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a b s t r a c t

We investigated the diversity of Cyanobacteria by microscopic observation and sequencing of
cyanobacterial-specific amplified 16S rRNA genes in the water column of two shallow, eutrophic lakes
(Doirani and Kastoria, northern Greece) during summer blooms. Previous phytoplankton studies in these
lakes have shown that prolonged cyanobacterial blooms can occur, which are dominated by known toxic
species, as well as other less known, co-occurring species. A total of 118 clones were sequenced which
were grouped in 23 Cyanobacteria and 11 chloroplast-like phylotypes. Phylogenetic analysis revealed
that each library included several unique phylotypes, as well as members of all common bloom-forming
Cyanobacteria. Most of the phylotypes belonged to the genera Microcystis, Anabaena, Aphanizomenon,
Cylindrospermopsis-Raphidiopsis group, Limnothrix and Planktothrix, comprising most of the diversity pre-
viously recognized by morphological observations in cyanobacterial morphospecies in these lakes. In
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addition, novel phylotypes belonging to the Chroococcales were recognized in both lakes. The structure
of the cyanobacterial communities of the lakes were very similar, as revealed by the diversity index H
(2.06 and 2.01 for L. Doirani and Kastoria, respectively) and LIBSHUFF analysis (XY12 P-value = 0.122 and
YX12 P-value = 0.536), due to occurrence of groups of common phylotypes. This study gives an exam-
ple for successful cyanobacterial bloom analysis by the combination of morphological and phylogenetic
methods useful for monitoring cyanobacteria and water quality in freshwaters.
ntroduction

Cyanobacteria are the dominant phototrophic component in
any freshwater environments where they may form nuisance

looms (Chorus and Bartram 1999). The warm Mediterranean cli-
ate favours the extended duration of the cyanobacterial blooms

n eutrophic freshwaters, which may start in spring and persist
ntil December, or in hypertrophic lakes, may even be continu-
us throughout the year (Moustaka-Gouni et al. 2007). In Greece,
ommon bloom-forming Cyanobacteria are mainly assigned to
he genera Microcystis and Anabaena, followed by Cylindrosper-
opsis and Aphanizomenon (Vardaka et al. 2005) and Limnothrix

Moustaka-Gouni et al. 2007). In addition to the bloom-forming
axa, a wide range of less-known taxa are in some cases significant

o the total cyanobacterial biomass. These “accompanying” species
nclude filamentous (e.g. Jaaginema) and colonial (e.g. Merismope-
ia, Snowella) nanoplanktic Cyanobacteria (Vardaka et al. 2005), as
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well as, picocyanobacteria (e.g. Synechococcus) (Moustaka-Gouni
et al. 2006). In lakes of Greece, such multi-species water blooms
have been described (Vardaka et al. 2005).

The characterization of the bloom communities structure
remains problematic because the cyanobacterial taxonomy of cer-
tain genera has not yet been resolved (Moustaka-Gouni et al. 2009).
Although Cyanobacteria show higher morphological diversity than
other bacterial groups, the discrimination at the genus or species
level is often problematic. Indeed, morphological and morpho-
metric features of many Cyanobacteria strains are influenced by
the growth conditions, greatly complicating their identification
(Anagnostidis and Komárek 1985, 1988). Cyanobacteria with the
same genetic makeup may appear quite different under various
physiological conditions as a result of differential gene expres-
sion (Castenholz and Norris 2005). Furthermore, some criteria
such as the shape and structure of colonies (Rajaniemi-Wacklin
et al. 2006) as well as the presence/absence of gas vesicles (Gkelis

et al. 2005) can be altered in culture. Such limitations of pheno-
typic features have highlighted the requirement of more reliable
methods and promoted the use of polyphasic approaches by com-
bining morphological and molecular data (e.g. Gkelis et al. 2005;

https://core.ac.uk/display/82822446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.limno.2010.10.003
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Table 1
Location and dates of the lakes sampled and summary of the clone libraries constructed from the water samples.

Lake (code) Geographic coordinates Sampling date PCR cycles Number of

(N) (E) Clones Phylotypes
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Doirani (ND2) 40◦11′ 22◦45′ 12 Au
Kastoria (NK2) 40◦31′ 21◦18′ 13 Au

ajaniemi-Wacklin et al. 2006). Since the isolation of Cyanobacteria
rom environmental samples is not always successful, culture-
ndependent identification of cyanobacteria is more promising in
escribing community structure. Molecular technologies based on
6S rRNA gene amplification are already widely employed for the
nalysis of natural samples (Eiler and Bertilsson 2004; Zwart et al.
005; Junier et al. 2007).

The taxonomy of some of the potentially toxic cyanobacte-
ia remains challenging (Gkelis et al. 2005) especially due to the
o-occurrence of several different morphotypes (Moustaka-Gouni
t al. 2009). The aim of the study was to monitor the occur-
ing Cyanobacteria in two eutrophic, shallow Mediterranean lakes
hich have high cyanobacterial diversity in blooms (Vardaka et al.

