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Abstract--Fuzzy multistage derision processes are normally modelled and solved via fuzzy dynamic 
programming aigorithm$. We first review the field and present a branch and bound type alternative 
due to Kacprzyk. We next rectify some computational errors in Kacprzyk's example and show some 
examples from environmental damage reduction planning studies where the algorithm is applicable 
and efficient. 

1. INTRODUCTION 

What is now known as a fuzzy decision process with the system under control, the goals, decisions, 
and constraints defined over fuzzy sets, may be formally stated as follows: 

Given a set of X - {x} of alternatives; a fuzzy goal G and a fuzzy constraint C, all defined 
over X, i.e., G C X and C C X, then the fuzzy decision D defined also over the space X is 
simply the intersection of goals and constraints, i.e., 

D = GCIC.  (1) 

Another way to represent (1) in terms of its membership function pz)(x) is 

= ^ = (2 )  

An optimal policy is a sequence of controls which optimizes the value of the membership function. 
In a completely fuzzy system operating in a fuzzy environment, we may assume that the 

usual system descriptors of state, decision, transformation and return functions as well as the 
termination time are fuzzified. For such a system then, we may expect the usual issues and 
questions normally discussed in their non fuzzy analogs to be of concern. Indeed, they have been 
raised by various authors such as Esogbue and Ramesh [1], Kacprzyk [2-3], Stein [4], Esogbue 
and Bellman [5], Baldwin et al. [6], etc. The seminal work by Bellman and Zadeh [7] provides 
the foundation for all work in this area. 

2. FUZZY MULTISTAGE DECISION PROCESSES 

A review of processes of this genre is provided by Esogbue and Bellman [5] with an update 
emphasizing applications by Kaeprzyk and Esogbue [8]. Briefly and for simplicity, let us for 
the moment focus attention on the following time-invariant, finite-state deterministic automaton 
A = { U , X , f } ,  where U = { a l , ~ 2 , . . . , ~ m } , X  = {~rl,o'2,-..,(rn} are finite sets known as the 
input (control), and state spaces respectively, and f : X x U ---* X. The temporal evolution of A 
is described by the state equation 

xt+x = f ( ( x t , u , ) ) ,  t = O, 1 , . . . , N -  1, (3) 
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where x0 E X is the initial state and N is the final or termination time which we assume to be 
fixed. 

Let us assume that  Vt, 3 i) a fuzzy constraint C t C U characterized by a membership function 
#t(ut) ,  and ii) a fuzzy goal G p C X.  Given an initial state X0, we are interested in finding a 
maximizing decision via dynamic programming. 

We can at once express the decision, a decomposable fuzzy set in U x U x . . .  x U as 

R -  C O n C  1 n . . . f l e  N - 1  FIG N, (4) 

where ~lv is the fuzzy set in U x U x . . .  x U which induces G p in X.  In terms of membership 
functions, we have 

#D(UO, U l , . . . , U p - l )  = m i n ( # c o ( U o ) ) # c X ( u l ) , . . .  ,i.tClV-a(UN--1),I.tGN(ZN)), (5) 

where XN is expressible as a function of x0 and U o , . . . ,  u p _  1. 

We may rephrase the problem as: find the sequence of inputs uo, . . . ,  UN-1 which maximizes 
/~D of (5), The solution may be conveniently expressed in terms of r t ,  the policy function with 

Ut = ~rt(:et), t = O, 1 , 2 , . . . , N -  1. 

Dynamic programming may then be employed to obtain both the r t  and the maximizing decisions 
UoM,... ,  uM_I. More specifically, this reduces to 

(v0U, . . . ,  uZ ) = max max(#o(uo) A . . .  A #p-2(up- : , , )  
t~O)... ) U N ~ 2  f l N - - I  

^ ^ (6) 

Now, if 7 is a constant and g is any function of UN_l , we have the identity 

max('}, A g(UN-1)) = 7 A m a x  g ( u N - 1 ) .  
UN--1  U N ~ I  

Consequently, (6) may be rewritten as 

#D(UoM,...,uM_I)= max (#o(Uo) A...A#N-2(UN-2)A#G','-,(ZN-1)), (7) 
UO). . . )UN-- 1 

where 

= ^ (8) 

may be regarded as the membership function of a fuzzy goal at time t = N - 1 which is induced 
by the given goal G N at t ime t = N. 

