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over a commutative Noetherian ring R generated by complexes in
D−

fg(R). We prove that they are exactly the compactly generated
t-structures on D(R) and describe them in terms of decreasing
filtrations by supports of Spec(R). A decreasing filtration by
supports φ : Z → Spec(R) satisfies the weak Cousin condition
if for any integer i, the set φ(i) contains all the immediate
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t-structure on D(R) restricts to a t-structure on Dfg(R) then the
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R has dualizing complex then these are exactly all the t-structures
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Introduction

The concept of t-structure on a triangulated category arises as a categorical framework for
Goresky–MacPherson’s intersection homology. Through this construction Beı̆linson, Bernstein, Deligne
and Gabber extended intersection cohomology to the étale context. A t-structure provides a homolog-
ical functor with values in a certain abelian category contained in the original triangulated category
denominated the heart of the t-structure. In Grothendiecks’s terms, this study accounts for the study
of extraordinary cohomology theories for discrete coefficients. Intersection cohomology and its vari-
ants have been studied successfully with these methods over the last twenty years. Let us point out
[BBD] and [GN] and references therein.

On the side of continuous coefficients the development has proceeded at a slower pace. Deligne
was first to make contributions to the problem of constructing t-structures on the bounded derived
category of coherent sheaves on a Noetherian scheme under certain hypothesis, namely the existence
of a dualizing complex and of global locally free resolutions. His work was not available until the
expository e-print by Bezrukavnikov [Be]. Later Kashiwara [Ka] constructs from a decreasing family
of supports satisfying certain condition a t-structure on the bounded derived category of coherent
sheaves on a complex manifold, which corresponds in the algebraic case to a smooth separated scheme
of finite type over C. Also, Yekutieli and Zhang [YZ] considered the Grothendieck dual t-structure of
the canonical one on the derived category of finitely generated modules over a Noetherian ring with
dualizing complex. This t-structure is called the Cohen–Macaulay t-structure in the present paper and
it is shown to exist in the whole unbounded derived category.

Deligne, Bezrukavnikov and Kashiwara built, on the derived category of bounded complexes with
finitely generated homologies, a t-structure starting with a finite filtration by supports X = Zs �
Zs+1 � · · · � Zi � · · · � Zn−1 � Zn = ∅ in the corresponding topological space X . In Bezrukavnikov’s
paper Noetherian induction is used. Kashiwara constructs the triangle of the corresponding t-structure
using in an essential way that the complexes are bounded. The filtrations by supports used by both
authors are finite and satisfy a condition that we call in this paper the weak Cousin condition (for any
integer i, the set Zi contains all the immediate generalizations of each point in Zi+1). This name refers
to a weakening and reformulation of the notion of codimension function introduced by Grothendieck,
see [H, V.7] and Section 4 below. An equivalent notion was used in [Be] under the name comonotone
perversity.

In the aforementioned papers, the authors rely on finite step-by-step constructions and do not take
into account the possibility allowed by infinite constructions if one considers the unbounded derived
category. This approach makes sense after [AJS2] where it is proved that for a collection of objects
in the unbounded derived category of a Grothendieck category there is a t-structure whose aisle is
generated by this set of objects.

A logical next step is to try to classify t-structures on D(R) by filtrations of subsets of Spec(R)

extending the fact, proved in the key paper [N1], that Bousfield localizations (the class of triangulated
t-structures) are classified by subsets of Spec(R). However, a counterexample by Neeman and further
developments by the third author made clear that residue fields of prime ideals were not the right
objects to use in order to achieve the classification of t-structures (see remark on page 328).

Stanley in his preprint [Sta] treated the problem of studying t-structures on Db
fg(R), the subcate-

gory of D(R) of bounded complexes with finitely generated homologies, where R is a commutative
Noetherian ring. He showed that it is not possible to classify all t-structures on D(R) because the
class of t-structures on D(Z) is not a set [Sta, Corollary 8.4]. Then it is not possible to put t-structures
on D(R) in correspondence with collections of subsets of Spec(R).

