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Abstract 

Niederreiter generalized the following classical problem of coding theory: given a finite field 
F~ and integers n > k >~ 1, find the largest minimum distance achievable by a linear code over 
Fq of length n and dimension k. In this paper we place this problem in the more general setting of 
a partially ordered set and define what we call poset-codes. In this context, Niederreiter's setting 
may be viewed as the disjoint union of chains. We extend some of Niederreiter's bounds and 
also obtain bounds for posets which are the product of two chains. 

1. Introduction 

Let Fq be a finite field and F~ the vector  space of m-tuples over  Fq. Let n be a positive 
integer. One  of the basic p rob lems  of coding theory [1, 5] is to determine the largest 

integer d such that  there exist n vectors hi ,  h2 . . . . .  h. in F~ every d - 1 of which are 
linearly independent .  Let H be the m by n matr ix  over  Fq whose columns are the 
vectors hi ,  h2 . . . . .  h,. Then H is the par i ty  check matr ix  of a linear code of length n and 
dimension n -  m with min imum distance d. The  p rob lem of determining d was 

generalized by Niederrei ter  [ 2 - 4 ]  as follows. 
Let n~, n I . . . . .  n~ be positive integers and let 

H = {h~i,i): 1 <<, i <~ s, 1 <~j <~ ni} (1) 

be a system of nl + n2 + ... + ns vectors in F~ par t i t ioned into s ordered sets of 
vectors of cardinalities n~,n2 . . . . .  ns, respectively. Define 

d(H)  = min ~ d/, 
i = 1  

where the min imum is extended over  all integers d~,d2 . . . . .  d~ such that  0 ~< di ~< nl 

(1 ~< i ~< s) and ~ =  ~ di is positive, for which the set of  vectors 

{h,,./~: 1 ~< i ~  s, 1 ~ j ~ <  di} 
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is linearly dependent. If there are no such integers dl ,d2 . . . . .  ds (implying that 
nl + n2 + --. + ns ~< m), then d(H) is defined to be nl + n2 + ..- + ns + 1.1 Equiva- 

lently, d(H) equals 1 plus the maximum integer t such that for all partitions of t into 

nonnegative parts t l , t2 ,  . . . , ts with ti <~ ni (1 ~< i ~< s), the vectors {htl.j~: 1 ~< i ~< s, 
1 ~< j ~< tl} are linearly independent. The problem raised and studied by Niederreiter 

is to find, or at least study, the number 

dq(nl, n2 . . . . .  n~; m) = max d(H), 

where the maximum is taken over all systems H of the form (1). If 

nl = n2 . . . . .  n~ = 1, then we have the fundamental problem of coding theory 
described above. 

One can view Niederreiter's problem in the setting of a partially ordered set, 

henceforth abbreviated poset, in the following way. We are given a poset 

P(nl ,n2  . . . . .  n~) = {(i,j): 1 <~ i <~ s, 1 <~ j <~ nl} 

consisting of s disjoint chains N1, N2 . . . . .  N~ of sizes nl, n2 . . . . .  n~, respectively. Recall 
that an ideal I of a poset is a subset of its elements with the property that x e I and 

y < x imply that y e I. An ideal of P(nl ,  n2 . . . . .  ns) is obtained by choosing for each i, 
all elements of Ni at or below a specified element x~ of AT,-. Thus the ideals of size t of 

P(nl ,  n2 . . . . .  n,) are in one-to-one correspondence with partitions t l ,  t2 . . . .  , t, of t for 

which 0 ~< ti ~ n~ for each i = 1, 2 . . . . .  s. We are asked to assign vectors of F~ to the 
elements of the poset P(nl ,  n2 . . . . .  n,) in such a way that the vectors assigned to each 

ideal of size t form a linearly independent set and t is maximum (the number 
dq(nl, n2 . . . . .  n~; m) is then one more than this maximum value). If we take nl = 1 for 

each i, then N~ is a chain with only one element and P(1, 1 . . . . .  1) is a trivial poset in 

which no two elements are comparable, that is, P(1, 1 . . . . .  1) is an antichain. The above 

viewpoint suggests the possibility of extending Niederreiter's problem, and thus the 

fundamental problem of coding theory, to an arbitrary (finite) poset. We first intro- 

duce the idea of a poset metric. 
Let P be an arbitrary poset of cardinality n whose partial order relation is denoted 

as usual by ~<. If A _ P, then ( A )  denotes the smallest ideal of P which contains 

A (since the intersection of ideals is an ideal, ( A )  is the intersection of all ideals of 
P containing A). Consider the vector space F~ of n-tuples over Fq. Without loss of 
generality, we assume that P = {1,2,.. . ,n} and thus the coordinate positions of 
vectors in Fff are in one-to-one correspondence with the elements of P. Let 

x = (xl ,  x2 . . . . .  xn) be a vector in F~. We define the P-weight o f x  to be the cardinality 

we(x) = I(supp(x))l  

of the smallest ideal of P containing the support of x where supp(x) = {i: xi ~ 0}. Note 
that if x' is obtained from x by changing one or more nonzero coordinates to zero, 

In this  case  Niede r re i t e r  defines d(H) to be  m + 1. 
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then it is possible that Wp(X') = wp(x). If x and y are two vectors in F~, then their 

P-distance is 

dp(x, y) = Wp(X - y). 

If P is an antichain, then P-weight and P-distance are, respectively, Hamming weight 
and Hamming distance of classical coding theory. 

Lemma 1.1. I f  P is a poset of  n elements, then P-distance de(",') is a metric on F~. 