On repeating this backward iteration, which is a simple instance of dynamic programming, we 
obtain the set of recurrence equations 

p a N - , ( Z N - - ~ )  = maX(#(UN_,)  A #aN-~ + ~ (zN-v+ l ) ,  
UN--~  

XN-v+I  ---- f ( X N - v ,  U'N-v),  V -- 1 , . . . ,  N ,  
(9) 

which yield the solution to the problem. Thus, a maximizing decision u M , . . .  ,UN_ 1 M  is given by 
the succesive maximizing values of up_~ in (9), with Up_~U defined as a function of 
X N - , ~ , v  = I , . . . , N .  
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3. A B R A N C H  AND BOUND A L G O R I T H M  FOR  T H E  
FUZZY DECISION P R O B L E M  

The fuzzy dynamic program presented in the foregoing, as well as its various variants, has 
applications in many real life situations. For example, its use in resource allocation and scheduling 
are well documented in [5] and recently in [8]. The solution approaches proposed for such models 
include variations of dynamic programming algorithms, branch and bound procedures, and hybrid 
dynamic programming-branch and bound algorithms. In the sequel, we sketch aspects of one such 
branch and bound algorithm proposed by Kacprzyk [2] for the multistage fuzzy decision problem. 

Consider a fuzzy multistage decision problem such as was described in Section 2. The system 
under control may be represented as a conditioned fuzzy set whose membership function is given 
by 

~x,+,(~,+l I z,, uO 
The system's dynamics is then governed by 

ux,+,0',+l) = m~{ux,(~ , )  ^ ux,+,0',+l I ~'t, u,)}, 

jux,+~(xt+2) = ma, x{max{px,(xt) A/tx,+, (Xt+l I ~,, u,)} ^ ux,+,(xt+21 x,+l, u,+l)}, 

(10) 

(11) 

and, in general, 

IJX,+,, (at+n) = max ( max (... {max Ux, (at) A I.tx,+l (xt+l I x,, ut) 

A ]./X,+.,(.'g$+2 I "g$+1, Ut+I) A . . .  }) A UXt,+,~ (Xtarn I "Tt+n--1, Ut+n-1)) .  
(,2) 

If both the state and control spaces are finite, then (10)-(12) can be written more compactly. 
Let M(ut) denote a matrix whose (i,j) element is given by 

M~(ut) =~x, (~ ,  I~j,ut), u, e u, (13) 

and ~t+l and ~t denote the column vectors whose i-th elements are px,+l(xt+l) and px,(xt),  
respectively, evaluated at Xt+l and xt equal to zl, for i = l, 2 , . . . ,  max number of states, say n. 

Rewriting equation (13) in matrix terms results in 

Xt+l =M(ut)$t, (14) 

with M(ut) ~,, the max-min matrix product of M(ut) and ~t. In general then, 

xt+n -M(u,+n-1)M(ut+n-2)...M(ut)$t. (15) 

We will make use of these operations when illustrating the hybrid dynamic programming 
branch-and-bound technique with an example. 

Recall that the objective of the decision making problem is to seek the sequence of inputs 
u~, u~, . . . ,  U~v that will yield the maximal membership functions. Thus, we need to find 

PD (Ul, U~,..., U~) = max{min{~c, (u,) Pa' (x l ) , . . . ,  pcN(UN)pON(XN)}}, 
Ui~$1 

for i =  1 , 2 , . . . , N .  (16) 

It is assumed that at each stage { a fuzzy goal G i with membership function pG~(xi) is set, 
and the aim of the control ui is to return the state of the system xi as close as possible to a 
predetermined one given by G i. As a measure of the closeness between XN and G N. we may use 
the relative distance d(XN, G N) between the two fuzzy sets: 

I . x , ( ~ , ) - . ~ , ( x , ) 0 '  (17) 
i=1 
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where n is the number of all possible states that the system can be in. Note further that the 
#~N(x) in equation (16) is given by gVN(x) = 1 - d(XN, GN). 

