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We propose the following principle to study pointed Hopf algebras, or more
generally, Hopf algebras whose coradical is a Hopf subalgebra. Given such a Hopf
algebra A, consider its coradical filtration and the associated graded coalgebra
gr A. Then gr A is a graded Hopf algebra, since the coradical A of A is a Hopf0
subalgebra. In addition, there is a projection p : gr A ª A ; let R be the algebra of0
coinvariants of p . Then, by a result of Radford and Majid, R is a braided Hopf

Ž .algebra and gr A is the bosonization or biproduct of R and A : gr A , RaA .0 0
The principle we propose to study A is first to study R, then to transfer the
information to gr A via bosonization, and finally to lift to A. In this article, we
apply this principle to the situation when R is the simplest braided Hopf algebra: a
quantum linear space. As consequences of our technique, we obtain the classifica-

3 Ž .tion of pointed Hopf algebras of order p p an odd prime over an algebraically
closed field of characteristic zero; with the same hypothesis, the characterization of
the pointed Hopf algebras whose coradical is abelian and has index p or p2 ; and
an infinite family of pointed, nonisomorphic, Hopf algebras of the same dimension.
This last result gives a negative answer to a conjecture of I. Kaplansky. Q 1998
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0. INTRODUCTION

We assume for simplicity of the exposition that our groundfield k is
algebraically closed of characteristic 0; many results below are valid under
weaker hypotheses. Let A be a noncosemisimple Hopf algebra whose
coradical A is a Hopf subalgebra; for instance, A is pointed, that is, all0
simple subcoalgebras are one dimensional. Let

A : A : ??? : A0 1

w xbe the coradical filtration of A; see M, Chapter 5 . This is a coalgebra
filtration and we consider the associated graded coalgebra gr A s

Ž . Ž .[ gr A n , gr A n s A rA , where A s 0. Since A is a Hopfn ny1 y1 0nG 0
subalgebra, gr A is a graded Hopf algebra and the zero term of its own

Ž .coradical filtration is gr A 0 s A , which is a Hopf subalgebra of gr A.0
Ž .Let us denote B s gr A, H s gr A 0 . Let g : H ª B be the inclusion and

Ž .let p : B ª H be the projection with kernel [ gr A n . Then p is anG1
Hopf algebra retraction of g . We can describe the situation in the diagram

p
R ¨ B ~ H , 0.1Ž .

g

co H � Ž . Ž . 4 Ž .where R s B s a g B: id m p D a s a m 1 . The setting 0.1 was
w xfirst considered by Radford R3 ; Majid presented it in categorical terms

w x HMj . It turns out that R is a Hopf algebra in the braided category YY DD ofH
Yetter]Drinfeld modules over H; we shall say ‘‘braided Hopf algebra,’’ for

Žshort. Moreover, B can be recovered as the biproduct or bosonization, in
.Majid’s terminology of R and H.

DEFINITION. Let A be a Hopf algebra whose coradical A is a Hopf0
subalgebra. The braided Hopf algebra R described above shall be called
the diagram of A.

The general principle we propose is as follows: first we analyze the
diagram R of A, then we transfer the information to gr A by bosonization,
and finally we lift it from gr A to A via the filtration.

R is a graded braided Hopf algebra and its coradical is trivial: R s0
Ž . Ž .R 0 s k1. We denote by P R the space of primitive elements of R. We

Ž .see, considering the coradical filtration, that P R / 0, because dim R ) 1;
this last condition just means that A is not cosemisimple. In other words,
the Hopf algebras R we need to study are of a very special kind.

The first natural examples of such braided Hopf algebras are the
well-known quantum linear spaces. We give a characterization of finite-
dimensional quantum linear spaces in Section 3; see Proposition 3.5.
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If G is a finite abelian group, a quantum linear space over G is given by
ˆelements g , . . . , g g G, and characters x , . . . , x g G satisfying1 u 1 u

q [ x g / 1, for all i ,Ž .i i i

x g x g s 1, for all i / j.Ž . Ž .j i i j

Ž .The quantum linear space RR s RR g , . . . , g ; x , . . . , x is then the1 u 1 u

braided Hopf algebra over kG generated as an algebra by primitive
elements x , . . . , x , with relations1 u

x N1 s 0, . . . , x Nu s 0,1 u

x x s x g x x , if i / j.Ž .i j j i j i

The elements x are g -graded and the action of G on x is via thei i i
character x . To each such quantum linear space we define a compatiblei

� 4datum DD consisting of scalars m g 0, 1 for each i, 1 F i F u , andi
Ž . Ž .l g k for each i, j, 1 F i - j F u satisfying conditions 5.1 and 5.2 . Wei j
Ž .define for each such datum a pointed Hopf algebra AA G, RR, DD in Sec-

tion 5. Then we prove our main result.

Ž .LIFTING THEOREM 5.5. Let RR s RR g , . . . , g ; x , . . . , x be a quan-1 u 1 u

tum linear space o¨er the finite abelian group G. Then pointed Hopf algebras A
Ž . Ž .with coradical k G and diagram RR are exactly of the form AA G, RR, DD for

some compatible datum DD.

Let p be an odd prime number and let G denote the group of pthp
roots of 1 in k.

As an application of the Lifting Theorem, we classify pointed Hopf
algebras of dimension p3.

A Hopf algebra of dimension p is isomorphic to a group algebra by
w xZhu’s theorem Z .

The only pointed noncosemisimple Hopf algebras of dimension p2 are
Ž . Ž .the Taft algebras T q s T q , q g G y 1; see Section 1.k p

In dimension p3, we have the following list of pointed noncosemisimple
Hopf algebras over k, for each q g G y 1:p

Ž . Ž . Ž ..a The product Hopf algebra T q m kZr p .
& 2y1 1r p pŽ . ²b The Hopf algebra T q [ k g, x N gxg s q x, g s 1,Ž .

p : 1r px s 0 . Here q is a pth root of q. Its comultiplication is determined
Ž . p Ž .by D x s x m g q 1 m x, D g s g m g.

$ 2y1 p pŽ . ² :c The Hopf algebra T q [ k g, x N gxg s qx, g s 1, x s 0 .Ž .
Ž . Ž .Its comultiplication is determined by D x s x m g q 1 m x, D g s g m g.
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Ž . Ž . ² y1 p2 pd The Hopf algebra r q [ k g, x N gxg s qx, g s 1, x s
p: Ž .1 y g . Its comultiplication is determined by D x s x m g q 1 m x,

Ž .D g s g m g.
Ž . Ž . ² y1e The Frobenius]Lusztig kernel u q [ k g, x, y N gxg s

2 y1 y2 p p p y1:q x, gyg s q y, g s 1, x s 0, y s 0, xy y yx s g y g . Its comul-
Ž . Ž . y1tiplication is determined by D x s x m g q 1 m x, D y s y m 1 q g m

Ž .y, D g s g m g.
Ž . Ž . Ž .f For each m g Zr p y 0, the book Hopf algebra h q, m [

² y1 y1 m p p p :k g, x, y N gxg s qx, gyg s q y, g s 1, x s 0, y s 0, xy y yx s 0 .
Ž . Ž .Its comultiplication is determined by D x s x m g q 1 m x, D y s y m

m Ž .1 q g m y, D g s g m g.

We prove the following:

THEOREM 0.1. Any noncosemisimple pointed Hopf algebra of order p3 is
isomorphic to one in the list abo¨e.

We shall see that there are no isomorphisms between different Hopf
Ž .algebras in the list, except for book algebras, where h q, m is isomorphic

Ž ym 2 y1 .to h q , m ; cf. Section 1.
Let us define the index of a Hopf subalgebra H of a finite Hopf algebra

A as the ratio dim Ardim H; it is an integer because of the Theorem of
w xNichols]Zoeller NZ .

Theorem 0.1 is a consequence of Theorem 0.2:

Ž .THEOREM 0.2. Let H s k G , where G is a finite nontrï ial abelian group;
² : ² :say G s y [ ??? [ y , y / 0. Let M denote the order of y , 1 F l F s .1 s l l l

Let A be a pointed Hopf algebra with coradical H.

Ž .A Assume that the index of H in A is p. Then there exist g g G and a
ˆ Ž .character x g G such that q [ x g has order p and A can be represented by

generators h , 1 F l F s , a, and relationsl

h h s h h , hMl s 1 for all 1 F l , t F s 0.2Ž .l t t l l

a p s m 1 y g p , with m either 0 or 1; 0.3Ž . Ž .

h ahy1 s x y a, for all 1 F l F s . 0.4Ž . Ž .l l l

The Hopf algebra structure of A is determined by

D h s h m h , D a s a m 1 q g m a, 1 F l F s .Ž . Ž .l l l
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Assume that the index of H in A is p2. Then there are two possibilities:
ˆŽ . Ž .B There exist g g G and a character x g G such that q [ x g has1

order p2 and A can be presented by generators h , a, 1 F l F s , and rela-l
Ž .tions 0.2 ,

a p2 s m 1 y g p2
, with m either 0 or 1; 0.5Ž .Ž .

h ahy1 s x y a, 1 F l F s . 0.6Ž . Ž .l l l

The Hopf algebra structure of A is determined by

D h s h m h , D a s a m 1 q g m a, 1 F l F s .Ž . Ž .l l l

ˆŽ .B There exist g , g g G and characters x , x g G such that q [2 1 2 1 2 1
Ž . Ž . Ž . Ž .x g and q s x g ha¨e order p, x g x g s 1 and A can be1 1 2 2 2 1 2 2 1

Ž .presented by generators h , a , 1 F l F s , i s 1, 2, and relations 0.2 ,l i

a p s m 1 y g p , with m either 0 or 1, i s 1, 2; 0.7Ž .Ž .i i i i

h a hy1 s x y a , 1 F l F s , i s 1, 2; 0.8Ž . Ž .l i l i l i

a a y x a a a s l 1 y g g , with l either 0 or 1. 0.9Ž . Ž . Ž .1 2 2 1 2 1 1 2

If l / 0, then x x s 1. The Hopf algebra structure of A is determined by1 2

D h s h m h , D a s a m 1 q g m a , i s 1, 2, 1 F l F s .Ž . Ž .l l l i i i i

The proof of Theorem 0.2 follows from the above principle: we show, via
the mentioned characterization, that a braided Hopf algebra of our special
type and of dimension p or p2 is necessarily a quantum linear space
Ž .Lemma 5.6 . We then deduce Theorem 0.2 from the Lifting Theorem 5.5.