Proof. Clearly, P-distance is symmetric and positive definite. To prove that 
dp(x, y) <~ dp(x, z) + dp(z, y) for all x, y and z it suffices to show that P-weight satisfies 
the triangle inequality wl,(x + y) <<. we(x) + wp(y). Since supp(x + y) ~ supp(x) 
supp(y) and since the union of two ideals is also an ideal, we have 

Wp(X + y) <~ I(supp(x)) w (supp(y))l 

~< [(supp(x)) + (supp(y))l 

= Wp(X) + wp(y). [] 

We call the metric de( ", ") on F~ a poset-metric. If Fff is endowed with a poset-metric, 
then we call a subset C of F~ a poset-code. If the poset-metric corresponds to a poser P, 
then C is a P-code. We follow the usual notation of coding theory. Thus if C is linear, 
that is, C is a subspace of F~ of dimension k, then C is an In, k] poset-code. If de is the 
minimum P-distance between distinct codewords of C (if C is linear, this is the same as 
the minimum P-weight of a nonzero codeword), then C is an [n, k, dp] poser-code. Let 
x be a vector in Fq and let r be a nonnegative integer. The P-sphere with center x and 
radius r is the set 

Sp(x; r) = { y ~ F~: de(x, y) <~ r} 

of all vectors in F~ whose P-distance to x is at most equal to r. The number of vectors 
in F~ whose distance to the zero vector is exactly i equals 

1, if i - 0 ,  
~ = ~  (q - l)Jq '-sf21(i ) if i > 0, (2) 

where f2j(i) equals the number of ideals of P with cardinality i having exactly 
j maximal elements. Since de(x, y) = dp(O, y - x), it follows that the number of vectors 
in a sphere of radius r does not depend on its center and equals 

i 

1 + ~ ~ ( q -  1)jqi-jf2j(i). (3) 
i = 1  j = l  

In particular, if q = 2 the number of vectors in a sphere of radius r equals 
i 

1 + E 
i = 1  j = l  
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Example. Let q = 2 and n = 8, and consider the poset P with elements 

{1,2,3,4,5,6,7,8} in which 1 < i for each i = 2,3 . . . . .  8 and these are the only strict 
comparabilities. Let C be the [8, 4, 4] binary code contained in F2 s obtained by adding 

an overall parity check to the [7, 4, 3] binary Hamming code. Then a parity check 
matrix for C is 

H = I J 
1 1 1 1 1 1 1 1 

1 1 1 1 0 0 0 0 

1 1 0 0 1 1 0 0 " 

1 0 1 0 1 0 1 0 

The code C has weight distribution Ao = 1, A4 = 14, A8 = 1, where As is the number 
of codewords with Hamming weight i. 2 

We now consider C to be a P-code. Since 1 < i in P for each i = 2, 3 . . . . .  n, the only 
vector in F s with P-weight equal to 1, is the vector (1,0,0,0,0,0,0,0). Every other 

vector in F2 s with Hamming weight equal to 1 has P-weight equal to 2. Of the 14 

codewords of C with Hamming weight equal to 4, exactly 7 have a 1 in position l. 

Hence the P-weight distribution of C is A(P)o = 1, A(P)4 = 7, A(P)s = 7, A(P)s = 1. 
In particular, the minimum P-distance of C equals 4. The number of vectors in 
a sphere of radius 2 equals 1 + 1 + 2(7) = 16 = 2 4. We claim that the P-spheres of 

radius 2 about distinct codewords c' and c are pairwise disjoint. To show this it 
suffices to assume that c' = 0. Thus c :~ 0 and c has P-weight at least 4. Suppose that 

there exists a vector x e F2 s such that de(O, x) ~< 2 and de(c, x) ~< 2. Thus we(x) ~< 2 and, 
without loss of generality, x = (a, b, 0, 0, 0, 0, 0,0), where a and b are 0 or 1. Then 
wp(c)/> 4 implies that c has l 's in at least two of the positions 3,4 . . . . .  8. But then 

de(c, x) 1> 3, a contradiction. Thus the P-spheres about  distinct codewords are disjoint 
and each contains 2 4 vectors. Since there are 2 4 codewords, the P-spheres of radius 

2 about codewords perfectly cover F2 a. We conclude that C is a perfect code in the 
P-metric! 3 

We now generalize Niederreiter's problem. Let P be a poset with elements 

{1,2 . . . .  ,n}. Let 

H =  (hi: l <~ i <~ n} (4) 

be a system of vectors in Fff indexed by the elements of P. Define de(H) to be the 
minimum positive integer d such that there exists an ideal I of P of size d such that the 

vectors {hi: i~  I} are linearly dependent. If there is no such ideal (implying that 
n ~< m), then de(H) is defined to be n + 1. Since every set of m + 1 vectors in F~ is 

2 We follow the usual practice in coding theory of not listing the Ai which equal 0. 
3 This is in contrast to the classical situation in which the [7, 4, 3] Hamming code is perfect but the extended 
code C is not. 
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linearly dependent, we have de(H) ~< m + 1. Viewing H as a parity check matrix of an 
In, n - m] linear code C, we see that dp(H) is the minimum P-weight of a nonzero code- 
word of C (equivalently, the minimum P-distance distinct between codewords). Let 

dq(P; m) = max dp(H), 

where the maximum is taken over all systems (4). Thus dp(P; m) is the largest minimum 

P-distance attainable by an In, n - m] P-code over Fq. Clearly, dq(P; m) <~ m + 1; 
furthermore, by choosing a system H of nonzero vectors we see that 
dq(P; m) >7 dp(H) ~> 2. Hence 

2 <~ dq(P;m) <~ m + 1. 

Problem. Determine dq(P; m) for different posets P. 

In the next section we discuss perfect codes in certain P-metrics, and in particular 
we show that the extended binary Hamming codes and the extended binary Golay 
code are perfect codes in the P-metric where P is a poset generalizing the poset in 
the preceding example. In the last section we first review the bounds on 

dq(na, n2 . . . . .  n,; m) = dq(P(n 1, n2 . . . . .  ns); m) obtained by Niederreiter and then extend 
some of these bounds. We also discuss bounds on d2(P; m) for another natural poset P. 

