
massive modes (see Ref. [19] for a review). The actual numer-
ical calculation is based on the level truncation approximation,
and the obtained numerical value of the vacuum energy is in-
deed very close to zero. On the other hand, the role of the
open string massive modes is not evident in our method, where
infrared divergences due to closed string tadpoles are impor-
tant. It is natural that an infinite number of open string modes
are required, since we are making explicit use of open–closed
string duality and we are tracking the tadpoles of low-lying
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closed string states, the dilaton, the graviton and the closed-
string tachyon.

We have accounted for the propagation of closed strings in
a rigid spacetime perpendicular to the D-branes. In particular,
we have been considering a flat spacetime, which should not
be a good approximation in absolute terms, since the very ex-
istence of D-branes is known to lead to a back reaction on the
spacetime geometry. Indeed, it was shown in Ref. [20] that in
string models with broken supersymmetry without tachyons,
the dilaton tadpole curves the original flat Minkowski back-
ground, leading to a sort of spontaneous compactification. The
effect of this gravitational back reaction is clearly not included
in our calculation, but is similarly not included in the analyses
based on String Field Theory. The gravitational back reaction
may change the contribution of the tadpole resummation. Other
subtleties resulting from the inclusion of gravity in the tadpole
resummation in field theory were discussed in Ref. [11]. It is
not clear whether or not these problems are overcome in our
method.

In spite of these problems, it is straightforward to apply
this method to superstring models with “brane supersymmetry
breaking” [21,22], i.e., broken supersymmetry on branes with
no tachyon but dilaton tadpoles. For instance, in the USp(32)
Sugimoto model [21] all “two-point functions” can be com-
puted exactly as in SO(8192) model, and the final result is

A
(2)
full = 1

2!V10N
2
9

�NS

1 + T9(N9/T9)2�NS

(66)× 1

1 + T9(N9/T9)2�NS
,

where N9 is the normalization factor of the boundary state of
D9-brane, T9 is the tension of the D9-brane and �NS includes
only a divergence due to massless dilaton/graviton tadpoles
(since there is no tachyon), defined in the same way as �25.
Therefore, all “two-point functions” vanish, so that there is no
correction to the vacuum energy from tadpole resummation. It
would be interesting to apply this method to the calculation
of other physical quantities, and for instance to the masses of
scalar fields.
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