On the positive side, Stanley showed that there is an order preserving bijection between filtrations
of Spec(R) by stable under specialization subsets and nullity classes in Db

fg(R). Theorem B in [Sta]
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states that the weak Cousin condition is a necessary condition over a filtration for the corresponding
nullity class in Db

fg(R) to be an aisle, and he conjectured that the converse is true. However, the proof
of Theorem B in [Sta] does not seem to be complete. We give here an alternate approach to Stanley’s
result encompassing the unbounded category and, in addition, we answer Stanley’s conjecture in the
affirmative.

Specifically, the category Dfg(R) is skeletally small so any t-structure on Dfg(R) is the restric-
tion of a t-structure on D(R) (see Lemma 1.3 and Proposition 1.4). We look at t-structures on D(R)

generated by complexes with finitely generated homologies and characterize those that restrict to t-
structures on Dfg(R)—and in general to any of the subcategories D�

fg(R) for any boundedness condition
� ∈ {+,−,b, “blank”}. We obtain the classification of all t-structures on D(R) generated by complexes
in D−

fg(R) in terms of filtrations by supports of Spec(R). They are exactly all compactly generated t-
structures (Theorem 3.11). We prove that the filtration associated to a compactly generated t-structure
on D(R) that restricts to a t-structure on Dfg(R) (or in any of the above subcategories D�

fg(R)) neces-
sarily satisfies the weak Cousin condition (Corollary 4.5). So we give a proof of [Sta, Theorem B] by
different means.

The compact objects in D(R) are the perfect complexes. Translated to our context, Stanley’s ques-
tion asks whether t-structures generated by perfect complexes on Dfg(R) (or, in general, in D�

fg(R))
are those determined by filtrations satisfying the weak Cousin condition. In the last section of our
paper we answer this question in the affirmative for Dfg(R) when the ring R possesses a pointwise
dualizing complex. For Db

fg(R) we get an affirmative answer when the ring R has a dualizing complex,
a mild hypothesis already present—as we have recalled—in previous works.

Let us describe the contents of this paper. In the first section we start recalling the notations
and definitions used in this paper. We introduce the notion of total pre-aisle and show that any total
pre-aisle of D�

fg(R) is the restriction of an aisle of D(R), with � as before. We also study how total
pre-aisles behave under change of rings.

A filtration by supports of Spec(R) is a decreasing family · · · ⊃ φ(i) ⊃ φ(i + 1) ⊃ · · · of stable under
specialization subsets of Spec(R). Each filtration by supports φ : Z → P(Spec(R)) has an associated
aisle Uφ , generated by {R/p[−i]; i ∈ Z and p ∈ φ(i)}. In Section 2 we consider aisles generated by
suspensions of cyclic modules. They are precisely the aisles associated to filtrations by supports. We
characterize in Section 3 the aisles of D(R) generated by complexes in D−

fg(R) in terms of homological
supports (Proposition 3.7). They correspond to compactly generated aisles of D(R) (Theorem 3.10).

We study in Section 4 the filtrations by supports of Spec(R) that provide aisles in D�
fg(R). We note

that all t-structures on D−
fg(R) and Db

fg(R) are generated by perfect complexes. Theorem 4.4 is the
first main result in this section. It says that the weak Cousin condition is necessary on a filtration by
supports on Spec(R) in order to restrict the corresponding compactly generated t-structure on D(R)

to a t-structure on Dfg(R). This theorem corresponds to Stanley’s Theorem 7.73. We deal with the un-
bounded category Dfg(R) and obtain from this the result4 for Db

fg(R). Next we describe the filtrations
by supports of Spec(R) satisfying the weak Cousin condition (Proposition 4.7 and Corollary 4.8). As a
consequence, if Spec(R) is connected and R has finite Krull dimension then filtrations that satisfy the
weak Cousin condition are finite and exhaustive. Therefore, there is a bijection between t-structures
on D−

fg(R) and Db
fg(R) (Corollary 4.11).

