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Abstract A newmethod for model reduction of linear systems is presented, based on Chebyshev rational
functions, using the Harmony Search (HS) algorithm. First, the full order system is expanded and then a
set of parameters in a fixed structure are determined, whose values define the reduced order system. The
values are obtained by minimizing the errors between the l first coefficients of the Chebyshev rational
function expansion of full and reduced systems, using the HS algorithm. To assure stability, the Routh
criterion is used as constraints in the optimization problem. To present the ability of the proposedmethod,
three test systems are reduced. The results obtained are compared with other existing techniques. The
results obtained show the accuracy and efficiency of the proposed method.
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1. Introduction

Reduced order models are highly desirable for engineers in
system analysis, synthesis and simulation of complicated high-
order systems, since the analysis and design of such systems
is not an easy task. Various methods for model reduction are
reported in the literature in the time and frequency domains.
Model reduction was started by Davison in 1966 [1] and fol-
lowed by Chidambara, who suggested several modifications to
Davison’s approach [2–4]. After that, different approaches were
proposed using dominant eigenvalue retention [1,5], Routh
approximation [6], Hurwitz polynomial approximation [7,8],
the stability equation method [9,10], moments matching
[11–14], the continued fraction method [15–17], Pade approxi-
mation [18] and etc.

The issue of optimality in model reduction was consid-
ered by Wilson [19,20], who suggested an optimization ap-
proach based on minimization of the integral squared impulse
response error between full and reduced-order models. This
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attempt was continued by other researchers through other
approaches [21–24].

In 1981 [25], the controllability and observability of the
states were considered in model reduction by Moore. The sug-
gested approach suffered from steady state errors but the sta-
bility of the reduced model was assured if the original system
was also stable [26]. Furthermore, the concept ofH∞,H2, L2 and
L∞ were used for model reduction in [27–30].

In recent decades, evolutionary techniques, such as Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA), have
been used for order reduction of systems [31–33]. In these
approaches, the reduced order model parameters are achieved
by minimizing a fitness function, which is often Integral Square
Error (ISE), Integral Absolute Error (IAE), H2 norm or H∞

norm [34–36].
This paper proposes an alternative method for order reduc-

tion based on Chebyshev rational functions, using the HS algo-
rithm. The full order system is expanded and then the l first
coefficients of Chebyshev rational function expansion are ob-
tained. A desire fixed structure for the reduced order model is
considered and a set of parameters are defined, whose values
determine the reduced order system. These unknown param-
eters are determined using the harmony search algorithm by
minimizing the errors between the l first coefficients of Cheby-
shev rational function expansion of full and reduced systems. To
assure stability, the Routh criterion is applied, as used in [37],
where it states optimization problems as constraints, which,
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subsequently, are converted to constrained optimization prob-
lems. To show the accuracy of the proposed method, three sys-
tems are reduced by the proposed method and compared with
those available in the literature.

To make a proper background, Chebyshev rational functions
and the harmony search are briefly explained in Sections 2 and
3, respectively. The proposed method is explained in Section 4.
The ability of the proposed approach is shown in Section 5, and,
finally, the paper is concluded in Section 6.

2. The Chebyshev rational functions

TheChebyshev rational functions are a sequence of functions
that are both orthogonal and rational [38]. A rational Chebyshev
function of degree l is presented as:

Rl (x) = Tl


x − 1
x + 1


, (1)

where Tl (x) is a Chebyshev polynomial and defined by a recur-
sive formula as:

T0 (x) = 1,
T1 (x) = x,
Tl+1 (x) = 2xTl (x) − Tl−1 (x) l ≥ 1. (2)

Using the orthogonality relationship, an arbitrary function,
f (x), can be expanded as:

f (x) =

∞
l=0

FlRl (x) , (3)

where Fl is given by the following equations:

Fl =
2
clπ


∞

0
f (x) Rl (x)W (x) dx, (4)

in which, cl equals 2 for l = 0 and cl equals 1 for l ≥ 1. Also, W
is given as:

W (x) =
1

(x + 1)
√
x
. (5)

Therefore, by considering the first l terms of Eq. (3), a good
approximant of f (x) is obtained.