005), by comparing the diversity by morphological observation
nd phylogenetic analysis after PCR amplification of the 16S rRNA
ene with cyanobacterial-specific primers.

aterials and methods

Samples were collected from Lakes Kastoria (summer bloom
f 2003) and Doirani (summer bloom of 2004) (Table 1), located
n northern Greece. For a detailed description of these lakes see
ardaka et al. (2005). Water samples were collected from the sur-

ace layer (0–1 m). Sub-samples were preserved with both Lugol’s
olution and formaldehyde. Water samples for 16S rRNA gene anal-
sis were stored in polyethylene bottles and transferred to the
aboratory (<5 h) under cool and dark conditions. Immediately upon
eturn to the laboratory, 100–300 mL of lake water was filtered on
Whatman GF/C filter and the filter was stored at −20 ◦C. Although
e initially planned to use polycarbonate 0.2 �m isopore filters,

heir use was not feasible due to extreme clogging and breakage of
lamentous cyanobacteria after the first 10–20 mL of water.

Fresh and preserved samples were examined using an inverted
icroscope (Nikon ECLIPSE TE2000-S) with phase-contrast. Species
ere identified using Komárek and Anagnostidis (1999, 2005),
indák and Moustaka (1988) and the classification system of
omárek and Anagnostidis (1989).

DNA was extracted using the UltraClean Soil DNA iso-
ation kit (MoBio Laboratories, USA) according to the man-
facturer’s protocol after slicing the filters with a sterile
calpel. For 16S rRNA gene amplification, we used 0.5 �L of
he DNA template and the cyano-specific primers CYA106f
5′-CGGACGGGTGAGTAACGCGTGA-3′) and an equimolar mix-
ure of CYA781r (a) (5′-GACTACTGGGGTATCTAATCCCATT-3′) and
YA781r (b) (5′-GACTACAGGGGTATCTAATCCCTTT-3′) (Nübel et al.
997). All amplification reactions (25 �L) contained 10–20 ng
enomic DNA, determined with the NanoDrop ND-1000 (NanoDrop
echnologies, USA), as template, each primer at a concentration
f 0.5 �M and PCR buffer supplied with the Go-Taq polymerase
Promega, USA), dNTPs (200 �M) and MgCl2 (1.5 �M). PCR condi-
ions were similar to those described by Berger et al. (2006) for
yanobacteria.

In order to decrease PCR bias related to high number of cycles

nd minimize the differences in the clone library representation
etween rare and abundant phylotypes, PCR cycle optimization was
erformed, i.e. each PCR was performed at the minimum number
f cycles where a positive PCR signal occurred (Table 1). The ampli-
004 24 69 29
003 8 49 18

cons were separated in a 1.2% (w/v) agarose gel electrophoresis run
at 70 V for 45 min in TAE buffer (40 mM Tris-acetate, 1 mM EDTA,
pH 7.8) and visualized by UV transillumination after staining with
ethidium bromide (0.5 �g mL−1).

The PCR products were purified using the Montage purifi-
cation kit (Millipore, USA) and the purified PCR products were
cloned using the TOPO XL PCR cloning kit (Invitrogen, USA)
with chemically competent cells according to the manufac-
turer’s specifications. A maximum of 90 clones were randomly
selected and checked for having the correct insert size (ca.
680 bp). All positive clones were grown in liquid LB medium
with 50 �g mL−1 kanamycin and their plasmids were purified
using the Nucleospin Plasmid QuickPure kit (Macherey-Nagel,
Germany). Sequence data were obtained by capillary electrophore-
sis (Macrogen Inc., Seoul, Korea) using the BigDye Terminator
kit (Applied Biosystems Inc., USA) with the primer M13F (5′-
GTAAAACGACGGCCAG-3′). Each sequence read was approximately
850 bp. Each sequence was checked for chimeras using the
CHIMERA-CHECK function of the Ribosomal Database Project II
(Maidak et al. 2001). All sequences were compared with the BLAST
function (http://www.ncbi.nlm.nih.gov/BLAST/) for the detection
of closest relatives. Sequence data were compiled using the MEGA4
software (Tamura et al. 2007) and aligned with sequences obtained
from the GenBank (www.ncbi.nlm.nih.gov) databases, using the
ClustalX aligning utility. Phylogenetic analyses were performed
using minimum evolution and parsimony methods implemented
in MEGA4 (Tamura et al. 2007). Heuristic searches under mini-
mum evolution criteria used 1000 random-addition replicates per
data set, each followed by tree bisection-reconnection topological
rearrangements. The topology of the tree was based on neighbour-
joining according to Jukes-Cantor. Bootstrapping under parsimony
criteria was performed with 1000 replicates. Sequences of the
unique phylotypes found in this study have GenBank accession
numbers FJ204870–FJ204887 (L. Kastoria) and FJ204841–FJ204869
(L. Doirani).