In Section 5 we give a description of the truncation functors associated to a finite filtration. Propo-
sition 5.8 shows that the aisle associated to a two-step filtration by supports that satisfies the weak
Cousin condition restricts to a t-structure on Dfg(R), for any Noetherian ring R . With all these tools
at hand, in the last section we prove the remaining main result (Theorem 6.9). Our strategy of proof
is related to the one used in [Ka]. Namely, this Theorem asserts that if R possesses a dualizing com-
plex, then the aisles of Db

fg(R) are exactly those induced by filtrations by supports satisfying the weak
Cousin condition. As a consequence we obtain a bijection between aisles of Dfg(R) and filtrations sat-

3 The weak Cousin condition here corresponds to being comonotone in [Sta].
4 We should remark that the statement of Theorem 4.4 is a variation of [Sta, Proposition 7.4], the key ingredient in

[Sta, Theorem B].



316 L. Alonso T. et al. / Journal of Algebra 324 (2010) 313–346
isfying the weak Cousin condition under the weaker hypothesis that R possesses pointwise dualizing
complex. The existence of a dualizing complex on R is a very mild condition. It is satisfied by all
rings of finite Krull dimension that are quotients of a Gorenstein ring. This is the case for all finitely
generated algebras over a regular ring (e.g. over a field or over Z).

1. Notation and preliminaries on t-structures

Notation and conventions. All rings in this paper will be commutative and Noetherian. Given a prime
ideal p ∈ Spec(R), k(p) stands for the residue field of p and Rp for the localization of R with re-
spect to p. The support of an R-module N is the set of prime ideals Supp(N) = {p ∈ Spec(R) | Np =
N ⊗ Rp �= 0}. For an ideal a ⊂ R we denote by V(a) := {p ∈ Spec(R); a ⊂ p}.

As usual Mod(R) denotes the category of modules over a ring R , C(R) the category of complexes
of R-modules, K(R) its homotopy category and D(R) its derived category. For complexes we use
the upward gradings. Let n and m be integers, as usual D�(R) ⊂ D(R) denotes the full subcategory of
those complexes whose homologies satisfy one of the standard boundedness conditions � ∈ {� n, < n,

� n, > n, +, −}, D[n,m](R) := D�n(R) ∩ D�m(R) and Db(R) = D−(R) ∩ D+(R). Let Dfg(R) ⊂ D(R) be

the full subcategory of complexes with finitely generated homologies. The symbol D�
fg(R) stands for

Dfg(R) ∩ D�(R) for any superscript �.

Basics on t-structures. Let T be any triangulated category. We will denote by (−)[1] the translation
auto-equivalence of T and its iterates by (−)[n], with n ∈ Z.

A t-structure on T in the sense of Beı̆linson, Bernstein, Deligne and Gabber [BBD, Définition 1.3.1]
is a couple of full subcategories (U , F [1]) such that U [1] ⊂ U , F [1] ⊃ F , HomT(Z , Y ) = 0 for Z ∈ U
and Y ∈ F (i.e. U ⊂ ⊥F , equivalently F ⊂ U ⊥), and for each X ∈ T there is a distinguished triangle

τ
�

U X −→ X −→ τ>
U X

+−→ (1.0.1)

with τ
�

U X ∈ U and τ>
U X ∈ F . The subcategory U is called the aisle of the t-structure, and F is called

the co-aisle. It follows from the definition that U = ⊥F and F = U ⊥ . It also follows that the inclusion
U ↪→ T has a right adjoint τ

�
U called the left truncation functor and, dually, the inclusion F ↪→ T has

a left adjoint functor τ>
U , the right truncation functor. In fact, X ∈ U if and only if τ>

U X = 0, similarly

X ∈ F if and only if τ
�

U X = 0. The t-structure can be described just in terms of its aisle U . This fact
justifies the notation for the truncation functors.

We call (D�0(R),D>0(R)[1]) the canonical t-structure on D(R). With n ∈ Z, the t-structures
(D�n(R),D>n(R)[1]) obtained by translations of the canonical one are called standard t-structures
on D(R). As usual τ�n = τ<n+1 and τ�n+1 = τ>n denote the left and right truncation functors asso-
ciated to the n-th standard t-structure. For each X ∈ D(R),

τ�0 X −→ X −→ τ>0 X
+−→

denotes the distinguished triangle determined by the canonical t-structure.