Let the set of controls be U = {al,a2, . . .  ,am}. The decision process can conveniently be 
represented by a decision tree whose root is the initial state of the system X0. The edges are 
associated with the particular values of the controls applied while the nodes are associated with 
subsequent states attained. Let Xkz,n...~ denote the state of the system attained at stage k from 
state X0 through the sequence of controls ah am, . . . ,  aw. 

Now consider a general case where we have N goals and N constraints. Let the sequence 
ul, u2 , . . . ,  UN be called a decision, while the subsequence ul, u2 , . . . ,  ul, i _< N, the partial decision 
at stage i, be denoted by di. Correspondingly, let the value of equation (16), which is also its 
grade of membership in the fuzzy decision D, be called the value of the decision ul, u2 , . . . ,  uN. 
Similarly, let the membership function value of the partial decision be the following equation 

vi = vi(di) = #c,(uD/aa,(zD A. . .  A Pc'(ui) PCi(zD. (18) 

For the value of the partial decision at stage i, but without considering the fuzzy goal G i at 
this stage, the value v~ is given by 

v~ = v~(di) =/~C,(Ul)/~a,(=l) A. . .  A PC'(Ui). 

The problem is to determine a maximizing decision, i.e., the partial decision dN with the best 
membership function value in equation (16). 

The principial idea of the method is based on the following property: 

For k <  m min{/~cl (ul)/~a, (xl ) , . . . ,  Pc" (uk)/~G" (xk)} 
_> min{/~c, (ua)/~G,(xl),. . . ,  pc,, (um) pa,-(Xm)}. 

(2o) 

We branch via the controls applied at particular control stages and we bound as follows: 
At the k-th control stage, we add that control that will maximize the fuzzy decision function 

at that stage. 
If we consider consecutively partial decisions at successive stages i = 1,2, . . .  ,N, we should 

take into account only those found so far that have the highest value. We note that both vi and 
v~ are monotone nonincreasing functions of increasing i. Thus, we apply only to the best partial 
decision a further control and proceed to a future state, obtain a new partial decision, compute 
its value and compare it with the existing one, choosing only for further considerations, the one 
with the highest value. The process is terminated when we obtain a complete decision d with 
value greater than all those considered so far. Evidently, it need not be unique. 

4. COMPUTATIONAL ASPECTS 

Kacprzyk considers two versions of this problem. The first version considers N fuzzy constraints 
with the fuzzy goal applied only at the N-th stage. The second one considers N fuzzy goals. In 
the first example, the maximizing decision was unique. In the second example with three goals, 
two decisions, i.e., (a2,a3, al) and (a2,a3, a2) were obtained. Note that in each example, the 
same fuzzy matrix is applied to all stage transitions. Although this illustrates the nonuniqueness 
of this solution, the wrong solution was obtained. We will show that computational errors in 
Kacprzyk's example can be avoided by a correct application of the algorithm. 

Suppose we have a multistage decision process with N fuzzy constraints as well as N fuzzy goals. 
Following the foregoing model, let the state of the system be given by X = {al, a2 , . . . ,  as}, while 
the controls are U = {al, a~, as}. Let the system under control be equated with a conditioned 
fuzzy set: /zx,+l(zi+l [ xi, ui). Thus, we have at each stage five possible states and three possible 
controls that can be applied. Consider the following three matrices M(al),  M(a2) and M(a3) as 
required by equation (13) which show, for each of the three controls U(al, a2, a3), the membership 
functions for possible limitations from xi to ~i+1 for each of the various stages. 
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M T ( a l )  

~ri+l 

x i  

o'1 

0" 2 

63 

O" 4 

65 

t$ -" tl 1 

0"1 62 63 64 65 

1 0.I  0.9 0. I 0.2 

0.8 0.5 0.7 0.3 0.5 

0.7 0.9 0.5 0.5 0.7 

0.5 0.7 0.7 0.3 0.4 

0.2 0.3 0.9 0.7 0.3 

M r ( a 2 )  