We shall give more applications of this principle in a separate article.
Žw x wWe shall generalize the basic Theorem of Taft and Wilson TW , M,

x.Thm. 5.4.1 to the case of Hopf algebras whose coradical is a Hopf
subalgebra. This Theorem is the key point in the proof of the following

Ž w x w x.result see e.g. N, p. 1545 , AS2, Prop. 3.1 : If A is a pointed non-
Ž .cosemisimple finite-dimensional Hopf algebra, with coradical k G where

G is abelian, then there exist g g G, a k-character x of G such that
Ž . Ž .x g / 1, and x g A, x f k G such that

hxhy1 s x h x ;h g G , D x s x m g q 1 m x .Ž . Ž .

The preceding statement is the initial point in existing attempts of classifi-
cations of various kinds of pointed Hopf algebras.
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The Lifting Theorem 5.5 has an extra bonus. In 1975, Kaplansky
formulated a series of conjectures on Hopf algebras. Under the hypothesis
that the characteristic of the ground field does not divide the positive
integer n, one of these conjectures states that there are only a finite

Ž .number up to isomorphism of Hopf algebras of dimension n. In this
direction the following result was proved by Stefan: The set of types of
semisimple and cosemisimple Hopf algebras of a given dimension is finite
Ž . w x Žin any characteristic . See St ; a more direct proof showing at the same
time finiteness of the number of automorphisms and right coideal subalge-

. w xbras is given in S .
Our Lifting Theorem easily produces counterexamples to Kaplansky’s

conjecture.

THEOREM 0.3. There exist an infinite family of nonisomorphic pointed
Hopf algebras of order p4.

Let us say that a Hopf algebra is ¨ery simple if

Ž .i it has no nontrivial normal Hopf subalgebra, and
Ž .ii it cannot be constructed by bosonization in a nontrivial way.

Ž .Usually, a Hopf algebra is called simple if it satisfies only i ; see for
w xinstance A . However, Taft algebras and book algebras are simple in this

w xsense}this follows from the criteria in AS1 ; but they are analogues of
solvable algebraic groups and it is hard to accept their simplicity. On the
other hand, bosonization is also a mean to build Hopf algebras from
smaller ones}though one of them is a braided Hopf algebra. Also, Taft
and book algebras can be build by bosonization. For these reasons, we
propose this new definition.

Theorem 0. 1 has the following consequence:

COROLLARY 0.4. The only pointed Hopf algebras of order p3, which are
Ž .¨ery simple, are the Frobenius]Lusztig kernels u q of type A .1

The Corollary follows from the considerations in Section 1. So far, the
only known very simple Hopf algebras of order p3 are the Frobenius]

Ž .Lusztig kernels u q and their duals; see 1.7.
Let us briefly indicate the contents of the paper. In Section 1, we give

some information about the Hopf algebras mentioned above. Section 2 is
devoted to basic facts supporting the principle. In Section 3 we discuss
finite-dimensional quantum linear spaces. In Section 4, we discuss possible
quantum linear spaces over abelian groups. Theorem 0.2, respectively
Theorem 0.3, Theorem 0.1, are proved in Section 5, respectively Section 6,
Section 7.
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Theorem 0.1 of this paper was announced at the Colloque ‘‘K-theory,
Ž .cyclic homology and group representations,’’ CIRM, Luminy July 1997 ;

and at the ‘‘XLVI Reunion de Comunicaciones Cientificas de la Union´ ´
Ž .Matematica Argentina,’’ Cordoba September 1997 , where also a coun-´ ´

terexample to Kapklansky’s conjecture was described. The list appears
w xalready in the preprint version of AS2 , Trabajos de Matematica 42r96,´

FaMAF.
Theorem 0.1 was independently proved by Caenepeel and Dascalescu

w x w xCD and also by Stefan and van Oystaeyen SvO . Theorem 0.3 was
w x w xindependently found by Beattie et al. BDG and also by Gelaki G . The

methods of these authors seem to be quite different from ours. It is an
interesting coincidence that all these articles, including ours, appeared in
preprint form in a period of a few weeks in the fall of 1997.

We thank the referee for helpful comments on this paper.

Ž .Con¨entions. If C is a coalgebra, we denote by G C the set of
Ž . Ž .group-like elements of C. If g, h g G C , then we denote P C sg , h

� Ž . 4P s x g C: D x s x m h q g m x ; the elements of P are calledg , h g , h
Ž . Ž .skew-primitives. When B is a bialgebra, P B is just the space P B of1, 1

primitive elements.
Ž .If A is an algebra, Alg A, k denotes the set of all algebra maps from A

to k.
ˆ ŽIf G is a group, we denote by G the group of characters one-dimen-

.sional representations over k of G.

1. ABOUT THE HOPF ALGEBRAS IN THE LIST

1.0. Let j g k be a root of 1 of order N G 2. The Taft algebra
Ž . Ž . ² y1 N N :T j s T j is the algebra k g, x N gxg s j x, g s 1, x s 0 . Itsk

Hopf algebra structure is given by

D g s g m g , SS q s gy1 , « g s 1,Ž . Ž . Ž .
D x s x m g q 1 m x , SS x s yxgy1 , « x s 0.Ž . Ž . Ž .

2 Ž . Ž .The dimension of Tj is N . It is known that T j , T j * as Hopf
˜ ˜Ž . Ž .algebras, and that T j , T j only if j s j .

Ž . w xA proper Hopf subalgebra A of T j is contained in k g : this follows
easily looking at the coradical filtration of A. Therefore, if A is a proper

Ž .Hopf subalgebra or quotient of T j , then the order of A divides N.
2 w xSemisimple Hopf algebras of order p are group algebras Ma2 . The

only pointed noncosemisimple Hopf algebras of order p2 are the Taft
w xalgebras; a more precise characterization of Taft algebras is given in AS2 .
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In fact, Taft algebras and group algebras are the only known Hopf
algebras of order p2.

1.1. The pointedness of the Hopf algebras in the list is a consequence of
w x w xthe criteria M, Lemma 5.5.1 . As in the proof of M, Lemma 5.5.5 , we

Ž .conclude that a Hopf algebra in the list has coradical k G , where G is:

Ž . Ž . Ž . Ž .1 Zr p = Zr p , in case a ;
Ž . Ž 2 . Ž . Ž . Ž .2 Zr p , in cases b , c , d ;
Ž . Ž . Ž . Ž .3 Zr p , in cases e , f .

In particular, this is a first step toward deciding the nonexistence of
isomorphisms between the different cases.

It is not difficult to see that all the Hopf algebras in the list have
dimension p3; e.g., using the Diamond Lemma. Alternatively, say in case
Ž . i j 2b , let A be a vector space with a basis g x , 0 F i F p y 1, 0 F j F p y 1.
It is possible to write down explicitly a multiplication table for A such that
the defining relations hold; A is then an associative algebra. Hence there& &
is an epimorphism T q ª A. But it is easy to see that T q hasŽ . Ž .k k
dimension at least p3; therefore the dimension is p3. This idea applies to
the other cases as well. &

1.2. The Hopf algebra T q does not depend, modulo isomorphisms,Ž .k &
y1²upon the choice of the pth root of q. Indeed, let T [ k h, y N hyh sj

1r pqj p2 p : Ž . Ž .q y, h s 1, y s 0 , with comultiplication D h s h m h, D y s&
py m h q 1 m y. Then one has an isomorphism of Hopf algebras T q ªŽ .k&

1yp jT determined by x ¬ y, g ¬ h .j &
Ž .Notice that T q is a cocentral extension of k Zrp by a Taft algebra:Ž .k

&
1 ª T q ª T q ª k Zrp ª 1.Ž . Ž . Ž .k k

&$
Ž .1.3. The Hopf algebra T q is dual to T q . It is a central extension ofŽ .k k

a Taft algebra,
$

1 ª k Zrp ª T q ª T q ª 1,Ž . Ž . Ž .k k

where the central Hopf algebra is generated by g p. It is clear that no& & $
group-like element of T q is central; hence T q and T q9 cannot beŽ . Ž . Ž .k k k
isomorphic for any q, q9.

Ž .1.4. The Hopf algebra r q is also a central extension of a Taft algebra,

1 ª k Zrp ª r q ª T q ª 1,Ž . Ž . Ž .k

again, the central Hopf algebra is generated by g p. This Hopf algebra was
w x Ž Ž ..first considered by Radford R1 . The dual Hopf algebra r q * is not

Ž . Ž . Ž .pointed}see loc. cit.; hence cases b , c , and d have no intersection.
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In all three cases, the Hopf algebras are not isomorphic for different
values of q. This can be shown via the first term of the coradical filtration.$ & $

Ž .Indeed, it is enough to consider T q , since T q , T q * andŽ . Ž . Ž .k k k$
Ž .gr r q , T q .Ž .k

Ž .1.5. The Frobenius]Lusztig kernel u q is the simplest example of the
w x w xfinite dimensional Hopf algebras introduced in L1 , L2 . It is easy to see

that it has no nontrivial representation of dimension 1. Looking at its
w x Ž . Ž .coradical filtration T , we conclude that u q and u q9 are not isomorphic

Ž .unless q s q9. It is not difficult to see that u q has no nontrivial quotient
w x w xHopf algebra T ; hence it is very simple. See also AS1 .

w1.6. Information about book Hopf algebras can be found in AS2, Sect.
x Ž . w x6 ; h q, p y 1 was already considered in R2, p. 352 }without assuming

Ž . Ž .that the order of q is prime. h q, m and h q, m are isomorphic if, and˜ ˜
Ž . Ž . Ž ym 2 y1 . w xonly if, q, m s q, m or q , m AS2, Prop. 6.5 . The dual Hopf˜ ˜
Ž Ž .. Ž . w xalgebra h q, m * is isomorphic to h q, ym AS2, Prop. 6.7 ; in particu-

Ž .lar, h q, m has p different representations of dimension 1 and hence
Ž . Ž .types e and f have no intersection.

w xBook algebras can be obtained by bosonization AS2 ; see also Section 3.
w xBy the criteria in AS1 , a book algebra is simple.