1.1. A class U ⊂ T is a pre-aisle of T if U endowed with the class of distinguished triangles in T with
vertices in U is a suspended category in the sense of Keller and Vossieck [KeV], that is, U is a class
closed for extensions such that U [1] ⊂ U . A pre-aisle U of T is total if U = ⊥(U ⊥) (orthogonal always
taken in T).

If U ⊂ T is a class of objects such that U [1] ⊂ U then the class ⊥(U ⊥) is a total pre-aisle of T,
it is the smallest total pre-aisle of T containing U . The property U [1] ⊂ U implies U ⊥ ⊂ U ⊥[1]. In
general, given a class Y ⊂ T such that Y ⊂ Y[1] then the class ⊥Y ⊂ T is a total pre-aisle of T. As a
consequence, if T′ is a triangulated subcategory of T and V is a total pre-aisle of T′ then V = U ∩ T′
where U is a total pre-aisle of T.
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An aisle (or in general, a total pre-aisle) U ⊂ T is generated by a set of objects W ⊂ T if U is the
smallest aisle (total pre-aisle) of T containing W . We will say that a t-structure on T is generated by
the set of objects W if so is its aisle.

1.2. Among the triangulated categories we are concerned with, only the unbounded category D(R)

has coproducts. Starting with a family of objects in D(R) it is possible to construct its associated
t-structure on D(R) as follows. Given a set of objects M ⊂ D(R), let M[N] := {M[i]; M ∈ M and
i � 0} ⊂ D(R). By [AJS2, Proposition 3.2] the smallest cocomplete pre-aisle containing the objects in

M is an aisle, that we will denoted here by aisle〈M〉. Note that aisle〈M〉 = ⊥(M[N]⊥). Furthermore,
we can always assume that aisle〈M〉 is generated by a single object because aisle〈M〉 = aisle〈M〉 with
M := ⊕

M∈M M .

Let us fix a superscript � ∈ {“blank”, +, −, b}. We know that any total pre-aisle of D�
fg(R) is the

restriction of a total pre-aisle of D(R); Proposition 1.4 below provides a more useful result.

Lemma 1.3. The categories D�
fg(R) are skeletally small.

Proof. Let us treat first the case � = −. By using step by step free resolutions and taking into account
that R is Noetherian, we see that every object in D−

fg(R) is isomorphic to a bounded above complex
of finitely generated free modules and they form a set W that contains a representative for every
complex in D−

fg(R).
The rest of the cases will be settled if we show that Dfg(R) is skeletally small i.e., the case

� = “blank”. Let X ∈ Dfg(R). Note that

X→̃ lim−→
n∈N

τ�n X .

Now every τ�n X is quasi-isomorphic to an object Wn in W . On the other hand [AJS1, Proof of
Lemma 3.5] there is a quasi-isomorphism

lim−→
n∈N

τ�n X→̃holim−→
n∈N

τ�n X .

Summing up X is isomorphic to the cone of an endomorphism of
⊕

n∈N
Wn . But it is clear that the

collection of endomorphisms of countable coproducts of objects in W form a set M and this set
contains a representative for every complex in Dfg(R). �
Proposition 1.4. Let T� be any of the categories D�

fg(R). Let V be a total pre-aisle of T� , and let E be its right

orthogonal in T� . Then

(1) U = ⊥(V ⊥) is an aisle of D(R) (we are using the symbol ⊥ for the orthogonal in D(R));
(2) the corresponding t-structure (U , F [1]) on D(R) satisfies that V = U ∩ T� and E = F ∩ T�;
(3) if (V , E [1]) is a t-structure on T� then for any X ∈ T� the distinguished triangle in T� defined by the

t-structure (V , E [1])

N −→ X −→ B
+−→

is the distinguished triangle in D(R) associated to (U , F [1]).