2. Perfect P-codes 

Let P be a poset with elements {1,2 . . . . .  n}, and let C be a code in F~" whose 
coordinate positions are indexed by the elements of P. Then C is a perfect P-code 
provided there exists an integer r such that the P-spheres of radius r with centers at the 
codewords of C are pairwise disjoint and their union is Fq". 

We first characterize perfect P-codes in the case that P is a chain. 

Theorem 2.1. Let P be the poset with elements {1, 2 . . . . .  n} where 1 < 2 < ... < n, and 
let C be a code in F~. Then C is a perfect P-code if and only if there exists an integer 
k with 0 <~ k <<. n such that ICI = qk and the set of  all vectors (X,-k+l . . . . .  X,) such that 
(xl . . . . .  X , -k ,  X,-k+ 1 . . . . .  X,) e C for some (xl ,  ..., X,-k) ~ F~-k equals F ft. In particular, 
the linear code Ck of  dimension k consisting of  all vectors (0 . . . . .  O,a,-k+l . . . . .  a,) in 
Fq whose first n - k coordinates equal 0 is a perfect P-code with minimum P-distance 
equal t o n - k +  I. 

Proof. We first show that the codes specified in the theorem are perfect. It follows 
from their defining properties that these codes have cardinality qk and minimum 
P-distance n - k + 1 and that there is a unique codeword with any prescribed last 
k coordinates. Thus each vector (Yl . . . . .  y,) in Fq" is contained in the P-sphere of radius 
n -  k about some codeword of the form (xl . . . . .  X n - k , Y n - k + l , . . . , y n )  , but is not 
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contained in the P-sphere of radius n - k + 1 about  any other codeword. Hence Ck is 
a perfect P-code. 

Conversely, assume that C is perfect P-code. Let r be an integer such that the 

P-spheres of radius r about the codewords of C are pairwise disjoint and their union is 

F~. The P-spheres of radius r have cardinality q~, and hence ICI = qn-,. Let 

Y = (Y l ,Y2  . . . .  , y , )  be a vector in F~. Then there exists a codeword c such that y is in 

Se(c;r) and hence a codeword c of the form c = (cl ,  . . . ,c , ,y~+~, ...,y~). Hence C has 
the form given in the theorem with r = n - k. [] 

In contrast to the previous theorem, we now show that there are no nontrivial 

perfect P-codes if P is a union of two disjoint chains of equal size. 

Theorem 2.2. Le t  n = 2 :  be an even positive integer. Le t  P be the poset  consisting o f  two 

disjoint chains N and N '  o f  the same size :. Then the only perfect P-codes C in F~ are 

C = F~ and C = {x} f o r  each vector x in F~. 

Proof.  Clearly the codes C = F~: and C = {x} are perfect P-codes. We now show that 
there are no other perfect P-codes. Let the elements of N be {1,2, . . . , :} ,  where 

1 < 2 < ... < : ,  and let the elements of  N '  be {1',2', .... : '},  where 1 ' <  2 ' <  ... < : ' .  
Suppose to the contrary that C is a perfect P-code where 1 < ICI < q2t. Let r be the 

integer such that the P-spheres of radius r with centers at the codewords of C are 
pairwise disjoint and cover F 2e. Then 1 ~< r ~< 2:  - 1. 

First assume that r /> :. Let x = (xl  . . . . .  x:,  X r ,  . . . .  x r )  and y = (Yl ,  . . . ,  Y:, Y r ,  . . . .  Yc) 

be any two vectors in F 2t. Then the vector (xl  . . . . .  x : , y r ,  . . . .  Ye') is contained in 
Sv(x; r)ca Se(y;  r). In particular, the P-spheres of radius r about  any two codewords 

overlap. Since I CI f> 2, this contradicts the assumption that C is perfect. 
Now assume that 1 ~< r < : .  We first compute the cardinalities of P-spheres of 

radius r. Let i be an integer with 1 ~< i ~< :.  It follows from (2) that the number of 
vectors whose distance to a given vector x in Fq ~ equals i is 

cti = 2(q - !)q i -1 + (i - 1)(q - 1 ) 2 q  i - 2  = (q - 1)qi-2[( i  + 1)q - i + 1]. 

Hence for each vector x we have 

ISe(x;r)[ = 1 + ~, ~i. 
i= l  

It follows by induction that 

ISp(x;r)l = q ' - t [ r ( q  - 1) + q]. (5) 

Since C is perfect, q2e = I Cll Se(x; r)l. Hence there exists a positive integer j such that 

r(q - 1) + q = qJ. Thus ISe(x;r)l = q,+j-1.  Moreover, 

q J -  q 

q - l '  
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and since r >t 1, we have j >~ 2. Thus r = q(1 + q + ... + qj -2)  ~ 2(j -- 1) ~>j. 
We have 

IC I = q 2 e - r - j + l  = q2(t '-rl+r-(j-  D, 

and since r > j  - 1, it follows that ICI > q2tg-r). By the pigeon-hole principle, there 
exist distinct codewords x = (x l . . . . .  x e , X r , . . . .  x e, ) and y = (YI,--., Y e , Y r , . . . .  Y e' ) such 
that xl = y~ and x~, = Yr for i = r + 1, . . . ,L  Since the vector (Xl . . . . .  xe, y r ,  . . . .  Yr)  

is contained in Sp(x; r) c~ Sp(y;  r), the P-spheres of radius r about the codewords x and 
y overlap, again contradicting the assumption that C is perfect. [] 

We now generalize the example in Section 1 and show that there are simple posets 
P such that the extended binary Hamming codes and extended Golay codes are 
perfect P-codes. 