1.7. Semisimple Hopf algebras of order p3 were classified by Masuoka
w xMa1 : there are p q 8 isomorphism types, namely three group algebras of
abelian groups; two group algebras of nonabelian groups and their duals;
p q 1 noncommutative, noncocommutative Hopf algebras constructed by
extension.

In addition to the already mentioned Hopf algebras of order p3 there
Ž Ž .. Ž Ž ..are also the dual Hopf algebras u q * and RR q *. Among all these

Hopf algebras of order p3, only the Frobenius]Lusztig kernels and their
duals are very simple in the sense of the Introduction.

2. THE CORADICAL FILTRATION AND THE
ASSOCIATED GRADED HOPF ALGEBRA

Ž .2.0 Let B, H, and R be as in 0.1 . Then R is a braided Hopf algebra
H w x w xin the category YY DD of Yetter]Drinfeld modules over H. See R3 , Mj .H

We recall the explicit form of this structure; we follow the conventions
w xof AS2 .
The action of H on R is given by the adjoint representation composed

Ž .with g . The coaction is p m id D. These two structures are related by the
Yetter]Drinfeld condition:

d h.r s h r SS h m h .r .Ž . Ž .R Ž1. Žy1. Ž3. Ž2. Ž0.

Hence, R is an object of H
YY DD.H



LIFTING OF QUANTUM LINEAR SPACES 667

Moreover, R is a subalgebra of B and a coalgebra with comultiplication

D r s r gp SS r m r ;Ž . Ž .R Ž1. Ž2. Ž3.

the counit is the restriction of the counit of B. To avoid confusion, we
denote here the comultiplication of R by

D r s r Ž1. m r Ž2. ,Ž . ÝŽR.

or even we omit sometimes the summation sign.
The multiplication m and the comultiplication D of R satisfy

Dm s m m m id m c m id D m D .Ž . Ž . Ž .

Here c is the commutativity constraint of H
YY DD; explicitlyH

c m m n s m .n m m ,Ž .M , N Žy1. Ž0.

for M, N gH
YY DD, m g M, n g N.H

The map SS : R ª R given byR

SS r s gp r SS rŽ . Ž .R Ž1. B Ž2.

Ž .where SS is the antipode of B is the antipode of R, i.e., the inverse ofB
the identity in End R for the convolution product. Hence R is a braided
Hopf algebra in H

YY DD.H
Conversely, given H and a Hopf algebra R in H

YY DD, the tensor productH
B s R m H bears a Hopf algebra structure, denoted RaH, via the smash
product and smash coproduct:

rah saf s r h .s ah f ,Ž . Ž . Ž .Ž1. Ž2.

D rah s r Ž1.a r Ž2. h m r Ž2. ah 2.1Ž . Ž . Ž . Ž .Ž . Ž .y1 0Ž1. Ž2.

Let p : RaH ª H and g : H ª RaH be the maps

p rah s « r h , g h s 1ah.Ž . Ž . Ž .

Ž .Then g is a section of p and we are in the setting 0.1 . We term
B s RaH, following Majid, the bosonization of R.

2.1. We recall that a graded Hopf algebra is a Hopf algebra G together
Ž .with a grading G s [ G n which is simultaneously an algebra and anG 0

w x Ž Ž ..coalgebra grading Sw, Section 11.2 . In particular, « G n s 0 for n ) 0
and the antipode is a homogeneous map of degree 0.
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Ž .It turns out that G 0 is a Hopf subalgebra of G and that the inclusion
Ž . Ž .g : G 0 ¨ G is a section of the projection p : G ª G 0 with kernel

Ž .[ G n . LetnG1

R s a g G: id m p D a s a m 1 .� 4Ž . Ž .

We know that R is a braided Hopf algebra in GŽ0.
YY DD and G is theGŽ0.

bosonization of R.
We shall say that a braided Hopf algebra with a grading of Yetter]

Drinfeld modules is graded if the grading is simultaneously an algebra
and coalgebra grading.

LEMMA 2.1. Keep the notation abo¨e.

Ž . Ž . Ž .i R is a graded subalgebra of G: R s [ R n , where R n snG 0
Ž .R l G n .

Ž .ii With respect to this grading, it is a braided graded Hopf algebra.
Ž . Ž . Ž . Ž . Ž .iii G n s R n aG 0 and R s R 0 s k1.0

Ž .Proof. Let r g R and let us decompose r s Ý r , with r g G j . Thenj j j
we write

D r s r m r h ,Ž . ÝG j j , h j
h

Ž . h Ž . Ž h.where r g G h , r g G j y h . Clearly, p r s 0 unless h s 0. Hencej, h j j
Ž . Ž . Ž . Ž .id m p D r g G j m G 0 . By definition of R,j

r m 1 s id m p D r ;Ž . Ž .Ý Ýj j
j j

Ž . Ž .taking homogeneous components, we see that r m 1 s id m p D r , i.e.,j j
Ž .that r g R. This proves i .j

Ž .It follows from the definition of the action and coaction that each R n
Ž .is a submodule and subcomodule. That is, R s [ R n is a grading innG 0GŽ0.

YY DD.GŽ0.
Ž .It is not difficult that R is a graded coalgebra. Indeed, if r g R j then

we write

D m id D r s a m b m c ,Ž . Ž . ÝG G h t jytyh
h , t

Ž . Ž . Ž .where a g G h , b g G t , c g G j y t y h . Henceh t jytyh

D r s a p SS b m cŽ . Ž .ÝR h t jytyh
h , t

s a p SS b m c g [ R h m R j y h .Ž . Ž . Ž .Ý h 0 jyh h
h
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Ž . Ž . Ž . Ž .Now we prove iii . The first claim is evident, since G n = R n aG 0 and
Ž . Ž . Ž .G s [ G n s [ R n m G 0 . As for the second, we know thatnG 0 nG 0

Ž . Ž .R : R 0 and R 0 s k1. Indeed, the contention follows since the coradi-0
w xcal is contained in the zero part of any coalgebra filtration M, 5.3.4 ; the

Ž .equality follows by definition. These two facts imply that R s R 0 s k1.0

2.2. Let A be a Hopf algebra and assume that its coradical A is a0
Ž .Hopf subalgebra for instance, A is pointed . Then the coradical filtration

is in fact a Hopf algebra filtration and the associated graded algebra

gr A s gr A n s AnrAŽ .[ [ ny1
nG0 nG0

Ž . w xwith A s 0 is a graded Hopf algebra. See M, 5.2.8 . If A has finitey1
dimension N, then gr A also has dimension N.

Ž . Ž .LEMMA 2.2. If gr A is generated as an algebra by gr A 0 [ gr A 1 then
A is generated as an algebra by A .1

Proof. This can be checked directly, or via the following argument:
Ž . Ž .A , gr A 1 are A -bimodules, and the projection A ª gr A 1 is a bimod-1 0 1

w x Ž .ule homomorphism. Since A is semisimple by LR , A , A [ gr A 1 as0 1 0
Ž Ž ..A -bimodules. We can consider the tensor algebra T gr A 1 and the0 A0

Ž Ž .. w xcorresponding map p : T gr A 1 ª A- see N, Prop. 1.4.1 . This map isA0

compatible with filtrations and the corresponding graded map is surjective.
w xThen p is surjective B, Sect. 2, no. 8 .

Ž .2.3 . Let A be a Hopf algebra whose coradical A is a Hopf sub-0
algebra.

LEMMA 2.3. The coradical filtration of gr A is gï en by

gr A s gr A n . 2.2Ž . Ž . Ž .[m
nFm

w x Ž .DEFINITION CM . A graded coalgebra satisfying 2.2 is called coradi-
cally graded.

Proof. We check this for m s 0, 1; the general case is similar or else
w xcan be deduced from these two cases by CM, 2.2 .

Ž . Ž .First, A s gr A 0 : gr A because it is cosemisimple. Conversely,0 0
Ž . Ž . Ž . Ž .the filtration gr A 0 ; gr A 0 [ gr A 1 ; ??? ; [ gr A n ; ??? isnF m

Ž . Ž . w xa coalgebra filtration hence gr A 0 = gr A Sw, 11.1.1 .0
Ž .Now we consider m s 1. Again, A [ A rA : gr A is easy. Let0 1 0 1

Ž .y g gr A and write1

y s y q y q ??? qy , y g A rA , y / 0.0 1 m j j jy1 m
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Hence

m

D y s D y g D y q gr A r m gr A s ,Ž . Ž . Ž .Ž .Ž .Ý [j m
rqs-mjs0

Ž . Ž . Ž . Ž .and D y s z q z q z , with z g gr A m m gr A 0 , z g gr A 0 mm 1 2 3 1 2
Ž . Ž . Ž .gr A m , z g [ gr A r m gr A s .3 rqssm , r , s) 0

Ž .Now assume that m ) 1. If z s 0, y s 0; and if z / 0, y f gr A .3 m 3 1
Ž .So m should be 1 and A [ A rA = gr A .0 1 0 1

Ž .2.4. Let G s [ G n be a coradically graded Hopf algebra. Let RnG 0
be the associated braided graded Hopf algebra, see 2.1.