Library clone coverage was estimated according to Kemp and
Aller (2004). The Shannon-Wiener (H) and Shannon evenness (J)
indices (Shannon and Weaver 1949; Pielou 1969) were estimated to
take both abundance and richness of phylotypes into account (Hill
et al. 2003). H was calculated as H = −∑

pi lope where pi is the pro-
portion of clones in the ith OTU (estimated using ni/N) and J = H/ln S,
where S is the number of OTUs found in a sample. Only cyanobac-
terial and chloroplast-related clones were included in the H and J
calculations. Statistical significance of differences in the composi-
tion of the two libraries was tested using the LIBSHUFF program
(http://www.arches.uga.edu/∼whitman/libshuff/html) (Singleton
et al. 2001).

Results

A total of 15 cyanobacterial taxa were microscopically iden-
tified, of which six taxa belonged to the Chroococcales, five to
the Oscillatoriales and four to the Nostocales (Table 2). Nostocales

of the Cylindrospermopsis/Raphidiopsis group were the dominant
organisms in both lakes (Moustaka-Gouni et al. 2009, 2010). The
bloom-forming Microcystis aeruginosa was also abundant in Lake
Kastoria. The filamentous Limnothrix redekei, Planktothrix cf. agard-

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/
http://www.arches.uga.edu/~whitman/libshuff/html
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Table 2
Cyanobacterial taxa, their percent contribution to the total phytoplankton biomass
and the percent contribution of eukaryotic phytoplankton to the total phytoplankton
biomass identified in the water blooms of Lakes Doirani and Kastoria. Minus (−)
indicates absence of taxon in the water sample, plus (+) indicates biomass <0.5% of
the total phytoplankton biomass.

Organism Biomass in lake (% of total)

Doirani Kastoria

Cyanobacteria
Aphanocapsa incerta + −
Chroococcus limneticus − +
Microcystis aeruginosa + 22.7
Microcystis flos-aquae + −
Snowella lacustris 3.9 −
Synechococcus spp. + −
Limnothrix redekei − 9.5
Jaaginema sp. 2.6 −
Oscillatoria sp. − +
Planktolyngbya circumcreta + −
Planktothrix cf. agardhii 6.4 −
Anabaena aphanizomenoides − +
Anabaena flos-aquae 3.0 −

h
i

e
b
p
t
w
1

c

F
(
D

Aphanizomenon issatshenkoi 8.1 −
Cylindrospermopsis raciborskii 10.2 62.8

Eukaryotic phytoplankton 65.7 4.9

ii, Aphanizomenon issatschenkoi and Anabaena flos-aquae were also
dentified.

According to the Good’s C estimator for the libraries clone cov-
rage, an asymptotic curve close to or above 0.80 was reached for
oth lakes, while the ration of observed to predicted number of
hylotypes was 56.7% and 73.7% for L. Doirani and Kastoria, respec-
ively (Fig. 1). In total, 118 clones of 16S rDNAs were analysed which
here attributed to 23 Cyanobacteria, 11 chloroplast-related and
3 other Bacteria phylotypes (Table S1, Figs. 2 and 3).
Chroococcales was the most diverse (13/23 phylotypes, 34/118

lones) group within the Cyanobacteria. Several phylotypes were

ig. 1. Clone library coverage based on Good’s C estimator and the ratio of observed
O) to the SChao1 predicted (P) number of phylotypes from the water column of Lakes
oirani and Kastoria, Greece.
ica 41 (2011) 167–173 169

practically identical or very closely related to known species of the
Chroococcales (Fig. 2 and Table S1). Phylotypes ND2-CYA-1-30,
ND2-CYA-1-18, NK2-CYA-1-5 were very closely related to the same
Microcystis aeruginosa strain. Phylotypes ND2-CYA-1-9 and ND2-
CYA-1-11 were closely related to Snowella litoralis and Pleurocapsa
sp. respectively. Phylotypes ND2-CYA-1-27 and ND2-CYA-4-1
were affiliated to a Cyanobium/Synechococcus monophyletic clade.
Phylotypes ND2-CYA-4-34 and ND2-CYA-4-86 were grouped with
Chroococcus and Gleocapsa strains. Finally, phylotypes NK2-CYA-
1-14, NK2-CYA-3-3ame, ND2-CYA-3-15 and NK2-CYA-1-3-ame
from both lakes, were not affiliated to any known species of the
Chroococcales.

Nostocales (6/23 phylotypes, 22/118 clones) were also present
in both lakes (Fig. 2 and Table S1). The L. Doirani phylo-
types ND2-CYA-1-24, ND2-CYA-1-12 and ND2-CYA-1-3 had >98%
similarity to Anabaena smithii, Aphanizomenon flos-aquae and
Aphanizomenon issatschenkoi, respectively. Phylotypes ND2-CYA-
4-32 and NK2-CYA-1-7 were clustered tightly together within
the Cylindrospermopsis raciborskii/Raphidiopsis mediterranea clade.
Phylotype NK2-CYA-1-18 was not closely related to any known taxa
of the Nostocales.

Oscillatoriales phylotypes (4/23 phylotypes, 12/118 clones)
were also found in both lakes (Fig. 2 and Table S1). Phylotypes NK2-
CYA-1-13 and ND2-CYA-1-21 were >98% similar to Limnothrix sp.
and Planktothrix pseudagardhii, respectively. Phylotype ND2-CYA-
1-8 was grouped with Cyanobacterium and Pseudanabaena strains
and NK2-CYA-2-14 was related to a Phormidium strain.