Theorem 2.3. For  each posi t ive integer n let P~ denote the poset  with elements  

{ 1, 2 . . . . .  n) in which I < i f o r  each i = 2, 3 . . . .  , n and these are the only s tr ict  comparabil-  

ities. Then f o r  each posi t ive integer m the ex tended  binary H a m m i n  0 ~ ( m )  code with 

parameters  [n = 2 m, 2 m - m - 1, 4] is a perfect  P~-code. In  addition, the ex tended  binary 

Golay code G24 with parameters  [24, 12, 8] is a perfect  P24-code, and the ex tended  

ternary  Gola y code G12 wi th  parameters  [12,6, 6] is a perfect  P12-code. 

Proof. The proof that ~ (m)  is a perfect P,-code follows as in the example in Section 1. 
Indeed the spheres of radius 2 about the 22"-m- 1 codewords each contain 2 m÷l 
vectors and are pairwise disjoint, and hence they perfectly cover F 2m. The argument is 
similar for the extended Golay codes. We give the argument only for the ternary 
Golay code. The number of codewords of Gt2 equals 36. Each P12-sphere of radius 
3 contains 

1 + 2 +  2(3)(11)+ 2 2 3 ( 1 2 ) = 7 2 9 = 3 6  

vectors. Let x be a vector whose Pt2-distance to 0 is at most 3. Then at most 2 of 
coordinates 2, 3 . . . . .  12 of x are nonzero. Let c be a nonzero codeword. Since each 
nonzero codeword of G~2 has Hamming weight at least 6, wp,:(x)  >~ 6. Hence at least 
5 of coordinates 2,3,. . . ,  12 of c are nonzero. This implies that dp,~(c,x) >/ 4. We 
conclude that the P12-spheres of radius 3 about codewords are pairwise disjoint, and 
hence G~2 is a perfect P~ 2-code. [] 

3. Bounds for dq (P; m) 

Throughout this section we use the following notation. Let m be a positive integer 
consider the vector space F~ over the finite field F~. Let n l , n 2 , . . . , n ~  be positive 
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integers such that nx >~ nz >>- .. .  >~ n~. If nl + n 2 + . . -  + n~ ~< m, then clearly 

d,~(n~, n2 . . . . .  n~; m) = n~ + n2 + ... + n, + 1. As a result we henceforth assume that  

nl + n2 + ... + ns > m. 

The following basic results are proved by Niederreiter [2]: 

(N1) 2 ~< d q ( n l , n 2 , . . . , n ~ ; m )  <~ m + 1; 
t t t ,  v (N2) dq(nl ,n2 . . . . .  n~,m) <~ dq(n l ,nz  . . . . .  n , ;m)  if ni <~ nl for i = 1,2 . . . . .  s; 

(N3) Let n~ = min {hi, m} for i = 1, 2 . . . . .  s. Then 

dq(n l , n2 . . . . .  ns; m) = dq(n'l , n'2, . . . , n's; m); 

(N4) If  s ~< q + 1, then dq(nl,  n2 . . . . .  n~; m) = m + 1; 

(N5) Assume that m~>2. Let 09., be the smallest 

nl + .." + n~,m >~ m. I f s  >~ q + max{to,,,2}, then 

(6) 

dq(nl ,n2 . . . . .  n~;m) <~ m. 

integer such that 

In addition, using construct ions based on linear recurrence relations, Niederreiter [3] 

obtained lower bounds  for dq(n~, n 2 , . . . ,  n,; m) and also obtained the following results: 

(N6) If  m / > 2  and s ~ < ( q ' - l ) / ( q - 1 ) ,  then d,~(nl,n2 . . . . .  n~;m) l>3, and if 

s > (q" - 1)/(q - 1), then dq(nl,  n2 . . . .  , n , ;m)  = 2; 
(N7) Assume that q + 2 ~ s ~< ( q " -  1)/(q - 1). Ifn~ > ~ m + 2 -  Llog~((q- 1 ) ( s -  1) + 1)_J, 

then 

d,~(nl,n2 . . . . .  ns;m) ~< m + 2 - [_logq((q - 1)(s - 1) + 1)]. 

If nl ~< m + 1 - Llogq((q - 1)(s - 1) + 1)J, then 

dq(nl ,n2 . . . . .  ns;m)<~ m + 2 - [_logq((q - 1)(s - to., + 1) + 1)]. 

In this section we extend some of  the bounds  given above. In what  follows, for each 

integer j with 1 ~ j ~ <  n~ + ... +n~,  toj denotes the smallest integer t such that 

nl + . . . + n t > ~ j .  
Let H = {h,,~; 1 ~< i ~< s, 1 ~< j ~< ni} be a system of vectors in F~. The vector h, .~ 

is assigned to the j th  element of  the ith chain of  the poset P ( n l ,  n2 . . . . .  n~). If  I is an 

ideal P ( n l , n 2  . . . . .  ns), then HI  denotes the set of  vectors from H assigned to the 

elements of I. 

Lemma 3.1. Le t  H = {h,,~): 1 <~ i <~ s, 1 <~ j <~ nl} be a sy s t em o f  n vectors  in F~'. L e t  

r be an integer with 1 <~ r <~ m - 2. Assume  that  tom-,  >~ 2 and that 

s ~ > t o , , _ , + q r + X - q Z + q .  (7) 

Also  assume that  HI is l inearly independent f o r  every  ideal I o f  s ize m -  r o f  

P = P ( n l ,  n 2 , . . . ,  n,). Then there ex i s t s  an ideal J o f  P o f  size m having exac t l y  to, ,_ ,  + r 

max ima l  e lements  such that  Hs is l inearly independent.  
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Proof.  Let u = (m - r) - ~ = ~ l  r- x ni. The set 

I = {(i,j): 1 ~ i < ~om-r, 1 ~ j  ~ n,} u {(09m-~,j): 1 ~ j  ~ U} 

is an ideal of  P of  size m - r, and hence HI is linearly independent. Let bf = h,.,,~ for 

I ~< i < t~,,_, and b . . . . .  = ht . . . . . . .  ~ be the vectors from H assigned to the maximal 

elements of  I. Let cf = h~i+ . . . . . .  1) (1 ~< i ~< s - tOm-r) be the vectors assigned to the 

minimal elements of the last s -  to,,_, chains of P. We extend HI to a basis 

Ht u {vl , . . . ,vr} of Fq. Let 0f denote the projection of ci onto  the subspace V of  

F~ spanned by {vl . . . . .  v,}. 