Ž . Ž . Ž . Ž .LEMMA 2.4. i R s k1 s R 0 and P R s R 1 .0

Ž .ii R is a coradically graded coalgebra.
Ž . Ž . w Ž . Ž .xiii G s G 0 [ P R aG 0 .1

Ž . Ž .Proof. i We know that R s R 0 s k1 from Lemma 2.1.0
Ž . Ž . Ž .Let r g R 1 . Then D r s r m 1 q 1 m r , for some r , r g R 1 .R 1 2 1 2

Applying id m « and « m id to both sides of this equality, we conclude that
Ž . Ž .r s r s r. That is, P R = R 1 .1 2

Ž . Ž . Ž .Let now r g P R . If d r s r m r g G 0 m R, thenŽy1. Ž0.

D r s r m 1 q r m r .Ž .G Žy1. Ž0.

Ž . Ž .As G s G 0 , we deduce that r g G . But by hypothesis, G s G 0 [0 1 1
Ž . Ž . Ž . Ž . Ž .G 1 . Hence r g R 0 [ R 1 ; since « r s 0, we see that r g R 1 . That

Ž . Ž .is, P R : R 1 .
Ž . w xii By CM, 2.2 , it is enough to consider the cases m s 0, 1. The

Ž . Ž .case m s 0 is covered by i . For m s 1, we have, again by i ,

R s k1 [ P R s R 0 [ R 1 .Ž . Ž . Ž .1

Ž . Ž .iii This follows from Lemma 2.1 and ii .

2.5. Let H be a cosemisimple Hopf algebra. Let R be a braided graded
Hopf algebra in the category H

YY DD. Let G s RaH; it is easy to see that GH
is a graded Hopf algebra.

Ž . Ž . Ž .LEMMA 2.5. If R s k1 s R 0 and P R s R 1 , then G is a coradically0
graded Hopf algebra.
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3. QUANTUM LINEAR SPACES

As mentioned in the Introduction, we are interested in braided Hopf
algebras R in the category H

YY DD of Yetter]Drinfeld modules over a HopfH
w xalgebra H. We use in this section the notation of AS2, Section 4 .

w xA version of the following result appears in N, p. 1538 .

LEMMA 3.1. Let H be a finite dimensional Hopf algebra.

Ž . Ž .i Let x g H such that D x s x m 1 q g m x, gx s xg, for some
Ž .g g G H . Then x is a scalar multiple of g y 1.

Ž . Hii Let R be a finite dimensional braided Hopf algebra in YY DD. LetH
Ž . Ž .x g P R be a nonzero primitï e element such that d x s g m x, h. x s

Ž . Ž . Ž .x h x, for some g g G H , x g Alg H, k and for all h g H. Then q [
Ž .x g / 1.

Proof. Let S be the subalgebra of H generated by g and x; by
hypothesis, it is a commutative Hopf subalgebra and hence it is cosemisim-
ple by the Cartier]Kostant theorem. Looking at the expression of x in
terms of the decomposition of S in simple subcoalgebras, one concludes

Ž . Ž .that x s l g y 1 , for some l g k. This shows i .
Ž . Ž . Ž .For ii , we apply i to the element xa1 of A s RaH; by 2.1 ,

Ž . Ž .D x s x m 1 q g m x and gx s qxg. If q s 1 then x s l g y 1 , for some
l g k. This implies x s 0, a contradiction.

Ž . Ž .Let K be an arbitrary Hopf algebra. Let g g G K , x g Alg K, k such
Ž . Ž . Ž .that x h g s h x h g SS h , for all h g K. Let N be the order ofŽ1. Ž2. Ž3.
Ž .q [ x g ; we assume N is finite.

w x Ž N . HLet R s k y r y . Then R is a braided Hopf algebra in YY DD withH
K-module and K-comodule structures given by

h. y t s x t h y t , d y t s g t m y t ,Ž . Ž .R

Ž .and comultiplication uniquely determined by D y s y m 1 q 1 m y. ThisR
Ž .braided Hopf algebra will be denoted RR g, x . The braided Hopf algebras

Ž . Ž . wRR g, x and RR g, x are isomorphic only if g s g and x s x . See AS2,˜ ˜ ˜ ˜
xLemma 8.1 .

THEOREM 3.2. Let H be a finite-dimensional semisimple Hopf algebra.
Let R be a finite-dimensional braided Hopf algebra in H

YY DD. Assume thatH

Ž .1 R s k1, where R is the coradical of R.0 0

Ž . Ž .2 dim P R s 1.

Ž . Ž . Ž .Then there exist g g G H , and x g Alg H, k such that R , RR g, x .
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Ž . Ž . Ž .Proof. By 1 , P R / 0. As P R is a Yetter]Drinfeld submodule of
Ž . Ž .R, condition 2 implies the existence of g g G H and a character

x g H* such that

d x s g m x , h. x s x h x ;h g G H , x g P R .Ž . Ž . Ž . Ž .
Ž . Ž .Let N be the order of q s x g . Fix x g P R , x / 0. By the quantum

w x N w x Ž .binomial formula, dim k x s N and x s 0. In fact, k x , RR g, x .
w xHence we only need to prove that R s k x .

Consider the algebra R*. It has a unique maximal ideal, namely MM [
RH . MM, and a fortiori MM 2 and MMrMM 2, are Yetter]Drinfeld modules.0

2 Ž Ž ..Observe that MMrMM , P R * as H-modules. But, since H is semisimple,
the projection MM ª MMrMM 2 has an H-linear and H-colinear section.
Whence there exists T g MM y MM 2 such that

d T s gy1 m T , h.T s xy1 h T ;h g H .Ž . Ž .
w x 2 dy1It is not difficult to show that R* s k T . Hence 1, T , T , . . . , T is a

basis of R*, where d s dim R, and we can consider its dual basis
Ž j. yj j j yjŽ . jt , t , . . . , t . . . in R. Note that d T s g m T , h.T s x h T , ;h g0 1 N

Ž . j jŽ .H; hence d t s g m t , h.t s x h t , ;h g H.j j j j
On the other hand, consider the coradical filtration of R:

R s k1 : R s k1 [ P R : . . . : R : . . . .Ž .0 1 j

j Ž . jq1If j F N y 1, 1, x, . . . , x belong to R . As R * , R*rMM , we concludej j
that 1, x, . . . , x j form a basis of R . Hence there exist l g k such thatj j

l t s x j, j F N y 1.j j

Now assume d ) N and let z s t . ThenN

D z s D t s t m t s z m 1 q 1 m zŽ . Ž . ÝN i Nyi
0FiFN

q l l x i m x Ny i.Ý i Nyi
1FiFNy1

² :Therefore the subalgebra k x, z is a Hopf subalgebra of R. Now let us
compute

D xz s x m 1 q 1 m x z m 1 q 1 m z q l l x i m x Ny iŽ . Ž . Ý i Nyiž /
1FiFNy1

s xz m 1 q x m z q l l x iq1 m x Ny iÝ i Nyi
1FiFNy1

q z m x q 1 m zx q l l qi x i m x Nq1yi.Ý i Nyi
1FiFNy1
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Hence xz g R ; similarly, also zx g R . We conclude, looking at theNq1 Nq1
decomposition in H-submodules, that

xz s at q bx , zx s ct q dx ,Nq1 Nq1

w xfor some a, b, c, d g k. It follows from this that k x is a normal Hopf
² :subalgebra of k x, z , and we can form the quotient Hopf algebra. The

image of z in this finite dimensional braided Hopf algebra is invariant and
w x ² :primitive, hence 0. Then k x s k x, z , a contradiction.

Remark. The referee proposes an alternative proof of Theorem 3.2
which also works for H not semisimple. We sketch now the argument. One
shows first the following Proposition:

PROPOSITION. Let S be a finite-dimensional graded Hopf algebra in the
category H

YY DD of Yetter]Drinfeld modules o¨er a finite-dimensional HopfH
Ž . Ž . Ž .algebra H not necessarily semisimple . Suppose dim S 0 s dim S 1 s 1.

Ž .Then S is generated as an algebra by S 1 if and only if S is coradically graded
Ž .i.e., strictly graded in this case .

In fact, one needs to show only one implication, by duality. The proof
uses the quantum binomial formula. Theorem 3.2 follows from the first
paragraph of our proof and the Proposition passing to the coradically
graded Hopf algebra S s gr R, corresponding now to the coradical filtra-
tion of R. The following Corollary is also due to the referee:

COROLLARY. Let A be a finite-dimensional Hopf algebra whose coradical
is a Hopf subalgebra. If dim A s 2 dim A then the algebra A is generated1 0
by A .1

The proof follows from the Proposition using Lemma 2.4 and 2.2.
Let K be an arbitrary Hopf algebra.

DEFINITION. We shall say that a braided Hopf algebra R in K
YY DDK

Ž . Ž .satisfies hypothesis A if there exist a basis x , . . . , x of P R , and1 u

Ž . Ž .g , . . . , g g G K , x , . . . , x g Alg K, k such that for all j, 1 F j F u ,1 u 1 u

d x s g m x , h. x s x h x , for all h g K ,Ž . Ž .j j j j j j

and the order N of q [ x g is finite.Ž .j j j j

Ž .If K s k G is the group algebra of a finite abelian group G, hypothesis
Ž .A always holds; see the remarks after Corollary 5.3.

Ž .If q g k and 0 F i F n - ord q, we set 0 !s 1,q

n ! q n y 1Ž . qn s , where n !s i , n s .Ž . Ž . Ž .q q qŁž /i i ! n y i ! q y 1q Ž . Ž .q q 1FiFn
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By the quantum binomial formula, if 1 F n - N , thenj j

n jn i n yij j j jD x s x m x .Ž . Ýj j již /j0Fi Fn qj j j

We use the notation

n s n , . . . , n , . . . , n , xn s x n1 . . . x n j . . . x nu ,Ž .1 j u 1 j u

< <n s n q ??? qn q ??? qn ;1 j u

Ž . Ž .accordingly, N s N , . . . , N , 1 s 1, . . . , 1 . Also, we set1 u

i F n if i F n , j s 1, . . . , u .j j

Then, for n F N y 1, we deduce from the quantum binomial formula that

D xn s xn m 1 q 1 m xn q c x i m xny i ,Ž . Ý n , i
0FiFn
0/i/n

where c / 0 for all i. We shall needn, i

D x x s x m 1 q 1 m x x m 1 q 1 m xŽ . Ž .Ž .j i j j i i

s x x m 1 q x m x q x g x m x q 1 m x x , 3.1Ž . Ž .j i j i i j i j j i

for 1 F j, i F u .