A distinct clade in the Cyanobacteria was formed including
the chloroplast-related phylotypes, which occurred in both lakes
(11/47 phylotypes, 29/118 clones) (Fig. 2 and Table S1). Phylotypes
NK2-CYA-3-4, NK2-CYA-2-1 and ND2-CYA-4-27 were closely affil-
iated to plastids of Cryptomonas curvata and Nitzschia frustulum,
respectively. The Lake Doirani phylotypes ND2-CYA-4-29-ame,
ND2-CYA-1-22 and ND2-CYA-3-10 formed a distinct clade closely
related to the Aulacoseira ambigua plastid but also to phylotypes
retrieved for other lake ecosystems. A very distinct but well sup-
ported monophyletic group was revealed, containing phylotypes
NK2-CYA-1-1, NK2-CYA-3-5 and ND2-CYA-1-7, related only with
one phylotype from Lake Kinneret, Israel. Finally, ND2-CYA-4-83
was closely related to lake organic aggregates and ND2-CYA-3-11
was not related to any known chloroplast or phylotype from lake
habitats.

The other Bacteria were dominated by uncultured Verrucomi-
crobia (10/13 phylotypes, 18/118 clones) (Fig. 3 and Table S1).
In most cases, their closest relatives originated from other lakes
during water blooms or when eutrophic conditions prevailed. The
last three non-cyanobacterial singleton phylotypes were retrieved
only from L. Kastoria and belonged to the Actinobacteria, the �-
Proteobacteria and the candidate division OP11 and were not
related to lake habitats (Fig. 3). These microorganisms are not fur-
ther discussed in this paper since they are not targeted with the
primers used and their occurrence is probably underestimated due
to the GF/C filtered used.

The H diversity index was similar to both lakes, 2.06 and 2.01
for L. Doirani and L. Kastoria, respectively. Evenness was higher
in L. Kastoria (J = 0.84) than in L. Doirani (J = 0.66). The LIBSHUFF
analysis for the significance of the difference between the two
clone libraries indicated that they were not significantly different
(XY12 P-value = 0.122 and YX12 P-value = 0.536). For both the H
index and LIBSHUFF analysis, only the Cyanobacteria phylotypes
were considered.
Discussion

We compared the occurrence of Cyanobacteria during the sum-
mer water blooms of two shallow, eutrophic lakes (Lakes Doirani
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Fig. 2. Neighbour-joining tree showing phylogenetic relationships of cyanobacterial and chloroplast-like partial 16S rRNA genes from environmental sequences obtained
f prese
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rom Lakes Doirani (ND2-CYA) and Kastoria (NK2-CYA), Greece. Numbers at nodes re
umber of identical clones obtained for each phylotype and accession numbers for
umber of substitutions per site. Pelagicoccus maritima was used as an outgroup.

nd Kastoria, northern Greece), by standard morphological identifi-
ation (light microscopy) and diversity through the amplification of
he 16S rRNA genes with cyanobacterial specific primers. The water
looms of these systems are characterized by the co-occurrence of
ifferent morphospecies (Vardaka et al. 2005), several of them not
rmly recognized by microscopic observation (Moustaka-Gouni

t al. 2009).

In both lakes, there was a good agreement between the two
pproaches (Table 2 and Fig. 2). The found organisms have been
eported in previous phytoplankton studies in L. Doirani and
nt the bootstrap percentages from 1000 replicates. Values below 50% are not shown.
A sequences obtained from databases are shown in parentheses. Bar indicates the

Kastoria (Temponeras et al. 2000; Vardaka et al. 2005). Mem-
bers of the most abundant genera identified by microscopic
observations, i.e. Cylindrospermopsis, Microcystis, Aphanizomenon,
Anabaena, Snowella, Limnothrix, Planktothrix and Synechococcus,
were also found in the clone libraries in high relative abun-
dances. This is attributed to the satisfactory clone coverage for both

samples, as revealed by the curvilinear patterns of the Good’s C
estimator, the high ratios of observed to predicted number of phy-
lotypes (Fig. 1) and also the fact that both libraries contained high
numbers of singleton phylotypes. This indicates that at least the
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Fig. 3. Neighbour-joining tree showing phylogenetic relationships of non-cyanobacterial partial 16S rRNA genes from environmental sequences obtained from Lakes Doirani
(ND2-CYA) and Kastoria (NK2-CYA), Greece. Numbers at nodes represent the bootstrap percentages from 1000 replicates. Values below 50% are not shown. Number of
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dentical clones obtained for each phylotype and accession numbers for 16sRNA se
ubstitutions per site. Thermotoga maritima was used as an outgroup.