$i+1 

ari 

61 

62 

63 

64 

65 

61 O'2 63 64 65 

0.3 0.9 1 0.4 0.6 

0.5 0.7 0.5 0.2 0.3 

0.8 0.5 0.3 0.5 0.2 

0.9 0.7 0.7 0.9 0.5 

0.7 0.9 0.7 1 0.7 

M l ' ( a 3 )  

a~i.l-1 

61 

62 

~r 3 

64 

G5 

U--O,3 

61 62 63 ~4 

0.5 0.7 0.7 1 0.7 

0.7 0.8 0. I  0.5 0.9 

0.8 0.1 0.2 0.3 1 

0.9 0,2 0.3 0.5 0.8 

1 0.5 0.4 0.7 0.4 

In addition to the foregoing, we are provided the following data on the system 
i) fuzzy initial state 

X0 = 0.1/0.1 + 0.2/0.2 + 0.3/0.3 + 0.7/0.4 + 1/0.5, 

ii) the fuzzy constraints 
C 1 = 0.3/al + 0.7/a2 + 1/a3, 

C 2 -" O.~,/al + 1~as + 0.7/a3, 
C 3 = 1/al + 0.8/a2 + 0.6/a3, 

and iii) the fuzzy goals 

G I = 0.7/0.1 + I/0.~ + 0.7/0.s + 0.4/0.4 + 0.1/0.5, 

G 2 = 0.2/0.1 -4- 0.5/0.~ + 0.7/0.3 + 0.8/0.4 -4- I10.a, 

G s = 0.4/0.1 + 0.7/0.~ + 1/0.3 + 0.7/0.4 + 0.4/0.5, 

We can now perform our computations to determine the optimal control policy. Starting from 
X0 and applying controls al, as, as we obtain, using equations (18) and (19), 

v (aa) = 0.3,  

vi(a ) = 0.7,  

= 1. 

Thus, working backwards we consider a3 and proceed to calculate Xla,/z~t and vl(a3). The 
result is 

XIs - 1/0.1 + 0.5/0.~ + 0.4/0.3 + 0.7/0"4 + 0.7/¢5, 
1 

I ~  = 1 - d(X13, G I) = 1 - ~ (0.3 + 0.5 + 0.3 + 0.6) = 0.6, 

and vl(as) = 1 A 0.6 = 0.6 (from equation 18). 



122 A.O. ESOGBUE 

Next, we consider a2 and proceed to Xls  given by 

Xt2 : 0.7/o.i + 0.9/o.s + 0.7/o.s + i/o.4 -4- 0.7/o.5. 

As before, pC, and vl(as) are computed as 

i (0.I -4- 0.6 + 0.6) - 0.74, I.t~ : 1 - d(X12,G 1) = 1 - -g 

and vl (as)  = 0.7 A 0.74 = 0.7. 
Thus, we start  from Xt2 and applying at ,  as, as we obtain the values of the partial decisions. 

v~(a2,al)  : 0.7 A 0.5 : 0.5, 

v'2(as, as) = 0.7 ^ 7 = 0 .7 ,  

v~(as, as) ---- 0.7 A 0.7 -- 0.7. 

We next  proceed to compute X22s and Xs2a. These are given, respectively, by 

Xs22 = 0.9/o'1 + 0.7/o.9. + 0.7/o'3 + 0.9/o'4 + 0.7/a5, 

Now for Xs2s, 

and for Xss3, 

X2ss = 0.9/o.1 -4- 0.8/o.s + 0.7/o.s + 0.7/o.4 -t- 0.9/o.5, 

1 
/Jd2 = 1 - d(X22s, G 2) = 1 - ~ (0.7 + 0.2 + 0 + 0.1 + 0.3) = 0.74, 

1 
I.t~2 = 1 - d(X22s, G s) - 1 - ~ (0.7 + 0.3 + 0 + 0.1 + 0.1) = 0.76, 

while v2(as, a2) = 0.7 A 0.74 = 0.7 and vs(a2, as) = 0.7 A 0.76 = 0.7. 
We may now compute the values of the partial decisions as done previously. Thus we start  

from Xsss and applying al ,  as, as we obtain 

v~(a2, as, al)  = 0.7 A 1 = 0.7, 

vta(a2, as, as) = 0.7 A 0.8 = 0.7, 

v'3(a2, as, as) = 0.7 h 0.6 = 0.6, 

v~(a2, as, al)  - 0.7 A 1 ---- 0.7, 

v~(a2, as, as) = 0.7 A 0.8 = 0.7, 

v~(a2, as, as) = 0.7 A 0.6 = 0.6. 