We first show that  the number  t of  c~ whose projection 0f is the zero vector is 

at most  q -  1. Assume to the contrary that  t > q -  1. Let i be an integer with 

1 ~ i ~< s - corn_, and suppose that  0f = 0. The set (HI \  {b~})w {ci} is the set of vectors 

assigned to an ideal of size m - r and hence is linearly independent for j  = 1 . . . . .  ~o,,_~. 

Since 0i = 0, it follows that the projection fl~j of c~ onto  b~ is not  zero for each j. Since 

mr,- ,  ~> 2, we may  take j equal to 1 and 2 in turn. Thus cq = flf~/fli2 is defined and 

nonzero.  Since there are only q - 1 possible values for the cq, it follows that  there exist 

k and l such that Ok = 0~ = 0 and C~k = ~z. It follows that  f l t2Ck-  flk2Ct is a linear 

combinat ion  of  the vectors in HI \ {b~, b2 }. Then (HI \ {b l,  b2})u  (Ck, C~} is a linearly 

dependent set of vectors assigned to an ideal of size m - r, a contradiction. Hence 

t < ~ q - 1 .  

We now claim that the set S = {0f: 1 ~< i ~< s - a~.,-r} spans V. Assume the claim is 

false. Since the dimension of V is r, it follows that S is contained in some (r - 1)- 

dimensional subspace of Vand  hence that ISI ~< qr- 1. Consider the cf such that 0i # 0. 

By (7), s - e~,,_~ > q , + l  _ q2 ÷ q _ 1 and since t ~< q - 1, it now follows that the 

number  s - mr,- ,  - t of these c~ is greater than q'+ 1 _ q2. Let U be the subspace of 

F~ spanned by V ~  { b l , b 2 } .  Since there a re  q2 vectors in the subspace spanned by 

{b l ,  bE} and at most  q ' -  ~ - 1 projections of  these c~ into V, it follows that there are at 

m o s t  q2(qr-1 _ 1) = q'+~ - q2 possible projections of these ci into U. We conclude 

that  not  all of these c~ have distinct projections into U. Hence there exist CR and ct with 

k # I whose projections into U are equal. It follows that  CR -- C, is a linear combinat ion  

of  the vectors in/-/i \ {b l, b2 }. Then (H I \ {b l, b2 })LJ {CR, Cl} is a linearly dependent set 

of vectors assigned to an ideal of size m - r, a contradiction. Hence S spans V. 

Let S' be a basis of Vconsist ing of vectors in S. Then H~ = Ht u {ci: Of e S'} is a set 

of linearly independent vectors corresponding to an ideal J of size m having exactly 

m,,_~ + r maximal  elements. 

We now extend Niederreiter 's result (N5) above. We first consider the case q = 2. 

Theorem 3.2. Let  r and m be integers with 0 <~ r <<. m - 2. Assume that 

o9,._r >>- 2r + 2. (8) 
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Also assume that 

Then 

s~> t o ' - a  + 3  

t o ' - r  "4- 2 r + l  - -  2 

/ f  r = 0 ,  

/ f r =  1, 

/f  r >~ 2. 

dz(nl,n2 . . . . .  n s ; m ) ~ m - r .  

(9) 

(10) 

Proof.  I f r  = 0 the result is a consequence of(N5). N o w  assume that  r />  1. Suppose to 

the con t ra ry  that  d2(nl, n2 . . . . .  ns; m) > m - r. Then there exists a system H = {h(~.j): 

1 ~< i ~< s, 1 ~< j ~< n~} of vectors in F~' such that/-/1 is linearly independent  for every 
ideal I of  size m - r of  the poset  P = P(nl ,  n2 . . . . .  ns). It follows f rom (9) that  (7) holds 
for q = 2 and that  

s - tom-, - r ~> 2 (11) 

holds for all r i> 1. By L e m m a  3.1, there exists an ideal J of  P of  size m having exactly 

t o ' _ ,  + r maximal  elements such that  Hs is linearly independent  and thus is a basis of  
F~'. Fo r  ease of  nota t ion  we denote these basis vectors by bl ,  b2 . . . . .  bin. Let 

T = { i :  l ~ < i ~ < s a n d ( i , l ) ~ J }  

be the set of  indices of  the chains which have a nonempty  intersection with J and let 

be the set of  indices of  the remaining chains. Then I TI = tOm-, + r and by (11), 
ITI = s - I T  I/> 2. Let Jmax be the set of  the t o ' _ ,  + r maximal  e l e m e n t s - o f J .  Let 
at = (i, 1) be the minimal  element of  the ith chain of  P (1 ~< i ~< s), and write 

a t=  ~ fl, b~ (i e T). 
I = 1  

Let M be any  subset of  Jmax with IMI = r + 1. Let i e T and consider the ideal 

I = ( J \ M )  u {at} of  size m - r. Thus  HI is linearly independent ,  and it follows that  

fliz ~ 0 for at least one I such that  bt e HM. Since M was an arb i t ra ry  subset of  Jm~x of 
cardinali ty r + 1, it follows that  fl~ = 0 for at most  r values of  I with b~ e Hjma~. Since 