ost abundant Cyanobacteria have been revealed. In addition, the
atisfactory clone coverage allowed the use of the H index for our
amples (Hill et al. 2003). However, the clone libraries revealed
ew phylotypes, representing species that cannot be recognized
orphologically.
Chroococcales was the most diverse cyanobacterial group, dom-

nated by clones related to cosmopolitan Cyanobacteria well known
o form and dominate lake water blooms worldwide, such as Micro-
ystis aeruginosa (Sivonen and Jones 1999), and other non-bloom
orming coccal species commonly found in eutrophic temperate
aters, such as Snowella spp. (Rajaniemi-Wacklin et al. 2006). The
hroococcales do not form a phylogenetically coherent clade. In
ddition, apart from the genera Microcystis and Cyanobium, the vast
ajority of the available sequences suggests that it is a polyphyletic

roup (Castenholtz 2001).
Synechococcus-like picocyanobacteria have been recorded in

ake Kastoria (Moustaka-Gouni et al. 2006). Synechococcus is a
enus defined principally on the basis of morphological traits,
ncluding both marine and freshwater strains, and it is clearly poly-
hyletic (Wilmotte and Herdman 2001). Among the freshwater
pecies included in the picophytoplankton clade sensu Urbach et al.
1998), several sub-clusters have been defined based on sequence
nalyses of 16S rRNA gene, from cultures isolated from different
akes in Europe (Crosbie et al. 2003; Sanchez-Baracaldo et al. 2008).

The Microcystis-like phylotypes of this study fell in two sub-
lades, one grouped with a M. aeruginosa strain isolated from
ortugal (Valério et al. 2009) and one separate sub-clade not con-
aining any known cultured strain. The high diversity of Microcystis
pecies complex is known at the morphological (Komárek and
nagnostidis 1999), genetic (Wilson et al. 2005; Yoshida et al.

008) and physiological (i.e. microcystin producing) level (Lyra
t al. 2001), within and across habitats.

Sequences of algal plastids phylogenetically belong to the
hroococcales since they are considered to be of cyanobacterial
es obtained from databases are shown in parentheses. Bar indicates the number of

origin (Sagan 1967) and, thus, it is possible that they represent
true cyanobacterial phylotypes. However, species of the genera
Cryptomonas, Aulacoseira and Nitzschia were present in both lakes
during our study period (M. Moustaka-Gouni, unpublished data),
suggesting that the three clades containing phylotypes related to
these algae represent their chloroplasts. The rest of the chloroplast-
like phylotypes which were not related to any known plastid
sequences could be the plastids of other algae we observed in the
lakes, such as the chlorophytes Oocystis, Crucigenia, the diatoms
Rhizosolenia, Acanthoceras and the cryptyophyte Rhodomonas min-
uta.

Within the Oscillatoriales, the L. Kastoria phylotype NK2-CYA-1-
13 shared 99% 16S rDNA gene similarity with Limnothrix sp. CENA
110, isolated from Brazil (Furtado et al. 2009) and with the Lim-
nothrix redekei strains previously isolated from L. Kastoria (Gkelis et
al. 2005). Phylotype ND2-CYA-1-8 clustered tightly together with
the strain IW11 isolated from Lake Loosdrecht, The Netherlands,
of the Limnothrix/Pseudanabaena cluster (Zwart et al. 2005). The
IW11 strain, morphologically very similar to L. redekei, was the
most divergent isolate in this cluster sharing only 94% similarity
with L. redekei (Zwart et al. 2005) and thus belonging to another
species or even another genus. It is possible, therefore, that our
ND2-CYA-1-8 clone corresponds to the closely related Jaaginema
sp. identified microscopically in L. Doirani water sample, for which
no 16S rDNA sequences are yet available. In L. Doirani, the micro-
scopically observed Planktothrix cf. agardhii population seems to
correspond to the Planktothrix pseudagardhii phylotype clustering
tightly together with the Planktothrix pseudagardhii T19-6′-8 strain
(Suda et al. 2002). This discrepancy is important in monitoring
practices, since P. agardhii is well known to produce microcystins

(Sivonen 1990) but no such evidence has been obtained for the
morphologically identical P. pseudagradhii (Suda et al. 2002).

Most of the Nostocalean phylotypes included sequences from
L. Doirani and were associated with species known to dominate
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n L. Doirani and other lakes of Greece, such as Aphanizomenon
os-aquae, Aphanizomenon issatschenkoi and Cylindrospermopsis
aciborskii (Temponeras et al. 2000; Vardaka et al. 2005), which
e identified microscopically in our samples. One phylotype from

. Kastoria and one from L. Doirani clustered tightly together with
hinese strain R. mediterranea HB2 (Li et al. 2008) and Cylindrosper-
opsis raciborskii Florida I (Neilan et al. 2003). These phylotypes

re practically identical to clone NK2-532 clone from L. Kastoria,
onfirming previous hypothesis that Raphidiopsis and Cylindros-
ermopsis are practically the same genus (Moustaka-Gouni et al.
009).