Finally, we proceed to compute X323a, X3sss, Xss31 and X3~3s respectively as 

Xa221 = 0.9/ai + 0.7/o.2 + 0.9/o.a + 0.7/o.4 + 0.7/o.5, 

Xa22s - 0.9/o.t + 0.9/o.2 + 0.9/o.3 + 0.9/o.4 + 0.7/o.5, 

Xss31 = 0.9/o.1 + 0.7/o.s + 0.9/o.s + 0.7/0"4 + 0.7/o.5, 

Xsss2 = 0.7/o.1 + 0.91o.2 + 0.9/o.s + 0.9/o.4 + 0.7/o.5. 

At this stage, we need to find/~as and vs for Xs221,Xs22~,Xs231 and Xa23s 

for X32Sl, 

for X322s, 

for Xs~31, 

for X323s, 

tt#s = 1 - d ( X 3 2 2 1 ,  G 3 )  " -  0.82 

I.t#3 = 1 --d(X3222,G 3) = 0.74 

##s = 1 - d(X3~31, G 3) = 0.82 

i.t~s = 1 - d(Xz2ss, G 3) = 0.78 

and v3(a2,a2,al)  = 0.7 A 0.82 = 0.7, 

and v3(a2, as, as) = 0.7 A 0.74 = 0.7, 

and va(a2, a3, al)  = 0.7 A 0.82 = 0.7, 

and vs(a2, a3, a2) = 0.7 A 0.78 = 0.7. 

Since there is no other partial  decision with higher value, these four (a2, a2,al) ,  (a2, as, as), 
(a2, as, al)  and (a2, as, as) are the maximizing ones. 

We note that  in this example the four values are equal in contrast to the two obtained by 
Kacprzyk. As correctly pointed out by Kacprzyk, however, the solutions need not be unique. 
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5. A P P L I C A T I O N S  TO D I S A S T E R  C O N T R O L  P L A N N I N G  

The algorithm proposed by Kacprzyk, which has been illustrated in the foregoing, can be 
modified and used in conjuction with s model for optimal disaster control planning. Two examples 
are instructive---one from earthquake damage and the other from flood damage control planning 
studies. We present two examples from flood control illustrating scenarios where the policy is 
unique and non unique, respectively. 

In both examples, we have a fuzzy state of flood damage representing five levels: no damage, 
slight damage, moderate damage, severe damage and disastrous damage. The decision space 
concerns three investment levels for each of the three flood control measures (structural and/or  
non-structural). These measures represent the three stages of the model. There are three fuzzy 
goals, different for each control measure, and expressed in terms of membership functions. Sim- 
ilarly, we have three fuzzy constraints, expressed in terms of membership functions, for each 
measure. Additionally, we are given the membership function for the fuzzy initial state. The 
problem is to determine the optimal combination of controls or measures together with the asso- 
ciated funding levels to put in place, so as to minimize the damage levels due to incipient floods. 
We state parenthetically, that  fuzzy set theory is used to model these systems because usually 
the damage levels and goals can not be stated precisely in such disaster control systems. 

Note that  we have the same fuzzy initial state and the same goal for the first measure, in the 
two examples but different goals and constraints for the other measures in the two examples. 
The first example led to a single unique optimal decision solution while the second generated two 
optimal solutions. The examples and computations are given below. 

Example 1: A problem with only one optimal solution. 

STATE SPACE: the flood damage level 
{no, slight, moderate, severe, disastrous} 
DECISION SPACE: the investment level for the measures 
{low, medium, high} 
*********************************************************************************** 

( 1 ) The Membership Function of Initial State: 

X0 = 0.1/no + 0.4/slight + 0.7/moderate + 1.0/severe + 0.8/disastrous 

( 2 ) The Membership Function of Goal State: 

G1 = 0.4/no + 0.6/slight + 0.6/moderate + 0.7/severe + 0.5/disastrous 
G2 = 0.7/no + 0.8/slight + 0.5/moderate + 0.4/severe + 0.2/disastrous 
G3 = 1.0/no + 0.7/slight + 0.4/moderate + 0.1/severe + 0.0/disastrous 