3. Harmony search algorithm

TheHS is based on a naturalmusical process, which searches
for a perfect state of harmony. In general, the HS algorithm
works as follows [39,40]:

Step 1. Initialization: Define the objective function and deci-
sion variables, and input the systemparameters and the bound-
aries of the decision variables. The optimization problem can be
defined as:

Minimize f (x) subject to xiL < xi < xiU (i = 1, 2, . . . ,N)
where xiL and xiU are the lower and upper bounds for decision
variables.

The HS algorithm parameters are also specified in this step.
They are the Harmony Memory Size (HMS) or the number of
solution vectors in harmony memory, Harmony Memory Con-
sidering Rate (HMCR), distance bandwidth (bw), Pitch Adjusting
Rate (PAR), and the number of improvisations (K ), or stopping
criterion. K is the same as the total number of function evalua-
tions.

Step 2. Initialize the harmony memory (HM). The harmony
memory is a memory location where all the solution vectors
(sets of decision variables) are stored. The initial harmony
memory is randomly generated in the region [xiL, xiU ] (i = 1, 2,
. . . ,N). This is done based on the following equation:

xji = xiL + rand () × (xiU − xiL) j = 1, 2, . . . ,HMS, (6)

where rand () is a random from a uniform distribution of [0, 1].
Step 3. Improvise a new harmony from the harmony mem-

ory. Generating a new harmony, xnewi , is called improvisation,
which is based on three rules: memory consideration, pitch ad-
justment and random selection. First of all, a uniform random
number, r, is generated in the range [0, 1]. If r is less thanHMCR,
the decision variable, xnewi , is generated by the memory con-
sideration; otherwise, xnewi is obtained by a random selection.
Then, each decision variable, xnewi , will undergo a pitch adjust-
ment with a probability of PAR if it is produced by the memory
consideration. The pitch adjustment rule is given as follows:

xnewi = xnewi ± r × bw. (7)

Step 4. Update harmony memory. After generating a new har-
mony vector, xnew , the harmony memory will be updated. If the
fitness of the improvised harmony vector, xnew =


xnew1 , xnew2 ,

. . . , xnewN


, is better than that of the worst harmony, the worst

harmony in the HM will be replaced with xnew and become a
new member of the HM.

Step 5. Repeat Steps 3–4 until the stopping criterion
(maximum number of improvisations K ) is met.

4. The proposed model reduction method

Consider a stable Single-Input Single-Output (SISO) system
described by the transfer function of order n as follows:

G(s) =
a1sn−1

+ a2sn−2
+ · · · + an

sn + b1sn−1 + b2sn−2 + · · · + bn
, (8)

where ai and bi are constants.
The objective is to obtain a reducedmodel of order r, where r

is smaller than n, such that the principal and important specifi-
cations of the full order systemare retained in the reduced order
model. This reduced order system is presented as follows:

Gr(s) =
c1sr−1

+ c2sr−2
+ · · · + cr

sr + d1sr−1 + d2sr−2 + · · · + dr
, (9)

where c1, c2, . . . , cr and d1, d2, . . . , dr are unknown constants.
To obtain the reduced model by the proposed method,

firstly, the full order system is expanded based on Chebyshev
rational functions. Then, the l first coefficients of the Chebyshev
rational function expansion of the original system are obtained
and shownby Fi i = 0, 1, 2, 3, . . . , l. Then, a desired fixed struc-
ture is considered for the reduced order model, as defined in
Eq. (9), where c1, c2, . . . , cr and d1, d2, . . . , dr are unknown pa-
rameters of the reduced order model that are obtained by HS.
The goal of the optimization is to find the best parameters for
Gr(s). Therefore, each harmony is a d-dimensional vector, in
which d is cr + dr . Each harmony is a solution to Gr and for
each solution (harmony), the Chebyshev rational function ex-
pansions are obtained. Each harmony is evaluated by minimiz-
ing the following fitness function:

J∗ =

l
i=0

Fi − F̂i
 , (10)

in which F̂i are the coefficients of the Chebyshev rational func-
tion expansions of the reduced order system. The algorithm
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searches for the best harmony until the termination criteria are
met. At this stage, the best parameters are given as parameters
of the reduced order model.