We used the LIBSHUFF analysis for testing the significance of
he difference between the two clone libraries. It is assumed that
ignificantly different libraries have been derived from communi-
ies of different composition (Singleton et al. 2001). This analysis
howed that the composition of the cyanobacterial (including the
hloroplast-related) phylotypes L. Doirani and Kastoria is similar.
ndeed, the two lakes share five groups of common phylotypes
Figs. 2 and 3) with each group containing two or three phylotypes
nd in some cases these phylotypes have considerable relative
bundance. This resemblance in community structure is reflected
n the highly similar values of the H diversity index.

In conclusion, our study showed that in the case of water blooms
ith co-occurring cyanobacterial species, the use of cyanobacte-

ial specific primers for the PCR amplification of cyanobacterial 16S
RNA genes corroborates well with standard microscopic estima-
ions. However, the 16S rRNA approach provides concomitantly
nformation on potentially toxic species and a more thorough
axonomic description of the bloom community by unraveling
ither rare phylotypes or phylotypes that can be attributed to
orphotypes which cannot be securely recognized by morpho-

ogical observations. This by no means undermines the usefulness
f microscopic analysis. Biological features like different morpho-
ypes, cell counting of the same morphospecies for the estimation of
iovolume, separation of intact (viable) vs. destroyed (non-viable)
ells and life-cycle stages remain the most informative advantages
f direct microscopic observation of a cyanobacterial bloom (e.g.
oustaka-Gouni et al. 2009). In addition, microscopy can be cou-

led with other techniques in order to provide a more realistic
ool for discriminating individual organisms and their features (for
brief review see Orphan 2009) and such combined approaches

hould be included in future studies of lake cyanobacterial dynam-
cs.

The multilocus approach, i.e. the combined use of genes with
hylogenetic information (mostly 16S rRNA) and functional genes
e.g. Gugger et al. 2005; Thomazeau et al. 2010), is one the most
uccessful examples of the application of the sequencing progress
f the last decade. Such efforts are expected to benefit further by the
se of pyrosequencing by using multiple tags (e.g. Anderson et al.
010). Particularly for the case of cyanobacterial blooms, we believe
hat the metagenomic approach might be the most informative (see
ope and Patel 2008). However, such data, along with the limited
yanobacterial genomes available (61, with half of them belonging
o the order of Chroococcales) are scarce and subsequently limit
ur knowledge on the ecological role, potential applications and
nsights on how to prevent the toxic ones, of these organisms. The
bove methodologies and their numerous combination allow for
ustomization of monitoring programs of cyanobacteria in fresh-
aters even at the site-specific level.

cknowledgements
Part of this work was funded by the Special Research Account of
he Alexander Technological Educational Institute of Thessaloniki,
reece. This work was also partially funded by the Greek Ministry
ica 41 (2011) 167–173

of Foreign Affairs (Hellenic Aid) and the Greek Biotope Wetland
Center, Goulandris Museum (ANAP-46-2003).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.limno.2010.10.003.

References

Anagnostidis, K., Komárek, J., 1985. Modern approach to the classification system of
cyanophytes. 1. Introduction. Arch. Hydrobiol. Suppl. 71, 291–302.

Anagnostidis, K., Komárek, J., 1988. Modern approach to the classification system of
cyanophytes. 3. Oscillatoriales. Arch. Hydrobiol. Suppl. 80, 327–472.

Anderson, A., Riemann, L., Bertilsson, S., 2010. Pyrosequencing reveals contrast-
ing seasonal dynamics of taxa within Baltic Sea bacterioplankton communities.
ISME J. 4, 171–181.

Berger, C., Ba, N., Gügger, M., Bouvy, M., Rusconi, F., Coutè, M., Troussellier, M.,
Bernard, C., 2006. Seasonal dynamics and toxicity of Cylindrospermopsis raci-
borskii in Lake Guiers (Senegal, West Africa). FEMS Microbiol. Ecol. 57, 355–
366.

Castenholtz, R.W., 2001. Phylum BX. Cyanobacteria. Oxygenic photosynthetic bac-
teria. In: Boone, D.R., Castenholtz, R.W., Garrity, G.M. (Eds.), Bergey’s Manual
of Systematic Bacteriology. The Archaea and the Deeply Branching and Pho-
totrophic Bacteria, vol. 1, 2nd ed. Springer, New York, pp. 473–599.

Castenholz, R.W., Norris, T.B., 2005. Revisionary concepts of species in the cyanobac-
teria and their applications. Algol. Stud. 117, 53–69.

Chorus, I., Bartram, J., 1999. Toxic Cyanobacteria in Water. World Health Organiza-
tion, 1st ed. E. and F.N. Spon, London and New York.

Crosbie, N.D., Pockl, M., Weisse, T., 2003. Dispersal and phylogenetic diversity of non-
marine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic
spacer sequence analyses. Appl. Environ. Microbiol. 69, 5716–5721.

Eiler, A., Bertilsson, S., 2004. Composition of freshwater bacterial communities asso-
ciated with cyanobacterial blooms in four Swedish lakes. Environ. Microbiol. 6,
1228–1243.

Furtado, A.L.F.F., Calijuri, M.C., Lorenzi, A.S., Honda, R.Y., Genuário, D.B., Fiore, M.F.,
2009. Morphological and molecular characterization of cyanobacteria from a
Brazilian facultative wastewater stabilization pond and evaluation of micro-
cystin production. Hydrobiologia 627, 195–209.