( 3 ) The Membership Function of Constraint For Measures: 

C1 = 0.35/1ow + 0.85/medium + 0.60/high 
C2 = 0.25/low + 0.50/medium + 0.75/high 
C3 = 1.00/low + 0.70/medium + 0.40/high 

( 4 ) The Fuzzy Transform Matrix: 

T1 (low) = 
0.3 0.8 0.5 0.3 0.1 
0.2 0.3 0.8 0.5 0.3 
0.1 0.2 0.3 0.8 0.5 
0.0 0.1 0.2 0.3 0.8 
0.0 0.0 0.1 0.2 0.3 

T1 (meaiun~) = 
0.6 0.9 0.4 0.1 
0.1 0.6 0.9 0.4 
0.0 0,1 0.6 0.9 
0.0 0.0 0.I 0.6 
0.0 0.0 0.0 0.1 

0.0 0.4 

0.I 0.3 

0.4 0.2 

0.9 0.1 

0.6 0.0 

TZ (~sh) = 
0.s 0.8 0.2 0.1 
0.4 0.6 0.8 0.2 
0.3 0.4 0.6 0.8 
0.2 0.3 0.4 0.6 
0.1 0.2 0.3 0.4 
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T2 (low) = 

0.4 0.7 0.5 0.3 0.I  

0.3 0.4 0.7 0.5 0.3 

0.2 0.3 0.4 0.7 0.5 

0.I  0.2 0.3 0.4 0.7 

0.0 0.1 0.2 0.3 0.4 

T3 (low) = 

0.3 0.7 0.6 0.4 0.2 

0.2 0.3 0.7 0.6 0.4 

0.1 0.2 0.3 0.7 0.6 

0.0 0.1 0.2 0.3 0.7 

0.0 0.0 0.1 0.2 0.3 

T2 (medium) = 

0.5 0.8 0.4 0.2 0.I  

0.3 0.5 0.8 0.4 0.2 

0.I  0.3 0.5 0.8 0.4 

0.0 0.1 0.3 0.5 0.8 

0.0 0.0 0.1 0.3 0.5 

T3 (medium) = 

0.7 0.9 0.3 0.2 0.0 

0.4 0.7 0.9 0.3 0.2 

0.1 0.4 0.7 0.9 0.3 

0.0 0.1 0.4 0.7 0.9 

0.0 0.0 0.1 0.4 0.7 

T2 ( ~ )  = 

0.5 0.6 0.8 0.4 0.I  

0.3 0.5 0.6 0.8 0.4 

0.2 0.3 0.5 0.6 0.8 

0.1 0.2 0.3 0.5 0.6 

0.0 0.1 0.2 0.3 0.5 

T3 ( ~ g h )  = 

0.3 0.6 0.9 0.2 0,I  

0.2 0.3 0.6 0.9 0.2 

0.2 0.2 0.3 0.6 0.9 

0.1 0.2 0.2 0.3 0.6 

0.0 0.1 0.2 0.2 0.3 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

S O L U T I O N :  

s tage  1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

v l '  (low) = 0.35 

v l  I (medium)  = 0.85 *** 

v l '  (high) = 0.60 

X l m  -- 0 .4 /no  + 0.7/sl ight  4- 0 .9 /modera te  + 0.8/severe + 0 .6 /disas t rous  

1 . 0 -  D [ X l m , G I ]  - 1.0 - [ 0.0 + 0.i  4- 0.3 4- 0.1 4- 0. i  ] / 5 = 0.88 

v l  (medium)  = 0.85 A 0.88 = 0.85 

s tage  2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

v2'  (low) = 0.25 ^ 0.85 = 0.25 

v2 ~ (medium)  = 0.50 A 0.85 = 0.50 

v2 '  (high) = 0.75 A 0.85 = 0.75 *** 

X 2 m h  = 0 .8 /no  + 0.8/sl ight  + 0 .6 /modera t e  + 0.6/severe + 0 .5 /disas t rous  