Furthermore, the reduced model must be stable if the orig-
inal system is stable. Therefore, the Routh criterion is applied
to assure stability. For specifying the stability conditions, fol-
lowing [41], the denominator polynomial of the reduced order
model in Eq. (9) can be shown as below:

sr + h1sr−1
+ (h2 + h3 + · · · + hr)sr−2

+ h1(h3 + h4 + · · · + hr)sr−3
+ [h2(h4 + h5 + · · · + hr)

+ h3(h5 + h6 + · · · + hr) + h4(h6 + h7 + · · · + hr)

+ · · · hr−2hr ]sr−4
+ · · · + h1+qh3+q · · · hr−2hr , (11)

which is constructed by taking the coefficients of the first two
rows of the Routh array, in which elements of its first column
have the following entries:

1, h1, h2, h1h3, h2h4, h1h3h5, . . . , h1+kh3+k...hr−2hr , (12)

where k is equal to 1 for even r, and k is equal to 0 for odd r.
Comparing the entries of the array in Eq. (12) with

1, d2, d4, . . . and those of the second row with d1, d3, d5, . . .
gives Eq. (13):

d1 = h1
d2 = (h2 + h3 + · · · + hr)
d3 = h1(h3 + h4 + · · · + hr)
...
dr = (h1+kh3+khr−2hr).

(13)

Substituting the above relations in the reduced order model
denominators, Eq. (11) is achieved. Therefore, the necessary and
sufficient condition for all roots of the reduced system to be
strictly in the left-half plane is:

h1 > 0
h2 > 0
...
hr > 0,

(14)

and, subsequently:

d1 > 0
d2 > 0
...
dr > 0.

(15)

Thus, to have an optimum stable reduced system, the reduced
order model’s parameters are determined by minimizing the
following fitness function:

J =

l
i=0

Fi − F̂i


subject to dj > 0 for j = 1, . . . , r.
(16)

Therefore, the reduced order model is achieved, such that the l
first coefficients of the Chebyshev rational function expansions
of the full order system are equal to the l first coefficients of the
Chebyshev rational function expansions of the reduced order
model.

The proposed method can be summarized in the following
steps:

Step 1: The Chebyshev rational functions of the full order
system in Eq. (8) are obtained.
Step 2: A desire fixed structure is considered for the reduced
order model, as defined in Eq. (9), where c1, c2 . . . , cr and
d1, d2, . . . , dr are unknown parameters of the reduced order
model that are obtained in the next step.

Step 3: To obtain the unknown parameters, HS is applied.
The goal of the optimization is to find the best parameters
for Gr(s). Therefore, each harmony is a d-dimensional vector,
in which d is cr + dr . Each harmony is a solution to Gr and,
for each solution (harmony), the Chebyshev rational functions
are obtained. Each harmony is evaluated using the objective
function defined by Eq. (16), searching for the harmony
associated with Jbest until the termination criteria are met. At
this stage, the best parameters are given as parameters of the
reduced order model.

5. Simulation and results

To assess the efficiency of the proposed approach, it has been
applied to three test systems, where a step-by-step procedure
is given for the first test system.
Test system 1: The first system to be reduced is a system of
order 6 given by Mukherjee in [42], where he uses a response
matching technique to obtain the reduced system. G (s) is given
in Box I.

The reduced-order model can be obtained by the following
steps:

Step 1: Based on Section 2, the Chebyshev rational function
of the full order system in Eq. (17) is obtained as:

G (s) = (0.0578) (1) + (−0.0256)

s − 1
s + 1


+ (−0.0195)


s2 − 6s + 1

(s + 1)2


+ (0.0011)

×


s3 − 15s2 + 15s − 1

(s + 1)3


+ (−0.0198)


s4 − 28s3 + 70s2 − 28s + 1

(s + 1)4


(18)

where the fifth order (l = 5) Chebyshev rational function of
Eq. (17) is considered to present G(s).

Step 2: The full order of the system represented in Eq. (17) is
going to be reduced to a third-order system with the following
transfer function:

Gr (s) =
c0s2 + c1s + c2

s3 + d0s2 + d1s + d2
, (19)

where c0, c1, c2 and d0, d1, d2 are unknown parameters of the
reduced order model.