Gkelis, S., Rajaniemi, P., Vardaka, E., Moustaka-Gouni, M., Lanaras, T., Sivonen, K.,
2005. Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake
Kastoria, Greece form a separate phylogenetic group. Microb. Ecol. 49, 176–
182.

Gugger, M., Le Berre, B., Dufour, P., Bernard, C., Humbert, J.-F., 2005. Genetic diversity
of Cylindrospermopsis strains (Cyanobacteria) isolated from four continents.
Appl. Environ. Microbiol. 71, 1097–1100.

Hill, T.C.J., Walsh, K.A., Harris, J.A., Moffet, B.F., 2003. Using ecological diversity mea-
sures with bacterial communities. FEMS Microbiol. Ecol. 43, 1–11.

Hindák, F., Moustaka, M., 1988. Planktic cyanophytes of Lake Volvi, Greece. Arch.
Hydrobiol. Suppl. 80, 497–528.

Junier, P., Witzel, K.-P., Hadas, O., 2007. Genetic diversity of cyanobacterial commu-
nities in Lake Kinneret (Israel) using 16S rRNA gene, psbA and ntcA sequence
analyses. Aquat. Microb. Ecol. 49, 233–241.

Kemp, P.F., Aller, J.Y., 2004. Estimating prokaryotic diversity: when are 16S rDNA
libraries large enough? Limnol. Oceanogr. Meth. 2, 114–125.

Komárek, J., Anagnostidis, K., 1989. Modern approach to the classification system of
cyanophytes, 4 Nostocales. Arch. Hydrobiol. Suppl. 82 (Algol. Stud.) 56, 247–345.

Komárek, J., Anagnostidis, K., 1999. Cyanoprokaryota, 1. Teil: Chroococcales.
Süßwasserflora Mitteleur. Band 19 (1), 270–323.

Komárek, J., Anagnostidis, K., 2005. Cyanoprokaryota, 2. Teil: Oscillatoriales.
Süßwasserfl. Mitteleur. Band 19, 1–759.

Li, R., Wilhelm, S.W., Carmichael, W.W., Watanabe, M.M., 2008. Polyphasic charac-
terization of water bloom forming Raphidiopsis species (cyanobacteria) from
central China. Harmful Algae 7, 146–153.

Lyra, C., Suomalainen, S., Gügger, M., Vézie, C., Sundman, P., Paulin, L., Sivonen, K.,
2001. Molecular characterization of planktic cyanobacteria of Anabaena, Apha-
nizomenon, Microcystis and Planktothrix genera. Int. J. Syst. Evol. Microbiol. 51,
513–526.

Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker Jr., C.T., Saxman, P.R., Farris, R.J., Gar-
rity, G.M., Olsen, G.J., Schmidt, T.M., Tiedje, J.M., 2001. The RDP-II (Ribosomal
Database Project). Nucleic Acids Res. 29, 173–174.

Moustaka-Gouni, M., Kormas, K.A., Vardaka, E., Katsiapi, M., Gkelis, S., 2009. Raphid-
iopsis mediterranea SKUJA represents non-heterocytous life-cycle stages of
Cylindrospermopsis raciborskii (WOLOSZYNSKA) SEENAYYA et SUBBA RAJU in
Lake Kastoria (Greece), its type locality: evidence by morphological and phylo-
genetic analysis. Harmful Algae 8, 864–872.

Moustaka-Gouni, M., Kormas, K.A., Polykarpou, P., Gkelis, S., Bobori, D.C., Vardaka,
E., 2010. Polyphasic evaluation of Aphanizomenon issatschenkoi and Raphidiopsis

mediterranea in a Mediterranean lake. J. Plankton Res. 32, 927–936.

Moustaka-Gouni, M., Vardaka, E., Michaloudi, E., Kormas, K.A., Tryfon, E., Mihala-
tou, H., Gkelis, S., Lanaras, T., 2006. Plankton food web structure in a eutrophic
polymictic lake with a history of toxic cyanobacterial blooms. Limnol. Oceanogr.
51, 715–727.

http://dx.doi.org/10.1016/j.limno.2010.10.003


nolog

M

N

N

O

P
P

R

S
S

S

S

S

S

S

K.Ar. Kormas et al. / Lim

oustaka-Gouni, M., Vardaka, E., Tryfon, E., 2007. Phytoplankton species succession
in a shallow Mediterranean lake (L. Kastoria, Greece): steady-state dominance
of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii.
Hydrobiologia 575, 129–140.

eilan, B.A., Saker, M.L., Fastner, J., Törökné, A., Burns, B.P., 2003. Phylogeography
of the invasive cyanobacterium Cylindrospermopsis raciborskii. Mol. Ecol. 12,
133–140.