1 .0 -  D[X2mh,G2]  = 1.0 - [ 0.1 + 0.0 + 0.1 + 0.2 + 0.3 ] / 5 = 0.86 

v2 (high) = 0.75 A 0.86 = 0.75 

s tage3 - - , , - ,~ , ,~  . . . .  -,,~,~ . . . . . .  , ,~- , ,  . . . . . .  ,,,,,~,~ . . . . . . . . . . . . .  ~ - , ,~  . . . .  

v3'  (low) = 1.00 A 0.75 = 0.75 *** 

v3'  (medium)  = 0.70 A 0.75 = 0.70 

v3'  (high) = 0.40 A 0.75 = 0.40 

X3mhl  = 0 .7 /no  + 0.6/sl ight  + 0 .6 /modera t e  + 0.5/severe + 0 .3/disas t rous  

1.0 - D[X3mhl,G3] = 1 .0 -  [ 0.3 + 0.1 + 0.2 + 0.4 + 0.3 ] / 5 = 0.74 

v3 (low) = 0.75 A 0.74 = 0.74 

T h e  opt imal  solution is thus [medium, high, low]. 
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Example 2: A problem with two optimal solutions. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

STATE SPACE: the flood damage level 
{no, slight, moderate,  severe, disastrous} 
DECISION SPACE: the investment level for the measures 
{low, medium, high} 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

( 1 ) The Membership Function of Initial State: 

X0 = 0.1/no + 0.4/slight + 0.7/moderate + 1.0/severe + 0.8/disastrous 

( 2 ) The Membership Function of Goal State: 

G1 = 0.4/no + 0.6/slight + 0.6/moderate + 0.7/severe + 0.5/disastrous 
G2 = 0.9/no + 0.7/slight + 0.5/moderate + 0.3/severe + 0.1/disastrous 
G3 - 1.0/no + 0.8/slight + 0.4/moderate + 0.1/severe + 0.0/disastrous 

( 3 ) The Membership Function of Constraint for Measures: 

C1 = 0.45/low + 0.85/medium + 0.65/high 
C2 = 1.00/low + 0.80/medium + 0.60/high 
C3 = 0.50/low + 0.70/medium +4- 0.90/high 

( 4 ) The Fuzzy Transform Matrix: 

T 1  (low) = 

0.3 0.8 0,5 0.3 0.1 

0.2 0.3 0.8 0.5 0.3 

0.1 0.2 0.3 0.8 0.5 

0.0 0.1 0.2 0.3 0.8 

0.0 0.0 0.1 0.2 0.3 

T2 (low) = 

0.4 0.7 0.5 0.3 0.1 

0.3 0.4 0.7 0.5 0.3 

0.2 0.3 0.4 0.7 0.5 

0.1 0.2 0.3 0.4 0.7 

0.0 0.I  0.2 0.3 0.4 

T3 (low) = 

0.3 0.7 0.6 0.4 0.2 

0.2 0.3 0.7 0.6 0.4 

0.1 0.2 0.3 0.7 0.6 

0.0 0.I  0.2 0.3 0.7 

0.0 0.0 0.1 0.2 0.3 

T1 ( m e , u r n )  = 

0.6 0.9 0.4 0.I 

0.1 0.6 0.9 0.4 

0.0 0.1 0.6 0.9 

0.0 0.0 0.1 0.6 

0.0 0.0 0.0 0.1 

T2 ( m e ~ u m )  = 

0.5 0.8 0.4 0.2 

0.3 0.5 0.8 0.4 

0.1 0.3 0.5 0.8 

0.0 0.1 0.3 0.5 

0.0 0.0 0.1 0.3 

T3 ( m e ~ u m )  = 

0.7 0.9 0.3 0.2 

0.4 0.7  0.9 0.3 

0.I 0.4 0.7 0.9 

0.0 0.1 0.4 0.7 

0.0 0.0 0.1 0.4 

0.0 0.4 

0.1 0.3 

0.4 0.2 

0.9 0.1 

0.6 0.0 

0.I  0.5 

0.2 0.3 

0.4 0.2 

0.8 0.I 

0.5 0.0 

0.0 0.3 

0.2 0.2 

0.3 0.2 

0.9 0.1 

0.7' 0.0 

T1 ( ~ )  = 

0.6 0.8 0.2 0.1 

0.4 0.6 0.8 0.2 

0.3 0.4 0.6 0.8 

0.2 0.3 0.4 0.6 

0.1 0.2 0.3 0.4 

T2 ( ~ g h )  