[ TI >/2  there exist distinct e lements j  and k in T, and for any  such j  and k, there exist at 
least IJma~} -- 2r = to,,_, -- r >/ r + 2 values o f / w i t h  bt e Hj,,,~ such that  both  fljz ~ 0 
and flk~ ~ O. Here the last inequality is a consequence of hypothesis  (8). Since we are 

working over  the binary field, it follows that  flit = flk~ = 1 for at least r + 2 indices 
l with bt ~ Hsm,~. Without  loss of generality, fljl = flkt for I = 1, 2 . . . . .  r + 2. We then 
have 

aj - -  ak = ~ (flit - -  flkz)bt. 
/ = r + 3  

It  follows that  {b, + 3 . . . . .  b ' ,  a j, ak} is a linearly dependent  set of  vectors corresponding 
to an ideal of  P of  size m - r, a contradiction.  Hence (10) holds. [] 
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We now obtain the conclusion of Theorem 3.2 for arbitrary q. Note that the 
assumptions of Theorem 3.3 when q = 2 are not identical to the assumptions of 

Theorem 3.2. 

Theorem 3.3. Let  r and m be inteoers with 0 <~ r <~ m - 2. Assume that 

og,,_r >/r + 2. (12) 

Also assume that (7) holds and that 

( 2 r  + 2~ 
s ~> ogre-, + r + \ r +  2 ]  ( q -  1)'+~ + 1. (13) 

Then 

dq(nl ,n  2 . . . . .  n~;m) <~ m - r. (14) 

Proof. The first part of the proof follows closely the first part of the proof of the 
previous theorem. If r = 0 the result is a consequence of (N5). Now assume that r >/1. 
Suppose to the contrary that dq(nl, n2 . . . . .  n~; m) > m - r. Then there exists a system 
H = {h,,j): 1 <~ i<~ s, 1 <~ j <~ nl} of vectors in Fq ~ such that Hs is linearly independent 

for every ideal I of size m - r of the poset P = P(n l ,  n2 . . . . .  ns). It follows from (13) that 

(2r  + 2~ 1)r+ 1 
s -  ~ o , , - r -  r > \ r + 2 ] (q  - (15) 

holds for all r/> 1. By Lemma 3.1, there exists an ideal J of P of size m having exactly 
~, ,_,  + r maximal elements such that Hs is linearly independent and thus is a basis of 
F~'. For ease of notation we denote these basis vectors by bl, b2 . . . . .  b~. Let 

T =  {i: 1 ~< i~< s and (i, 1) E J} 

be the set of indices of the chains which have a nonempty intersection with J and let 
be the set of indices of the remaining chains. Then I TI = o~._, + r and by (15), 

/ 2 r  + 25 1),+ 1. 
I ] P I = s - I T I  > ~ r + 2 ) ( q -  

Let Jmax be the set of the mm-r + r maximal elements of J. By (12), [Jmaxl >/2r + 2, and 
we fix a subset K of Jm,x of cardinality 2r + 2. Let ai = (i, 1) be the minimal element of 
the ith chain of P (1 ~< i ~< s), and write 

al = ~ /3~bl (i e ~). 
I:= 1 

Let M be any subset of Jma~ with I MI = r + 1. Let i E T and consider the ideal 
I = ( J \ M )  w {ai} of size m - r. Thus Ht is linearly independent, and it follows that 
fllz ~ 0 for at least one I such that b~ e HM. Since M was an arbitrary subset of Jm,x of 
cardinality r + 1, it follows that flit = 0 for at most r values of l with bt ~ Hs,,~x and 
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hence for at mos t  r values of  I with bt • HK. Thus fliz # 0 for at least r + 2 values of  
I with b~ • Hr .  For  each i • T we choose a set Ci of  any r + 2 such rs. It follows from 

(I 3) that  

f2r + 2~( if,[=s_~om_r_r>~r+2~q_ 1),+ 1 

Hence there exists a subset Z of T of cardinali ty strictly greater  than (q - 1) '+1 such 

that  Ci = Cj = C for all i and j in Z. Without  loss of  generality, we m a y  assume that  

C = { 1 , 2  . . . . .  r + 2 } . T h u s f l i j # 0 f o r  l ~ < j ~ < r + 2 a n d i • Z .  Hence 

flO (1 ~ < j ~ < r +  1) 
O~iJ ~ f l i ,  r + 2  

is defined and nonzero for each i in Z. Since IZ[ > (q - 1) '+  1, it follows that  there exist 

distinct i and k in Z such that  

( ~ . ,  ~i2 . . . . .  ~i , ,+  1) = (~kl ,  ~k2 . . . . .  ~k,,+ 1). 

We then have 

flk.,+ 2ai -- fli.,+ 2ak = ~ (flk.r+ 2flit -- fli,,+ 2flkt)bl. 
/ = r + 3  

It follows that  {b, + 3 . . . . .  bin, ai, ak } is a linearly dependent  set of  vectors corresponding 
to an ideal of  P of size m - r, a contradict ion.  Hence (14) holds. [] 

We now consider d2(Qk, m) for the poset  Qk defined as follows. Let k be a positive 
integer. Then Qk is the poset  whose set of  elements is 

{ ( i , j ) : i>~0 , j>~0 ,  i + j < ~ k -  1}, 

having the componentwise  partial  order  given by 

(i,j) <~ (i',j') if and only if i~< i' and j ~<j'. 

The set of elements of  Qk is par t i t ioned into k level sets Lo, L1 . . . . .  Lk-  1 where 

L t = { ( i , j ) : i > ~ O , j > ~ O , i + j = t }  ( O < ~ t < ~ k -  1). 