LEMMA 3.3. Let R be a braided Hopf algebra in K
YY DD satisfying hypothe-K

Ž . � n 4sis A . Then x : n F N y 1 is linearly independent. Hence, dim R G
Ž . uN . . . N . In particular if any element of G K has order p, then dim R G p .1 u

Proof. We shall prove by induction on r that the set

n < <� 4x : n F r , n F N y 1

is linearly independent.
Let r s 1 and let a q Ýu a x s 0, with a g k, 0 F j F u . Applying0 is1 i i j

« , we see that a s 0; by hypothesis we conclude that the other a ’s are0 j
also 0.

Now let r ) 1 and suppose that z s Ý a xn s 0. Thenn: <n < F r n

0 s D z s z m 1 q 1 m z q a c x i m xny iŽ . Ý Ýn n , i
< < 0FiFn1- n Fr

0/i/n

s a c x i m xny i .Ý Ý n n , i
< < 0FiFn1- n Fr

0/i/n



LIFTING OF QUANTUM LINEAR SPACES 675

< < < < < <Now, if n F r, 0 F i F n, and 0 / i / n, the i - r and n y i - r. By
inductive hypothesis, the elements x i m xny i are linearly independent.

< <Hence a c s 0 and a s 0 for all n, n ) 1. By the step r s 1, a s 0n n,i n n
for all n.

Ž . Ž .Let now u g N and g , . . . , g g G K , x , . . . , x g Alg A, k . We as-1 u 1 u

sume that

the order N of q [ x g is finite. To avoid degenerate casesŽ .j j j j

we also assume N ) 1; cf. Lemma 3.1. 3.2Ž .j

g g s g g , x x s x x , for all i , j. 3.3Ž .i j j i i j j i

x h g s h x h g SS h , for all h g K , 1 F i F u . 3.4Ž . Ž .Ž . Ž .i i Ž1. i Ž2. i Ž3.

x g x g s 1, for all i / j. 3.5Ž . Ž . Ž .j i i j

Ž .For K s k G with G finite abelian, the following Lemma was essentially
w xproved in N, p. 1539 .

Let R be the algebra generated by x , . . . , x , with relations1 u

x N1 s 0, . . . , x Nu s 0, 3.6Ž .1 u

x x s x g x x , if i / j. 3.7Ž . Ž .i j j i j i

LEMMA 3.4. R has a unique braided Hopf algebra structure in K
YY DD suchK

that the action and coaction are determined by

d x s g m x , h. x s x h x ;h g G , 1 F j F u ,Ž . Ž .j j j j j j

and the x ’s are primitï e. The dimension of R is N . . . N . The coradical of Ri 1 u

Ž . Xis k1 and the space P R of primitï e elements is the span of the x s. R is ai
coradically graded Hopf algebra, with respect to the grading where the x ’s arei
homogeneous of degree 1.

Ž .We denote this braided Hopf algebra by RR g , . . . , g ; x , . . . , x ; it will1 u 1 u

be called a quantum linear space over K.

Proof. We first observe that R is a K-module algebra and a K-comod-
Ž .ule algebra because of conditions 3.3 . Indeed, we can extend the preced-

ing action and coaction of K to the free algebra on generators x , . . . , x ;1 u

Ž . Ž .then we have to see that the ideal generated by the relations 3.6 and 3.7
Ž . Ž .is stable by the action and coaction. This is clear for 3.6 ; for 3.7 , it

Ž .follows from 3.3 . In addition, the Yetter]Drinfeld condition on R holds
Ž .because of, and indeed is equivalent to, 3.4 .
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We verify next that the elements 1 m x q x m 1 g R m R satisfy rela-i i
Ž . Ž .tions 3.6 and 3.7 . The first follows from the quantum binomial formula;

Ž .the second, by direct computation using 3.5 . The counit is determined by
Ž .« x s 0. The existence of the antipode follows from a Lemma ofi

w xTakeuchi, see M, 5.2.10 : it is enough to check that the restriction of the
identity to the coradical of R is invertible. But is not difficult to see that
R s k1. Indeed R is a graded coalgebra whose homogeneous part of0

w xdegree 0 is k1; then use Sw, 11.1.1 . Thus R is a braided Hopf algebra. By
Ž . Ž .Lemma 3.3, dim R G N . . . N . But 3.6 and 3.7 guarantee that the1 u

� n 4monomials x : n F N y 1 generate R as vector space; whence dim R s
N . . . N .1 u

Ž .Finally, it is clear that R s [ R n is a graded Hopf algebra, wherenG 0
Ž . n < < Ž .R n is generated by the monomials x such that n s n. Let z g P R ;

we can assume that z is homogeneous. By the same argument as in the
Ž .proof of Lemma 3.3, n s 1. That is, R s P R . The last assertion follows1

w xfrom CM, 2.2 .

Quantum linear spaces are characterized by the following Proposition.

PROPOSITION 3.5. Let R be a braided Hopf algebra in K
YY DD satisfyingK

Ž .hypothesis A . Assume that

dim R s N . . . N .1 u

Then:

Ž . Ž . Ž .i x g x g s 1, for all i / j; andj j i i

Ž .ii R is a quantum linear space.

Ž . � nProof. Relations 3.6 hold by Lemma 3.1. By Lemma 3.3, x : n F
4N y 1 is a basis of R, which is then generated as an algebra by x , . . . , x .1 u

If i ) j, x x can be expressed byi j

x x s c xn ,Ýi j n
n

for some c g k. Applying D, we see that c s 0 unless xn s x x ; son n j i
Ž .x x s cx x , for some c g k. By 3.1 , we havei j j i

x x m 1 q x m x q x g x m x q 1 m x xŽ .i j i j j i j i i j

s cx x m 1 q cx m x q cx g x m x q 1 m cx x .Ž .j i j i i j i j j i

Ž . Ž . Ž .By Lemma 3.3 again, c s x g and cx g s 1. Hence i and relationsj i i j
Ž .3.7 hold. Applying the action and coaction to both sides of the equality
Ž . Ž .3.7 , the conditions 3.3 follow.
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We can define now a surjective algebra homomorphism

RR g , . . . , g ; x , . . . , x ª R ,Ž .1 u 1 u

which is also a morphism of Yetter]Drinfeld modules. It is easy to
conclude that it is a homomorphism of braided Hopf algebras. By a
dimension argument, this map is an isomorphism.

4. QUANTUM LINEAR SPACES OVER
ABELIAN GROUPS

Ž .Let G be a finite nontrivial abelian group and let H s k G . We discuss
in this section the existence of quantum linear spaces over H.

Let u g N. A datum for a quantum linear space consists of elements
ˆ Ž . Ž .g , . . . , g g G, x , . . . , x g G such that conditions 3.2 , . . . , 3.5 hold. Ex-1 u 1 u

plicitly, and because G is abelian, we are then requiring the following
conditions:

q [ x g / 1. 4.1Ž . Ž .j j j

x g x g s 1, for all i / j. 4.2Ž . Ž . Ž .j i i j

We shall say that the datum, or its associated quantum linear space, has
rank u . Given u , we are interested in describing all the data of rank u .

Ž .This description could be very cumbersome. Let u G be the greatest
integer u such that a datum of rank u exists.

LEMMA 4.1. Let G s K = H, where K and H are finite abelian groups.
Ž . Ž . Ž .Then u G G u K q u H . If the orders of K and H are coprime, then

Ž . Ž . Ž .u G s u K q u H .

ˆ ˆProof. We identify H, K with subgroups of G, and H, K with sub-
ˆgroups of G. Let h , . . . , h , h , . . . , h be a datum for H and let1 m 1 m

k , . . . , k , z , . . . , z be a datum for H. Then1 n 1 n

ˆh , . . . , h , k , . . . , k in G , h , . . . , h , z , . . . , z in G ,1 m 1 n 1 m 1 n

Ž . Ž . Ž .is clearly a datum for G. Hence u G G u K q u H .
Conversely, assume that the orders of H and K are coprime and let

ˆg , . . . , g g G, x , . . . , x g G be a datum for G. Let us decompose1 u 1 u

g s h k , where h g H , k g K ,i i i i i

and

ˆ ˆx s h z , where h g H , j g K , 1 F i F u .i i i i i
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� Ž . 4We claim that h , h , i g I, where I [ i: h h / 1 is a datum for H,i i i i
� Ž . 4and, similarly, that k , z , i g J, where J [ i: z k / 1 is a datum for K.i i i i

Clearly,

x g / 1 implies h h / 1 or z k / 1;Ž . Ž . Ž .i i i i i i

Ž . Ž . Ž .that is, the claim implies u G F u K q u H . We check then the claim.
Ž . Ž .Condition 4.1 is forced by the choice of the index sets. For 4.2 , observe

that

1 s x g x g s h h h h z k z kŽ . Ž . Ž . Ž .Ž . Ž .j i i j j i i j j i i j

Ž . Ž . Ž . Ž . Ž . Ž .implies 1 s h h h h s z k z k , because the orders of h h h hj i i j j i i j j i i j
Ž . Ž .and z k z k are coprime.j i i j

By the preceding Lemma, we are reduced to investigate the behavior of
Ž .u G when G is an abelian p-group, p a prime.

LEMMA 4.2. Let G be a cyclic p group, where p is an odd prime. Then
Ž .u G s 2.