übel, U., Garcia-Pichel, F., Muyzer, G., 1997. PCR primers to amplify 16S rRNA genes
from Cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332.

rphan, V.J., 2009. Methods for unveiling cryptic microbial partnerships in nature.
Curr. Opin. Microbiol. 12, 231–237.

ielou, E.C., 1969. An Introduction to Mathematical Ecology. Wiley, New York.
ope, P., Patel, B.K.C., 2008. Metagenomic analysis of a freshwater toxic cyanobac-

teria bloom. FEMS Microbiol. Ecol. 64, 9–27.
ajaniemi-Wacklin, P., Rantala, A., Mugnai, M.A., Turicchia, S., Ventura, S.,

Komárková, J., Lepistö, L., Sivonen, K., 2006. Correspodence between phylogeny
and morphology of Snowella spp. and Woronichinia naegeliana, cyanobacteria
commonly occurring in lakes. J. Phycol. 42, 226–232.

agan, L., 1967. On the origin of mitosing cells. J. Theor. Biol. 14, 225–274.
anchez-Baracaldo, P., Handley, B.A., Hayes, P.K., 2008. Picocyanobacterial commu-

nity structure of freshwater lakes and the Baltic Sea revealed by phylogenetic
analyses and clade-specific quantitative PCR. Microbiology 154, 3347–3357.

hannon, C.E., Weaver, W., 1949. The Mathematical Theory of Communication. Uni-
versity of Illinois Press, Urbana.

ingleton, D.R., Furlong, M.A., Rathbun, S.L., Whitman, W.B., 2001. Quantitative com-
parisons of 16S rRNA gene sequence libraries from environmental samples. Appl.
Environ. Microbiol. 67, 4374–4376.

ivonen, K., 1990. Effects of light, temperature, nitrate, orthophosphate, and bacteria
on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl.
Environ. Microbiol. 56, 2658–2666.
ivonen, K., Jones, G., 1999. Cyanobacterial toxins. In: Chorus, I., Bartram, J. (Eds.),
Toxic Cyanobacteria in Water. World Health Organization. E and FN Spon, Lon-
don and New York, pp. 41–110.

uda, S., Watanabe, M.M., Otsuka, S., Mahakahant, A., Yongmanitchai, W.,
Nopartnaraporn, N., Liu, Y., Day, J.G., 2002. Taxonomic revision of water-bloom-
ica 41 (2011) 167–173 173

forming species of oscillatorioid cyanobacteria. Int. J. Syst. Evol. Microbiol. 52,
1577–1595.

Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary
Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24, 1596–1599.

Temponeras, M., Kristiansen, J., Moustaka-Gouni, M., 2000. Seasonal variation in
phytoplankton composition and physical–chemical features of the shallow Lake
Doirani, Macedonia, Greece. Hydrobiologia 424, 109–122.

Thomazeau, S., Houdan-Fourmont, A., Couté, A., Duval, C., 2010. The contribution of
sub-saharan African strains to the phylogeny of Cyanobacteria: focusing on the
Nostocaceae (Nostocales, Cyanobacteria). J. Phycol. 46, 564–579.

Urbach, E., Scanlan, D.J., Distel, D.L., Waterbury, J.B., Chisholm, S.W., 1998. Rapid
diversification of marine picophytoplankton with dissimilar light-harvesting
structures inferred from sequences of Prochlorococcus and Synechococcus
(Cyanobacteria). J. Mol. Evol. 48, 723–739.

Vardaka, E., Moustaka-Gouni, M., Cook, C.M., Lanaras, T., 2005. Cyanobacterial
blooms and water quality in Greek freshwaters. J. Appl. Phycol. 17, 391–
401.

Valério, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., Tenreiro, R., 2009. Molec-
ular identification, typing and traceability of cyanobacteria from freshwater
reservoirs. Microbiology 155, 642–656.

Wilmotte, A., Herdman, M., 2001. Phylogenetic relationships among the cyanobac-
teria based on 16S rRNA sequences. In: Boone, D.R., Castenholtz, R.W., Garrity,
G.M. (Eds.), Bergey’s Manual of Systematic Bacteriology. The Archaea and the
Deeply Branching and Phototrophic Bacteria, vol. 1, 2nd ed. Springer, New York,
pp. 487–493.

Wilson, A.E., Sarnelle, O., Neilan, B.A., Salmon, T.P., Gehringer, M.M., Hay, M.E., 2005.
Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa
within and among lakes: implications for harmful algal blooms. Appl. Environ.
Microbiol. 71, 6126–6133.

Yoshida, M., Yoshida, T., Satomi, M., Takashima, Y., Hosoda, N., Hiroishi, S., 2008.

Intra-specific phenotypic and genotypic variation in toxic cyanobacterial Micro-
cystis strains. J. Appl. Microbiol. 105, 407–415.

Zwart, G., Kamst-van Agterveld, M.P., van der Werff-Staverman, I., Hagen, F.,
Hoogveld, H.L., Gons, H.J., 2005. Molecular characterization of cyanobacterial
diversity in a shallow eutrophic lake. Environ. Microbiol. 7, 365–377.


	Morphological and molecular analysis of bloom-forming Cyanobacteria in two eutrophic, shallow Mediterranean lakes
	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgements
	Supplementary data
	References