The number  of elements of  Qk is 

k(k + 1) 
n ~ - - - - -  

2 

Note  that  the smallest size of an ideal which contains the element (i,j) is (i + 1)(j + 1). 
The poset  Qk is a subposet  (the ' bo t t om half ' )  of the product  of a chain of  size k with 
itself. 

If  n ~< m, then d2(Qk;m) = n + 1. We henceforth assume that  n > m. 

Thearem 3.4. I f m  <~ 7, then d2(Qk;m) = m + 1. I f m  >>. 8 and k(k + 1)/2 ~> m + 2, then 
d2(Qk;m ) <~ m. 
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Proof.  It is not  hard to show that  d2(Qk; m) = m + 1 if m ~< 7. For  instance, suppose 
that  m = 7. If k >~ 7, then the union of the ideals of Qk of size 7 contains exactly 16 

elements. Let el,  e2 . . . . .  e 7 be a basis of F27 . Then the following assignment of vectors of  

F27 to these 16 elements of  QR has the property that the vectors assigned to each ideal 

of size 7 are linearly independent and hence d2(Qk; 7) = 8: 

(0,0) ~ e, (2, 1 ) ~  e4 + e-7 

(0, 1) *-- e 2 (3,0) ~ e7 

(1,0) ~ e3 (0,4) ~ e7 

(0, 2) ~ e4 (4, 0) ~ e6 

(1, 1)*-- e4 + e5 + e6 + e7 (0,5) ~ es 

(2,0) ~ e5 (5,0) ~ e4 

(0, 3) ~ e 6 (0, 6) ~ e 3 

(1,2) ~ e5 + e6 (6,0) *- e2 

N o w  assume that m >i 8 and k(k + 1)/2 ~> m + 2. We show that it is impossible to 

find a system 

H =  {hti , j~:i>~O,j>~O,i +j<~ k -  1] 

of vectors of F~' with the property that the set HI of vectors assigned to each ideal I of 

size m is linearly independent. 

Assume to the contrary  that we have such a system H. There exists integer 

j ~ < k -  1 and an ideal J of size m containing L o ~ . . - w L j - I  and contained in 

L o ~ . - . u  L j__l u Lj. We may choose such a J so that for some integer t, 

{(0, j), (1, j - l) . . . . .  (t, j - t)} = L~ c~ J. We now distinguish two elements c and d of J. 

Let d -- (t, j - t), and let c = (t - l, j - t + 1) i f t > 0 a n d l e t c - - ( j -  1,0) i f t = 0 .  We 

also distinguish two elements a and b of Qk not in J. If t ~ < j - 2 ,  let 

a = ( t +  1 , j - t -  1) and b = ( t + 2 , j - t - 2 ) ;  if t = j -  1, let a = ( j , 0 )  and 

b = (0,j + l); if t = j ,  let a = (0,j + 1) and b = (1,j). Since m ~> 8, it follows that 

J w {a, b} is an ideal of QR of size m + 2 in which each of a, b, c and d is a maximal 

element. 

Since J is an ideal of size m, Hs is linearly independent and hence is a basis of F~'. 

Thus each vector in F~' is a sum of a subset of the vectors in Hj. Let u be the vector of 

Hj assigned to c and let v be the vector of Hj  assigned to d. Let x be the vector of 

F~' assigned to a and let y be the vector assigned to b. Since ( J \ { c } ) w  {a} and 

(J \{d})  ~ {a} are both ideals of size m, both u and v occur in writing x as a sum of 

vectors of Hj .  Similarly, both u and v occur in writing y as a sum of vectors of H s. 

Therefore x - y  is a linear combinat ion of the vectors H s \ { u , v } ,  and hence 

( H s \ { u , v } ) ~ { x , y }  is a linearly dependent set of vectors assigned to the ideal 
( J \ {c ,d} ) {a ,b}  of size m, a contradiction. [~ 

Theorem 3,5. I f  m >~ 26 and k(k + 1)/2 >1 m + 2, then d2(Qk;m) <~ m - 1. 
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Proof.  Assume that  m t> 26 and k(k + 1)/2 >1 m + 2. We show that  it is impossible to 

find a system 

H = { h , j ~ : i > ~ 0 , j > > - 0 ,  i + j < ~ k -  1} 

of vectors of  F~' with the p roper ty  that  the set HI of  vectors assigned to each ideal I of  
size m - 1 is linearly independent .  Assume to the cont ra ry  that  we have such a system. 

Using a construct ion similar to that  in the p roof  of  Theorem 3.4 and the assumpt ion  

that  m t> 26, we find an ideal I of  size m - 1 containing four elements cl ,  c2, c3, c4 and 

an addit ional  three elements al ,a2 ,a3  not  in I such that  I ' =  I w {al ,a2,a3}  is an 

ideal of Qk of size m + 2 in which each of of Cl,C2,C3,c4,a~,a2, and a 3 is a maximal  
element (see Fig. 1 for the case m = 26). We first focus on two of the c's, say c3 and c4, 

and two of the a's, say a2 and a3 in order  to produce  an ideal J of  size m contained in I '  
such that  H j  is linearly independent  and thus is a basis of  F~'. Since I is an ideal of  size 

m - 1, HI is linearly independent.  Let vm be a vector  such that  HI w {v~} is a basis of  

FT. Let u, v, y and z be the vectors f rom H assigned to c3, ca, a2 and a3, respectively. 
Each of the vectors y and z is a sum of a subset of  the basis vectors. Since 
( I \  {c3}) w {a2} is an ideal of  size m - 1, Hu\{c3} ~ ~, {°2} is l inearly independent  and hence 

either u or  vm occurs in writing y as a sum of the basis vectors. Since (1\  {c4}) w {a2 } is 
also an ideal of  size m - 1, either v or  v~ also occurs in y. Hence if vm does not  appea r  

in y, then bo th  u and v do. Similarly, if vm does not  appea r  in z, then bo th  u and v do. If  
v~ appears  in neither y nor  z, then y - z is a linear combina t ion  of the vectors 

H~\{c3,~,} assigned to the ideal I \ { c 3 , c 4 }  and hence Hu\~c3.c,}j~{,2,,3} is a linearly 

dependent  set of vectors assigned to the ideal ( I \ {c3 ,c4})  U {a2,a3} of size m -  1. 
Therefore v ,  appears  in at least one of y and z, say z. Then J - I w {aa} is an ideal 

contained in I '  such that  Ha is a basis of  FT. 