Step 3: HS is applied to obtain the unknown parameters in
Eq. (19). Since, the goal of the optimization is to find the best
parameters for Gr(s), each harmony is a d-dimensional vector
in which d = 6. The HMS is selected to be 6, and the HMCR and
evaluation number are set to be 0.9 and 1000, respectively. Each
harmony is a solution to Gr and, for each solution (harmony),
the Chebyshev rational functions are obtained. Each harmony
is evaluated using the objective function defined by Eq. (16),
searching for the best J , until the termination criteria aremet. At
this stage, the best parameters are given for the reduced order
model, where the following reduced order model is obtained:

Gr (s) =
4.55s2 + 27.2s + 50.78

s3 + 54.86s2 + 691.56s + 507.67
. (20)
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7)
G (s) =
s5 + 1014s4 + 14069s3 + 69140s2 + 140100s + 100000

s6 + 222s5 + 14541s4 + 248420s3 + 1454100s2 + 2220000s + 1000000
. (1

Box I
Figure 1: The step response of full order and reduced order model by the
proposed method and other methods for test system 1.

The Chebyshev rational functions of the obtained reduced order
model are as:

Gr (s) = (0.0578) (1) + (−0.0256)

s − 1
s + 1


+ (−0.0195)


s2 − 6s + 1

(s + 1)2


+ (0.0011)

×


s3 − 15s2 + 15s − 1

(s + 1)3


+ (−0.0198)


s4 − 28s3 + 70s2 − 28s + 1

(s + 1)4


. (21)

Comparing Eqs. (18) and (21) shows that the best approximant
of G (s) is achieved. The step response of the full order system
and that of the system with a third-order reduced model is
shown in Figure 1. This figure shows that the obtained reduced
order model is an adequate low-order model that retains the
characteristics of a full ordermodel. Also, to show the efficiency
of the proposed method, the step and frequency responses of
the obtained reduced model are compared with those available
in the literature. Figures 1 and 2 show a comparison of the
results obtained with the proposed method by Mukherjee [42],
Optimal Hankel norm approximation (HSV) [43] and Balanced
Truncation (BT) [43], respectively. It should be noted that a
reduced order model is called a balanced truncation of the full
order system, when a system is balanced and, then, the states
corresponding to small Hankel singular values are discarded.
Also, Optimal Hankel norm approximation finds a reduced
order model, Gr (of degree r), such that the Hankel norm of the
approximation error (∥G − Gr∥H) is minimized.

Figures 1 and 2 show that the achieved results from the
proposed method and the proposed method by Mukherjee are
very similar to the original system, with respect to HSV and BT
methods.
Figure 2: The fequency response of full order and reduced order model by the
proposed method and other methods for test system 1.

Figure 3: The plot of e = |y − yr | for the full order and reduced systems by the
proposed method and other methods for test system 1.

Furthermore, the specifications of the obtained system by
the proposed method, such as steady state value, rise time, set-
tling time and maximum overshoot, are compared with those
obtained byMukherjee [42], HSV and BT, shown in Table 1. Also,
Integral Square Error (ISE) and the H∞ norm of the error be-
tween the step responses of full order and reduced order mod-
els (e = |y − yr |) are given in Table 1. It is clearly seen that
the specifications of the reduced order model that is achieved
by the proposed method and the one by Mukherjee are close to
the specifications of the original system.

Also, the plot of e = |y − yr | is given for the full order
and reduced systems in Figure 3. This figure illustrates that the
obtained error by the proposed method in this paper and the
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Table 1: Comparision of methods for test system 1.

Model Steady state value Over shoot (%) Rise time (s) Settling time (s) ISE Infinity-norm of error

Full order 0.1 0 2.44 4.34 – –
Chebyshev-HS 0.1 0 2.45 4.51 1.59 × 10−6 0.0067
Mukherjee 0.1 0 2.45 4.5 1.34 × 10−6 0.0074
BT 0.114 0 5.83 11.4 0.0379 0.0141
HSV 0.114 0 3.63 7.07 0.0375 0.0139
Figure 4: The step response of full order and reduced order model by the
proposed method and other methods for test system 2.

Figure 5: The plot of e = |y − yr | for the full order and reduced systems by the
proposed method and other methods for test system 2.

proposed method by Mukherjee is very similar, and less than
HSV and BT methods.