0.6 0.8 0.4 0.1 

0.5 0.6  0 .8  0.4 

0.3 0.5 0.6 0.8 

0.2 o.s  0.5 0.6 

O.l 0.2 0.3 0.5 

T3 ( ~ g h )  = 

0.6 0.9 0.2 0.1 

0.3 0.6 0.9 0.2 

0.2 0.3 0.6  0.9 

0.2 0.2 0.3 0.6 

0.1 0.2 0.2 0.3 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SOLUTION: 
stage 1 , , , ~ , , ~ , ~ ' , , ~  . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
vl I (low) = 0.45 
vl I (medium) = 0.85 *** 
vl r (high) = 0.65 

X l m  = 0.4/no -{- 0.7/slight + 0.9/moderate + 0.8/severe + 0.6/disastrous 
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1.0 - D[Xlm,G1] = 1.0 - [ 0.0 + 0.1 + 0.3 + 0.1 + 0.1 ] / 5 = 0.88 

v l  (medium) = 0.85 A 0.88 = 0.85 

stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

v2'  (low) = 1.00 A 0.85 = 0.85 *** 
v2' (medium) = 0.80 A 0.85 -- 0.80 ** 
v2' (high) = 0.60 A 0.85 = 0.60 

X2ml -- 0.7/no + 0.7/slight + 0 .7 /modera te  + 0.6/severe + 0.4/disastrous 

1.0 - D[X2ml,G2] = 1.0 - [ 0.2 + 0.0 + 0.2 + 0.3 + 0.3 ] / 5 = 0.80 

X 2 m m  -- 0.7/no q- 0.8/slight + 0 .8 /modera te  + 0.6/severe + O.5/disastrous 

1.0 - D[X2mm,G2] -- 1.0 - [ 0.2 + 0.1 + 0.3 + 0.3 + 0.4 ] / 5 = 0.74 

v2 (low) = 0.85 A 0.80 = 0.80 *** 
v2 (medium) = 0.80 A 0,74 = 0.74 ** 

stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

v3' (low) = 0.50 A 0.80 = 0.50 
v3' (medium) = 0.70 A 0.80 = 0.70 
v3' (high) = 0.90 A 0.80 = 0.80 *** 

X3mlh = 0.7/no + 0.6/slight + 0 .6 /modera te  + 0.4/severe + 0.3/disastrous 

1 .0-  D[X3mlh,G3] = 1 .0-  [ 0.3 + 0.2 + 0.2 + 0.3 + 0.3 ] / 5 = 0.74 

v3 (high) = 0.80 A 0.74 = 0.74 
v31 (low) = 0.50 A 0.74 = 0.50 
v3' (medium) = 0.70 A 0.74 = 0.70 
v3' (high) = 0.90 A 0.74 = 0.74 *** 

X3mmh = 0.8/no + 0.6/slight + 0 .6 /moderate  + 0.5/severe + 0.3/disastrous 

1 .0-  D[X3mmh,G3] = 1 .0-  [ 0.2 + 0.2 + 0.2 + 0.4 + 0.3 ] / 5 = 0.74 
v3 (high) = 0.74 A 0.74 = 0.74 

The  opt imal  policies are thus both [medium, low, high,] and [medium, medium, high]. 

6. D I S C U S S I O N  

Fuzzy decision processes, especially those of the multistage variety, abound in numerous areas 
of real life. Thus,  there is considerable motivation and interest to s tudy them. The classical 
modeling and solution procedure is fuzzy dynamic programming.  However, in certain situations 
a l ternate  solution approaches, such as the modified branch and bound procedure introduced by 
Kacprzyk may be instructive. The algorithm, when correctly applied, is not only efficient in terms 
of computat ional  complexity but  generates opt imal  solutions. The possibility of the existence of 
al ternate op t ima  in the algori thm as illustrated in the preceding examples may be both  a curse 
and a blessing. The advantage lies in the flexibility afforded the decision maker,  while the curse 
may  arise in the added selection problem especially when several op t ima  result. 
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