C 1 C 2 C 3 C4 a l  a 2  

1 
(o,o) 

a 3  

(6,0) 

Fig. 1. 
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Each of the elements of M = {cl,c2,c3,c4,a3} is a maximal  element of the ideal 

J and  for ease of nota t ion ,  we relabel the vectors assigned to these elements as 

u l ,  u2, u3, u , ,  us, respectively. Let x denote  the vector assigned to a l  and  as above, let 

y denote  the vector assigned to a2. Consider  the ideals of size m - 1 obta ined  from 

J by removing any two elements of M and adjoining a l .  Since the sets of vectors 

assigned to these ideals are linearly independent ,  we conclude that  given any two of 

the vectors ul . . . . .  us, at least one appears in writing x as a sum of the basis vectors. It 

follows that  at least four of these vectors appear  in x. Similarly, at least four occur in y. 

Hence at least three appear  in both, say ut ,  u2, u3. Then  x - y is a l inear combina t ion  

of the m - 3 vectors in n j \ l  . . . .  2.¢31 and s o  ( J \ { ¢ 1 , c 2 , c 3 } )  W {al ,a2} is an ideal of size 

m - 1 whose assigned vectors are linearly dependent ,  a contradict ion.  El 

We now obta in  a more general b o u n d  for d2(Qk; m). 

Theorem 3.6. L e t  r be an integer with r >~ 2 and l e t f ( r )  = 2 2'+ 1 + r 2 r+2 - 2' + 2r 2 + 

2r + 2. l f  m >~ f ( r )  and k >>, 2 "+1 + 2r, then d2(Qk;m) <<. m -  r. 

Proof. Assume that  m >>.f(r) and  k >~ 2 '÷1 + 2r. We show that  it is impossible to find 

a system 

H = { h , . j ~ : i / > 0 , j t > 0 ,  i + j ~ < k -  1} 

of vectors of F~' with the property that the set HI of vectors assigned to each ideal I of 

size m - r is l inearly independent .  Assume to the contrary  that we have such a system. 

Since k/> 2 "÷ 1 + 2r, the level set L2,+~+ 2,-1 conta ins  exactly 2 '+ 1 + 2r elements. 

We now use a cons t ruct ion  similar to that in the proof  of Theorem 3.4. Since 

m - r > ~ f ( r ) - r =  ~ i + 2 r + 2 =  ~ IL, + 2 r + 2 ,  
i = 1  i = 1  

we can find an ideal I of size m - r conta in ing  2r + 2 elements c l , c 2  . . . . .  c2,+z 

and an addi t ional  2 " + 1 - 2  elements a l , a 2  . . . . .  az . . . .  z not  in I such that  

I '  = I ~ {at,  a2 . . . .  , az . . . .  2 } is an ideal of Qk of size m -- r + 2' + 1 _ 2 in which each of 

ct ,  c2 . . . . .  c2,÷~ + z, a t ,  a2 . . . . .  a2 . . . .  z is a maximal  element. This fact allows us to mimic 

the proof  4 of Lemma 3.1 and obta in  an ideal J of size m conta in ing  I and  r of the 

elements al ,  a2 . . . . .  a2 . . . .  2, say a3 . . . . .  a, + 2, such that H j  is l inearly independent  and  

hence a basis of F~'. Note that since J c I', each of the 3r + 2 elements of 

M = { c t , ¢  2 . . . . .  c 2 r + 2 , a 3  . . . . .  a t + z }  is a maximal  element of J. 

We now proceed as in the proof  of Theorem 3.5. We label the vectors assigned to 

the elements of M as u l ,  u2 . . . . .  u3,+ 2, respectively. Let x denote  the vector assigned to 

4 The hypothesis in Lemma 3.1 that tom_, >/2 ensured that l had at least two maximal elements, and this 
conclusion holds in the current situation since 2r + 2/> 6. The hypothesis (7) in Lemma 3.1 ensured the 
existence of at least q'+ t _ q2 + q elements (i + o~m-,, 1), (1 ~< i ~< s - tom_,); in the current situation the 
role of these elements is played by al, a2, ..., a2,* ~-2- 
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al  and  let y denote  the vector  assigned to a 2. Cons ider  the ideals of size m - r 

ob ta ined  from J by removing  any r + 1 elements  of  M and ad jo in ing  a l .  The sets of  

vectors  assigned to these ideals are  l inear ly independent ,  and  so given any r + 1 of  the 

vectors  u l ,  u2 . . . . .  u3, + 2, at  least one appears  in wri t ing x as a sum of  the basis vectors  

of H j .  Hence  at  least 2r + 2 of  these vectors  appea r  in x and similarly,  at  least 2r + 2 

occur  in y. Hence at  least r + 2 appea r  in both ,  say ul ,u2  . . . . .  u,+2. Then x - y is 

a l inear  combina t i on  of  the m - r - 2  vectors  in Hs\~c,.c2 ..... cr+2~ and therefore 

( J \ { c t , c 2 ,  . . . , c r + 2 } ) u  {a l ,a2}  is an ideal of  size m -  r whose assigned vectors are 

l inear ly dependent ,  a cont radic t ion .  [] 
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