Test system 2: In [44], a procedure is presented to obtain a
reduced order system by Routh–Pade approximation using the
Luus–Jaakola algorithm. To compare the proposed method in
this paper with the Luus–Jaakola algorithm, the system given
Figure 6: Step response of full order and reduced order model by the proposed
method and other methods for test system 3.

in [44] is adopted, which is a third-order system:

Gorg =
8s2 + 6s + 2

s3 + 4s2 + 5s + 2
. (22)

Based on the explanations given for test system 1, the obtained
reduced system by the algorithm is as follows:

GChebyshev-HS =
7.88s + 4.94

s2 + 3.64s + 4.99
. (23)

The step response of the original system and the obtained re-
duced model is shown in Figure 4. In this figure, the responses
of the system with second-order primary reduced models ob-
tained by othermethods are also included for comparison. Also,
the plot of e = |y − yr | is given for the full order and reduced
systems in Figure 5.

Once again, maximum overshoot, rise time, settling time,
steady state value, ISE and H∞ norm of the error (e = |y − yr |)
are given in Table 2. It is clearly seen that the specifications of
the reduced order model achieved by the proposed method are
close to the specifications of the original system, and better than
other methods.
Test system 3: The third system to be reduced is a system given
in [45] by Tao, where a procedure is presented to obtain a
reduced system. GOriginal is given in Box II.

Based on the explanations given for test system 1, the
obtained reduced system by the algorithm is the one which is
shown in Box III.

The comparison of the proposed method, the one proposed
by Tao in [45], HSV and BT methods are shown in Figures 6
and 7 and Table 3, which illustrate that the achieved results
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Table 2: Comparision of methods for test system 2.

Steady state value Overshoot (%) Rise time (s) Settling time (s) ISE Infinity-norm of error

Original model 1 86.5 0.129 6.74 – –
Chebyshev- HS 0.99 87.9 0.127 2.35 0.0286 0.1139
Luus–Jaakola 1 66.1 0.13 1.71 0.1404 0.3425
BT 0.836 123 0.103 3.15 0.3802 0.1635
HSV 0.836 115 0.118 3.44 0.4043 0.1635
Table 3: Comparision of methods for test system 3.

Steady state value Over shoot (%) Rise time (s) Settling time (s) ISE Infinity-norm of error

Original system −0.00281 −0.00814 0.0185 7.56 – –
Chebyshev-Hs −0.00281 −0.0078 0.0164 9.13 5.8043 × 10−7 9.8248 × 10−4

Tao method −0.00281 −0.00738 0.0236 9.13 5.8235 × 10−7 7.5718 × 10−4

BT −0.00183 −0.00743 0.0146 7.31 1.4339 × 10−5 0.0011
HSV −0.00218 −0.00805 0.0719 7.18 5.9557 × 10−6 0.0010
4)
GOriginal =
0.686 (s + 53) (s − 53)


s2 − 152.2s + 14500

 
s2 + 153.8s + 14500


s2 + s + 605

 
s2 + 45.5s + 2660

 
s2 + 2.51s + 3900

 
s2 + 3.99s + 22980

 . (2

Box II
5)
GChebyshev =
0.012s4 − 0.11s3 + 230.02s2 + 600.15s − 303893.23

s5 + 59.88s4 + 4142.24s3 + 218504.11s2 + 2246670.14s + 1.08
. (2

Box III
Figure 7: The plot of e = |y − yr | for the full order and reduced systems by the
proposed method and other methods for test system 3.

from the proposed method and the proposed method by Tao
are very similar to the original system, with respect to HSV and
BT methods.

6. Conclusion

This paper introduces a newmethod for order reduction, us-
ing orthogonal polynomials, through Chebyshev rational func-
tions and the harmony search algorithm. To get an optimum
stable reduced system, Routh array is applied as constraints
in the formulation. The proposed method is compared with
some order reduction techniques, where the results obtained
show that the proposed approach has high accuracy, and which
results in an adequate low-order model that retains the char-
acteristics of the full order model. The obtained results con-
firm that the proposed method can be used as an alternative
method for order reduction, and the ability of other orthogo-
nal functions can be investigated for the order reduction of the
system.
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