Ž .Proof. We first prove that u G F 2. It is enough to show that no
datum of rank 3 exists. Let us assume, on the contrary, that g , g , g g1 2 3

ˆ Ž . Ž .G, x , x , x g G, satisfy 4.1 , 4.2 . Let g be a generator of the subgroup1 2 3
² : sg , g , g and let p be the order of g, where s is a positive integer. Let1 2 3
z be a primitive psth root of 1. Let a , a , a , b , b , b be integers such1 2 3 1 2 3
that

g s g bi , x g s z ai , 1 F i F 3.Ž .i i

Ž . s Ž .Then condition 4.1 means that a b k 0 mod p and 4.2 thati i

a b q a b ' 0 mod ps 4.3Ž .1 2 2 1

a b q a b ' 0 mod ps 4.4Ž .1 3 3 1

a b q a b ' 0 mod ps . 4.5Ž .2 3 3 2

On the other hand, there exist integers r , r , r such that1 2 3

b r q b r q b r ' 1 mod ps . 4.6Ž .1 1 2 2 3 3

Ž . Ž . Ž . ŽNow, we multiply 4.3 by b , 4.4 by b , 4.5 by b , and conclude since p3 2 1
.is odd that

a b b ' 0 mod ps , a b b ' 0 mod ps , a b b ' 0 mod ps .1 2 3 2 1 3 3 1 2

Let us write
& &

ta s p a , where t G 0, p ¦ a .1 1 1
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Then psy t N b b and hence there exist positive integers h, j such that2 3
h < j < Ž . Ž . tqh <p b , p b and h q j s s y t. From 4.3 , 4.4 we deduce that p a b2 3 2 1

tq j <and p a b . Now assume that p ¦ b . Then3 1 1

tqh < tq2 h <p a « p a b « t q 2h - s,2 2 2

Ž . Ž .and similarly, t q 2 j - s. But then h - s y t r2, j - s y t r2 and
therefore h q j - s, which is not possible. Hence p N b . By symmetry,1

< < Ž . Ž .p b , p b . This contradicts 4.6 and finishes the proof of u G F 2.2 3
Let g denote now a generator of G and let again ps be the order of g

and z a primitive psth root of 1. Then g s g, g s g a, x given by1 2 1
Ž . Ž . yax g s z and x given by x g s z is a datum of rank 2 whenever1 2 2

2 sa k 0 mod p .

5. POINTED HOPF ALGEBRAS WHOSE DIAGRAMS ARE
QUANTUM LINEAR SPACES

² :Let G be a finite abelian group. We fix a decomposition G s y1
² :[ ??? [ y and we denote by M the order of y , 1 F l F s .s l l

ˆLet g , . . . , g g G, x , . . . , x g G be a datum for quantum linear space;1 u 1 u

Ž . Ž . Ž .i.e., 4.1 , 4.2 hold. We set q s x g , N the order of q . We abbreviatei i i i i
Ž .RR [ RR g , . . . , g ; x , . . . , x for the quantum linear space defined in1 u 1 u

Section 3.
A compatible datum DD for G and RR consists of

Ž . � 45.1 a scalar m g 0, 1 for each i, 1 F i F u ; it is arbitrary ifi
g Ni / 1 and x Ni s 1, but 0 otherwise;i i

Ž .5.2 a scalar l g k for each i, j, 1 F i - j F u ; it is is arbitrary ifi j
g g / 1 and x x s 1, but 0 otherwise.i j i j

Remark. If l / 0 and l / 0, then x x s 1 and x x s 1; hencei j ih i j i h
Ž .x s x . If in addition the order N of q [ x g is odd, then j s h.j h i i i i

Indeed, suppose j / h. Then
y1 y1 y21 s x g x g s x g x g s x g .Ž . Ž . Ž . Ž . Ž .j h h j i h i j i i

Ž . y1Here, the first equality is by 4.2 ; the second, because x s x s x ; thej h i
Ž .y1 Ž . Ž .y1third, because x g s x g s x g and similar with h instead of j.i i j i i j

Ž . Ž .Now N odd forces 1 s x g , which is excluded by 3.2 .i i i

²Let h be the injective map from G to the free algebra k h , . . . , h ,1 s

:a , . . . , a given by1 u

h y n1 , . . . , y ns s hn1 . . . hns , 0 F n F M y 1, 1 F l F s .Ž .1 s 1 s l l

We shall identify elements of G with elements of the free algebra
² :k h , . . . , h , a , . . . , a via h without further notice.1 s 1 u
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DEFINITION. Let G be a finite abelian group, RR a quantum linear
space, and DD a compatible datum. Keep the notation above. Let
Ž .AA G, RR, DD be the algebra presented by generators h , 1 F l F s , andl

a , 1 F i F u with defining relationsi

hMl s 1, 1 F l F s ; 5.3Ž .l

h h s h h , 1 F t - l F s ; 5.4Ž .l t t l

a h s xy1 y h a , 1 F l F s , 1 F i F u ; 5.5Ž . Ž .i l i l l i

aNi s m 1 y g Ni , 1 F i F u ; 5.6Ž .Ž .i i i

a a s x g a a q l 1 y g g , 1 F i - j F u . 5.7Ž . Ž .Ž .j i i j i j i j i j

We shall denote in what follows by the same letters the generators of
² : Ž .the free algebra k h , . . . , h , a , . . . , a and their classes in AA G, RR, DD ;1 s 1 u

no trouble should arise.

Ž .LEMMA 5.1. There exists a unique Hopf algebra structure on AA G, RR, DD

such that

D h s h m h , D a s a m 1 q g m a , 1 F l F s , 1 F i F u .Ž . Ž .l l l i i i i

5.8Ž .

² : Ž .Proof. Let also D: k h , . . . , h , a , . . . , a ª AA G, RR, DD m1 s 1 u

Ž . Ž . Ž .AA G, RR, DD denote the algebra map defined by 5.8 . Clearly, D h s h m h
whenever h is a monomial in the h ’s. We have to verify that the elementsl
H s h m h , A s a m 1 q g m a satisfy the defining relations. This isl l l i i i i

Ž . Ž . Ž . Ž . Ž .not difficult for 5.3 , 5.4 , 5.5 . For relations 5.6 , 5.7 , the reason is the
same: both sides of each equality are skew-primitive elements related to
the same group-likes. For instance, we have

N N N N N N Ni i i i i i iD a s a m 1 q g m a s m 1 y g m 1 q g m m 1 y gŽ . Ž . Ž .i i i i i i i i i

s Dm 1 y g Ni .Ž .i i

Ž .Here the first equality follows from 5.4 and the definition of D via the
quantum binomial formula, since the order of q is N ; the second, fromi i
Ž . Ž . Ž .5.6 ; the third is clear. This proves that H , A satisfy 5.6 . For 5.7 , thel i
computation is also direct. It is clear that D is coassociative.

Ž . Ž .The algebra map « : AA G, RR, DD ª k uniquely determined by « h sl
Ž . Ž .1, « a s 0, for all l and i, is the counit of AA G, RR, DD . We claim thati

Ž . Ž .o pthere is a unique algebra map SS : AA G, RR, DD ª AA G, RR, DD such that
for all l and i,

SS h s hy1 , SS a s ygy1a .Ž . Ž .l l i i i
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Ž . Ž . Ž . Ž .The verification of relations 5.3 , 5.4 , 5.5 , 5.7 is straightforward. For
Ž .5.6 , we first check by induction that

n n nŽny1.r2 yn nSS a s y1 q g a .Ž . Ž .i i i i

Ž .Ni NiŽNiy1 .r2As q is a primitive N th root of 1, y1 q s y1. Hencei i i

N NyN N yNi ii i iSS a s yg a s m 1 y g s m 1 y SS g .Ž . Ž .Ž . Ž .i i i i i i i

The map SS is clearly an antipode and the Lemma follows.

PROPOSITION 5.2. Let G be a finite abelian group, RR a quantum linear
space, and DD a compatible datum. Keep the notation abo¨e. The set of
monomials

hr1 . . . hrs as1 . . . aru , 0 F r - M , 0 F s - N , 1 F l F s , 1 F i F u1 s 1 u l l i i

Ž .is a basis of AA G, RR, DD . In particular,

< <dim AA G , RR, DD s M N s G dim RR. 5.9Ž . Ž .Ł Łl i
1FlFs 1FiFu

Proof. Let us assume that the scalars m , l are arbitrary. It is noti i j
Ž . Ž . Ž .difficult to conclude from relations 5.4 , 5.5 , and 5.7 that these mono-
Ž .mials generate the vector space AA G, RR, DD . By the Diamond Lemma

w xBe , it is then enough to verify that the following overlaps can be reduced
to the same normal form:

a h hMly1 s a h hMly1 ; 5.10Ž . Ž .Ž .i l l i l l

a h h s a h h , t - l ; 5.11Ž . Ž . Ž .i l t i l t

aNiy1a h s aNiy1 a h ; 5.12Ž . Ž .Ž .i l i i l

aNjy1a a s aNjy1 a a , i - j; 5.13Ž . Ž .Ž .j j i j j i

a a aNiy1 s a a aNiy1 , i - j; 5.14Ž . Ž .Ž .j i i j i i

a a h s a a h , i - j. 5.15Ž . Ž . Ž .j i l j i l

Here we order the monomials in the following way. If z - z - ??? - z1 2 m
are indeterminates, we define the standard ordering on monomials A, B

Ž . Ž .in z , . . . , z in the usual way; A - B if length A - length B , or A and1 m
B have the same length and A is lexicographically smaller than B. If A is

Ž .a monomial in h , . . . , a , let f A be its a-part, that is the image under1 u

Ž . Ž .the monoid homomorphism f with f h s 1, f a s a for all l, i. Wel i i
order the monomials in h , . . . , a as follows: h - ??? - h - a - ??? -1 u 1 s 1
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Ž . Ž .a ; A - B if f A - f B in the standard ordering of the monomials inu