Proof. By the previous lemma the category T� is skeletally small, then we can choose a set of objects
W ⊂ V such that for each object in V there is an isomorphic object in W . Then E is the right
orthogonal of W in T� . The class U = ⊥(W ⊥) is the aisle of D(R) generated by W , and trivially
V ⊂ U . Let F := U ⊥ , that is F = W ⊥ . In particular E = F ∩T� ⊂ F and therefore U ∩T� = ⊥F ∩T� ⊂
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⊥E ∩ T� = V . Whence U ∩ T� = V . The last assertion in the proposition is obvious because V ⊂ U and
E ⊂ F . �
1.5. Let T be a triangulated category with coproducts. An object E of T is called compact if the functor
HomT(E,−) commutes with arbitrary coproducts. By Rickard’s criterion the compact objects of D(R)

are the perfect complexes, i.e. those complexes isomorphic to bounded complexes of finite-type pro-
jective modules (see [R, Proposition 6.3 and its proof]).5

We will say that an aisle (or in general, a total pre-aisle) U ⊂ T is compactly generated if there is a
set E ⊂ U of compact objects in T such that E generates U . We will say that a t-structure is compactly
generated if its aisle is compactly generated.

Example. D�0(R) is a compactly generated aisle of D(R), it is generated by the stalk complex
R = R[0].

Compactly generated Bousfield localizations on D(R). In general the aisle of a t-structure on a tri-
angulated category T is not a triangulated subcategory. In fact, an aisle U of T, U is a triangulated
subcategory of T if and only if U [−1] ⊂ U , equivalently the left truncation functor τ

�
U (equivalently,

right truncation functor τ>
U ) is a �-functor.

A t-structure whose aisle U is a triangulated subcategory of the ambient triangulated category T is
called a Bousfield localization of T, and the class U is called a localizing subcategory of T. The objects
in U are called acyclic and the functor τ

�
U is the associated acyclization functor. The objects in U ⊥

are called local objects and the functor τ>
U is called the Bousfield localization functor. For a reference

on Bousfield localizations in this context, see [AJS1]. For its classification see [N1] for rings and [AJS3]
for schemes and formal schemes.

1.6. Proposition 5.7 in [AJS3] shows that compactly generated Bousfield localizations on D(R) cor-
respond to stable under specialization subsets of Spec(R). Let us recall in our context some facts
about compactly generated Bousfield localizations from [AJS3] that were obtained following the path
initiated in [AJL].

A subset Z ⊂ Spec(R) is stable under specialization if for any couple of prime ideals p ⊂ q with
p ∈ Z , it holds that q ∈ Z , in other words, it is the union of a directed system of closed subsets
of Spec(R). From now on, to abbreviate, we will refer to this kind of subsets as sp-subsets. As usual,
for each R-module N let us denote by ΓZ (N) the biggest submodule of N whose support is contained
in Z . The functor ΓZ : Mod(R) → Mod(R) is an idempotent kernel functor, thus it is determined by its
Gabriel topology6 of ideals: the set of ideals a ⊂ R such that Supp(R/a) = V(a) ⊂ Z . Namely,

ΓZ := lim−→
V(a)⊂Z

HomR(R/a,−).

A basis of ideals of the Gabriel topology suffices to compute ΓZ . Let Q Z : Mod(R) → Mod(R) be the
(abelian) localization functor associated to ΓZ . The canonical transformations ΓZ → id and id → Q Z

induce isomorphisms ΓZ ΓZ ∼= ΓZ and Q Z ∼= Q Z Q Z .
Using K-injective resolutions these relations can be extended to the derived category D(R). In such

a way that

RΓZ E
ρ(E)−→ E −→ RQ Z E

+−→ (1.6.1)

is the Bousfield localization triangle whose localization functor is RQ Z and its acyclization functor
RΓZ (see [AJS3, §2 and the example in p. 16] for the results mentioned in this paragraph). Moreover,