Ž . Ž .a , . . . , a , or f A s f B and A is smaller than B in the standard1 u

ordering of h , . . . , a .1 u

Ž . Ž .The verification of 5.10 , 5.11 is easy and gives no condition. The
Ž .verification of 5.12 amounts to

NN y1 Nii im 1 y g h s m x y h 1 y g .Ž .Ž . Ž .i i l i i l l i

This imposes the condition

if g Ni / 1 and x Ni / 1 then m s 0. 5.16Ž .i i i

Ž .The verification of 5.13 turns to

NN Njj jm 1 y g a s m x g a y m g aŽ .Ž .j j i j i j i j j i

2 N y1 N y1j jq l 1 q x g q x g q ??? qx g a ;Ž . Ž . Ž .ž /i j i j i j i j j

and so we need the conditions

2 N y1jl 1 q x g q x g q ??? qx g s 0. 5.17Ž . Ž . Ž . Ž .ž /i j i j i j i j

NN jjIf g / 1 and x g / 1 then m s 0. 5.18Ž . Ž .j i j j

Ž . Ž .In the same vein, for 5.14 and 5.15 it is necessary that

2 N y1il 1 q x g q x g q ??? qx g s 0. 5.19Ž . Ž . Ž . Ž .ž /i j i j i j i j

NN iiIf g / 1 and x g / 1 then m s 0. 5.20Ž . Ž .i i j i

If g g / 1 and x x / 1 then l s 0. 5.21Ž .i j i j i j

Now it is harmless to assume that

m s 0 if g Ni s 1, l s 0 if g g s 1.i i i j i j

Ž .The combination of this last assumption and 5.16 is exactly the constraint
Ž . Ž .in 5.1 ; in turn, the constraint in 5.2 is equivalent to the assumption

Ž . Ž . Ž . Ž .together with 5.21 . Also, condition 5.16 implies 5.18 and 5.20 . It
Ž . Ž . Ž .remains to show that 5.17 and 5.19 are consequences of 5.21 .

Ž .Indeed, assume that l / 0; by 5.21 , this is only possible if g g / 1i j i j
Ž . Ž .y1 Ž .and x x s 1. But then x g s x g , thanks to 4.2 . Thus N s N .i j i i j j i j

Ž .Nj Ž .Nj Ž .Nj Ž .Moreover, x g x g s 1 and hence x g s 1. Therefore 5.17i j j j i j
Ž .and 5.19 hold.
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Ž .COROLLARY 5.3. The Hopf algebra AA G, RR, DD is pointed and its coradi-
cal filtration is gï en by

AA G , RR, DDŽ . n

s hr1 . . . hrs as1 . . . asu , 0 F r - M , 0 F s - N , ; l , i , s F n .Ý¦ ;1 s 1 u l l i i i
i

5.22Ž .
In particular,

P AA G , RR, DD s k 1 y g [ ka , 1 F i F u ,Ž . Ž .Ž . [g , 1 i ji ž /
j: g sgj i 5.23Ž .

P AA G , RR, DD s k 1 y g if g / g .Ž . Ž .Ž .g , 1 i

w x Ž .Proof. The subalgebra k h , . . . , h of AA G, RR, DD coincides with its1 s

w x Ž . w xcoradical. Indeed, k h , . . . , h > AA G, RR, DD by M, 5.5.1 and the other1 s 0
Ž . Ž .inclusion is evident. Hence, AA G, RR, DD is pointed and AA G, RR, DD is0

isomorphic to the group algebra of G.
Ž .Now we consider the graded Hopf algebra gr AA G, RR, DD associated to

Ž .the coradical filtration, and the diagram of AA G, RR, DD . It follows from
Proposition 5.2 that the diagram is isomorphic to RR. By Lemma 3.4, we
know the coradical filtration of RR. By Lemmas 2.3 and 2.4, we know then

Ž .the coradical filtration of gr AA G, RR, DD . We conclude, by a recursive
Ž . Ž .argument that the coradical filtration of AA G, RR, DD is given by 5.22 . In

particular,

AA G , RR, DD s AA G , RR, DD [ AA G , RR, DD a [ AA G , RR, DD a ???Ž . Ž . Ž . Ž .1 0 0 01 2

[ AA G , RR, DD a .Ž . 0 u

Ž .The claim 5.23 follows by a direct computation.

Let now A be a finite-dimensional pointed Hopf algebra such that the
Ž .group G A of its group-like elements is isomorphic to G. We denote

Ž . w x Ž .H s k G . By the Theorem of Taft and Wilson M, Thm. 5.4.1 , A s k G1
Ž .q [ P .g , hg , hg G

Ž . x Ž .If M is an H-module respectively, comodule then M resp., Mg
ˆ Ž .denotes the isotypic component of type x g G resp., of type g g G . If M

is an object in H
YY DD then M x [ M l M . Any finite-dimensional M gH g g x

H
YY DD decomposes asH

M s M x .[ g
ˆggG , xgG

The adjoint action of G on A leaves stable each space P ; hence, weg , h
can further decompose P s [ P x .ˆg , h g , hx g G
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LEMMA 5.4. Let gr A be the graded Hopf algebra associated to the
coradical filtration and let R be the diagram of A.

Ž .i The first term of the coradical filtration of A is gï en by

A s k G [ P x .Ž . [1 g , hž /g , hgG
ˆxgG , x/e

Ž .Thus the second summand is isomorphic to gr A 1 .
Ž . Ž . Ž . Ž . Ž .ii If P R s [ P R with P R / 0, then P A containsg g g , h1F iF M i i

Ž . Ž . Ž . Ž . Ž .properly P A l k G s k g y h if and only if g, h s g s, s , forg , h i
some s g G.

e Ž .Proof. If e is the trivial character of G, then P ; k G by Lemmag , h
e Ž . Ž . Ž .3.1. Since G is abelian, P s P l k G . This shows part i . Part iig , h g , h
Ž . Ž .follows at once from part i and formulas 2.1 .

LIFTING THEOREM 5.5. Let A be a pointed finite-dimensional Hopf
Ž .algebra with coradical H s k G , where G is an abelian group as abo¨e. Let

gr A be the graded Hopf algebra associated to the coradical filtration. Let RR

be the diagram of A. We assume that RR is a quantum linear space.
Then there exists a compatible datum DD such that A is isomorphic to
Ž .AA G, RR, DD as Hopf algebras.

Proof. Let x , . . . , x be the generators of RR satisfying the relations1 u

Ž . Ž . Ž .3.6 , 3.7 . We identify x , resp. h g G, with x a1, resp. 1ah, in RRak Gj j
Ž ., gr A. By 2.1 , we see that gr A can be presented by generators h , 1 Fl

Ž . Ž .l F s , x , 1 F i F u and relations 5.3 , 5.4 ,i

x Ni s 0, 5.24Ž .i

h x s x h x h , 5.25Ž . Ž .l i i l i l

x x y x g x x s 0, 5.26Ž . Ž .i j j i j i

for all 1 F l F s , 1 F i / j F u . The Hopf algebra structure of gr A is
determined by

D h s h m h , D x s x m 1 q g m x ,Ž . Ž .i i i i

Ž . x i1 F i F u , h g G. Hence x g P gr A . According to Lemma 5.4, wei g , 1i
x iŽ . Ž .can choose a g P A such that a s x in gr A 1 s A rA . By Lemmai g , 1 i i 1 0i

2.2, A is generated by h , 1 F l F s , a , 1 F i F u . It is clear that relationsl i
Ž . Ž . Ž . Ž . Ž .5.3 and 5.4 also hold in A. We verify now that relations 5.5 , 5.6 , 5.7
hold for some collection of scalars m , l , and at the same time, that thisi i j

Ž . Ž . Ž .choice must fulfill the constraints in 5.1 and 5.2 . For 5.5 , this follows
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Ž .from the choice of the a ’s. We check 5.6 . By the quantum binomiali
formula,

x NiN ii Na g P A .Ž .ii g , 1i

We know that

g aNi gy1 s x Ni g aNi s q Ni aNi s aNi ;Ž .i i i i i i i i i

Ni Ž Ni .by Lemma 3.1, a g k g y 1 . Dividing out a by an appropriate scalar,i i i
Ž . Niwe see that relations 5.6 hold, for m either 0 or 1. If g s 1 we cani i

assume without trouble that m s 0. So let us suppose that g Ni / 1. Ifi i
m s 1 theni

h aNi hy1 s aNi s x Ni h aNi ;Ž .l i l i i l i

hence x Ni is forced to be 1.i
Ž . Ž .We prove now 5.7 . By 4.2 and the choice of the a ’s, it follows thati

x xi ja a y x g a a g P A .Ž . Ž .i j j i j i 1, g gi j

Ž . Ž .By Lemma 5.4, if a a y x g a a f k G , then for some h / i, j, x x si j j i j i i j
Ž .x and g g s g . By 4.2 again,h i j h

21 s x g x g s x g x g x g x g s x gŽ . Ž . Ž . Ž . Ž . Ž . Ž .h i i h i i j i i i i j i i

Ž . Ž .and hence x g s y1. Similarly, x g s y1. Soi i j j

x g s x g x g x g x g s 1,Ž . Ž . Ž . Ž . Ž .h h i i j i i j j j

Ž . Ž .a contradiction. Therefore, a a y x g a a g k G and by Lemma 3.1,i j j i j i
Ž . Ž . Ž .there exist scalars l such that a a y x g a a s l 1 y g g ; i.e., 5.7i j i j j i j i i j i j

holds. If g g s 1 we assume without harm that l s 0. If g g / 1 andi j i j i j
l / 0 then, arguing as for the m ’s, we see that x x s 1. Hence thei j i i j

Ž .collection l satisfies the constraints of 5.2 .i j
Ž .Then the datum DD s m , l is compatible and we have a Hopfi i j

Ž . Ž .algebra surjection AA G, RR, DD ª A. As AA G, RR, DD and A have the same
dimension, they are isomorphic.

We deduce now Theorem 0.2 from Theorem 5.5. We need the following
Lemma.
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Ž .LEMMA 5.6. Let G be a finite nontrï ial abelian group and let H s k G .
Let R be a braided Hopf algebra in H

YY DD, with trï ial coradical: R sH 0
Ž .R 0 s k1.

Ž . Ž .a If dim R s p then dim P R s 1 and R is a quantum line.
Ž . 2 Ž .b If dim R s p then dim P R s 1 or 2, and R is respectï ely a

quantum line or a quantum plane.

Proof. Let R be a finite-dimensional braided Hopf algebra in H
YY DD,H

Ž .with trivial coradical. Since R s k1 and R q R , P R / 0. On the other0 0
Ž . Ž .hand, P R is a Yetter]Drinfeld submodule of R, hence P R s

Ž . x[ P R .ˆ gg g G, x g G
x ˆŽ . Ž .Let x g P R , x / 0, for some g g G, x g G. Let q s x g and let Ng

be the order of q; q / 1 by Lemma 3.1; that is, N ) 1. It is not difficult to
w xsee that the subalgebra k x of R is a braided Hopf subalgebra of

dimension N. It follows from the Nichols]Zoeller Theorem that N divides
w xthe dimension of R, see AS2, Proposition 4.9 .

Ž . Ž . x jLet x , . . . , x be a basis of P R such that x g P R , for some1 u j g jˆ Ž .g g G, x g G, for all j. Let N be the order of x g .j j j j j
w xIf the dimension of R is p, the considerations above show that R s k x .1

Ž .This proves part a .
We now assume that the dimension of R is p2. If N s p2, then u s 11

and R is a quantum line. So we can further suppose that N s p for all j.j
By Lemma 3.3, u F 2. If u s 1, then Theorem 3.2 forces dim R s p. This a
contradiction and therefore u s 2. We conclude then, by Proposition 3.5,
that r is a quantum plane.

Proof of Theorem 0.2. Let gr A be the graded Hopf algebra associated
to the coradical filtration and let R by the braided Hopf algebra in H

YY DDH
such that gr A , RaH as in 2.2. If the index of H in A is p or p2, then R
is a quantum line or plane, according to Lemma 5.6. The description
follows now from Theorem 5.5.

6. FAMILIES OF HOPF ALGEBRAS OF
THE SAME DIMENSION

We shall specialize Proposition 5.2 to the simplest possible G and RR and
suitable DD.

Let us assume that G is a cyclic group of order MN, where M ) 1 and
N ) 2. Let us fix a generator y of G. Let q be a primitive Nth root of 1.
We consider the following datum of quantum linear plane:

ˆ y1g s g s y g G , x , x g G , x y s q , x y s q .Ž . Ž .1 2 1 2 1 2
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We consider the compatible datum

DD s m s 1, m s 1, l s l ,Ž .1 2 i j

where l g k is arbitrary.
As above, given a positive integer n, G denotes the group of nth rootsn

of 1 in k.

Ž .THEOREM 6.1. Let BB M, N, q, l be the algebra presented by generators
h, a , a with defining relations1 2

hNM s 1; 6.1Ž .
ha s qa h , ha , s qy1a h; 6.2Ž .1 1 2 2

aN s 1 y hN , aN s 1 y hN ; 6.3Ž .1 2

a a y qa a s l 1 y h2 . 6.4Ž . Ž .2 1 1 2

Ž . 3Then BB M, N, q, l has dimension MN and carries a Hopf algebra structure
gï en by

D h s h m h , D a s a m 1 q h m a , 1 F i F 2.Ž . Ž .i i i

It is pointed and its coradical filtration is gï en by

² i j1 j2 :BB M , N , q , l s h a a : 0 F i F NM , 0 F j , 0 F j , j q j F n .Ž . n 1 2 1 2 1 2

6.5Ž .

In particular,

P BB M , N , q , l s k 1 y h [ ka [ kaŽ . Ž .Ž .h , 1 1 2
6.6Ž .

P BB M , N , q , l s k 1 y g if g g G , g / h.Ž . Ž .Ž .g , 1

˜Ž . Ž .The Hopf algebras BB M, N, q, l and BB M, N, q, l are isomorphic if
˜and only if l s ul for some u g G .N

Proof. The Hopf algebra structure and the dimension statements fol-
low from Lemma 5.1 and Proposition 5.2. The description of the coradical
follows from Corollary 5.3. &˜We prove now the isomorphism statement. We denote by h, a , thei

˜Ž . Ž .generators of BB M, N, q, l . We assume first that BB M, N, q, l and
˜ ˜Ž . Ž . Ž .BB M, N, q, l are isomorphic; let f : BB M, N, q, l ª BB M, N, q, l by a

Hopf algebra isomorphism. Then f induces a linear isomorphism

˜P BB M , N , q , l ª P BB M , N , q , l .Ž .Ž . ˜ Ž .Ž .h , 1 f Žh. , 1
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˜Ž . Ž Ž .. Ž Ž ..By 6.6 , dim P BB M, N, q, l s 3; hence dim P BB M, N, q, l sh, 1 f Žh., 1
˜Ž . Ž .3 and by 6.6 again, we have f h s h.& &˜Ž . Ž .Let us write f a s a 1 y h q a a q a a , for some a g k.1 1 2 1 3 1 i

Ž . Ž . Ž . Ž .y1 Ž .By 6.2 , we have f h f a f h s qf a . Hence a s 0 s a and1 1 1 3& &
Ž . Ž .f a s a a , with a / 0. By a similar reason, f a s b a , with b / 0.1 2 1 2 2 3 2 3

Ž .Now, by 6.3 ,

&N
N N N N N N˜ ˜1 y h s f 1 y h s f a s a a s a 1 y h .Ž . Ž .Ž .1 2 1 2

N N Ž .Hence a s 1, and similarly b s 1. Notice finally that 6.4 implies2 3

˜a b l s l.2 3

˜Conversely suppose that l s ul for some u g G . Then there is a HopfN
˜Ž . Ž .algebra isomorphism f : BB M, N, q, l ª BB M, N, q, l uniquely deter-

mined by
& &˜f h s h , f a s a , f a s ua .Ž . Ž . Ž .1 1 2 2

The following result is a consequence of the argument of the proof of
the Theorem and answers a question of Masuoka.

COROLLARY 6.2. The group of Hopf algebra automorphisms of
Ž .BB M, N, q, l is finite.

Proof. Indeed, any automorphism T has the following form, for some
j g ZrN:

T h s h , T a s q ja , T a s qyj a .Ž . Ž . Ž .1 1 2 2

Ž .Remark. The Hopf algebra BB M, N, q, l arises as a central extension,

pN ˆ ˆ ˆw x1 ª k h ª BB M , N , q , l ª AA G , RR, DD ª 1,Ž . Ž .
but p has no Hopf algebra section. As M and N could be coprime, this
shows that Zassenhaus theorem does not generalize to Hopf algebras.

Proof of Theorem 0.3. It is an immediate consequence of Theorem 6.1,
letting M s N s p.

Remark. There are also easy examples with G s ZrNM [ ZrNM of1 2
families of pointed nonisomorphic Hopf algebras of dimension N 4M M ,1 2
in particular of dimension p6. The construction and proof are very similar.
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7. POINTED HOPF ALGEBRAS OF ORDER p3

Let A be a noncosemisimple pointed Hopf algebra of order p3, and let
G be the group of its group-like elements. By Nichols]Zoeller Theorem
w xNZ , we have the following possibilities:

i G s Zr p = Zr p , ii G s Zr p2 , iii G s Zr p .Ž . Ž . Ž . Ž . Ž . Ž .Ž .

We shall discuss the cases separately and deduce from Theorem 0.2 that in
Ž . Ž . Ž . Ž . Ž .case i A should be of type a , in case ii A should be of type b , c , or

Ž . Ž . Ž . Ž .d and in case iii A should be of type e or f .

Ž . Ž . Ž .Case i . Here k G has index p in A and Theorem 0.2 ii applies.
Ž . pRelation 0.3 turns to a s 0, because any element in G has order p. It is

Ž . ² :easy to see that A , k kerx m k g, a , and that the second factor is
isomorphic to a Taft algebra.

Ž . Ž . Ž .Case ii . Again, k G has index p in A and Theorem 0.2 ii applies.
Ž .Let g, x , q, a be as in Theorem 0.2 ii ; the order of q is p.

Ž .We assume first that the order of g is also p. Then the relation 0.3
implies a p s 0. On the other hand, let h g G be the generator such that

p Ž . 2h s g. Clearly, j [ x h has order p . We claim that there is an
isomorphism of Hopf algebras

² y1 p2 p :A , k h , x N hxh s j x , h s 1, x s 0 ,

Ž .where the comultiplication in the right-hand side is as in type b . Indeed
the existence of a surjective homomorphism from the right-hand side to
the left follows from the considerations above; by a dimension argument it

Ž .is an isomorphism. So, we are in type b .
2 p Ž p.We assume next that the order of g is p . Hence, a s l 1 y g for

p y1'Ž . Ž .some l g k. If l s 0, A is of type c ; otherwise we replace a by l a
Ž .and conclude that A is of type d .

Ž . Ž . 2 Ž .Case iii . Now k G has index p in A and Theorem 0.2 iii applies.
Ž .We observe that possibility a is excluded, since every element of G has

Ž .order p. Let g , x , q , a be as in Theorem 0.2 iii . We set g s g andi i i i 1
Ž . m Ž .q s x g g G . There are integers m, n such that g s g and x g s1 p 2 2

n Ž . Ž .q . But x g x g s 1 forces n s ym.1 2 2 1
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Ž . p Ž .Relations 0.7 turn to a s 0. If l s 0 in 0.9 , then A is isomorphic toi
Ž .a book algebra and is of type f . If l / 0, then x x s 1 implies m s 1.1 2

It is now clear that A is isomorphic to the Frobenius]Lusztig kernel; that
Ž .is, it is of type e .
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