5 In [AJS2, Lemma 4.3] the reader can find a simpler proof of this fact using results of Neeman [N2, Lemma 2.2].
6 See [Ste, Chapter VI, §5].
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for all E ∈ D(R) the natural map E ⊗L
R RΓZ R → E factors through RΓZ E , providing a canonical iso-

morphism E ⊗L
R RΓZ R→̃RΓZ E [AJS3, §2.3] in such a way that the above triangle (1.6.1) is canonically

isomorphic to the triangle

E ⊗L
R RΓZ R

E⊗L
Rρ(R)−−−−−−−→ E −→ E ⊗L

R RQ Z R
+−→

[AJS3, §2.1]. These properties are summarized in [AJS3, §5, p. 603] by saying that the corresponding
Bousfield localization is ⊗-compatible. In [AJS3] it is proved that these are exactly the Bousfield local-
izations on D(R) whose localization functors commute with coproducts, i.e. the smashing localizing
subcategories of D(R) (cf. [N1, §3]).

1.7. As a direct consequence of the above results given Z1, Z2 ⊂ Spec(R) two sp-subsets, then:

(1) The canonical transformation RΓZ1∩Z2 → RΓZ2 induces a natural isomorphism RΓZ1∩Z2 →
RΓZ1 RΓZ2 .

(2) The canonical map of functors RQ Z1 RΓZ2 → RQ Z1 induces a natural isomorphism
RQ Z1 RΓZ2→̃RΓZ2 RQ Z1 . Furthermore, RQ Z1 RQ Z2 and RQ Z2 RQ Z1 are canonically isomorphic,
and they are isomorphic to RQ Z2∪Z1 .

Theorem 1.8. Let Z ⊂ Spec(R) be an sp-subset and F ∈ D(R). The canonical map RΓZ F → F is an isomor-
phism if and only if Supp(H j(F )) ⊂ Z , for every j ∈ Z.

Proof. It is [AJS3, Theorem 5.6] translated into the present context. �
Corollary 1.9. Let Z ⊂ Spec(R) be an sp-subset and i ∈ Z. The pre-aisle

U i
Z := {

N ∈ D�i(R); Supp
(
H j(N)

) ⊂ Z for all j � i
}

is an aisle of D(R) with τ�iRΓZ as its associated left truncation functor.

Proof. By Theorem 1.8, U i
Z is the class of objects N ∈ D(R) such that τ�iRΓZ N ∼= N . Then U i

Z is an
aisle of D(R) and the right adjoint functor of the inclusion U i

Z ↪→ D(R) is τ�iRΓZ . �
Total pre-aisles and base change. Let f : R → A be a homomorphism of rings. The exact forgetful
functor f∗ : Mod(A) → Mod(R) has adjoints on both sides. The base change functor f ∗ = A ⊗R − is its
left adjoint, and its right adjoint is HomR(A,−). The derived functors

L f ∗ : D(R) → D(A), f × := R Hom·
R(A,−) : D(R) → D(A),

defined using K-projective and K-injective resolutions in K(R) (see [BN, Theorem 2.14] and [Sp]),
satisfy the corresponding natural adjunction formulas:

HomD(R)(M, f∗N) ∼= HomD(A)

(
L f ∗M, N

)
,

HomD(R)( f∗N, M) ∼= HomD(A)

(
N,R Hom·

R(A, M)
)
,

for all M ∈ D(R), and N ∈ D(A). As it is usual, if there is no ambiguity, we will write N = f∗N
for every N ∈ D(A). The functor f∗ transforms acyclic complexes into acyclic complexes, hence
Hom·

R(A,−) : K(R) → K(A) transforms a K -injective complex of (injective) R-modules into a K -
injective complex of (injective) A-modules. As a consequence if g : A → B is another morphism of
rings then (g f )× = f × g× .
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Let f : R → A be a homomorphism of rings and let W ⊂ D(R) be a class of objects. We denote
by W [ f∗] = {N ∈ D(A); f∗N ∈ W } the pre-image of W through f∗ , and by L f ∗W the image of W
through L f ∗ . We use the same orthogonal symbols for classes in D(R) and D(A) in each case the
ambient category will tell us where the orthogonals are taken.

The following is a slightly more general reformulation of the statement in [AJS2, Corollary 5.2] that
is useful in the present context.

Proposition 1.10. Let U be a cocomplete pre-aisle of D(R), then X ⊗L
R M ∈ U for all X ∈ U and M ∈ D�0(R).

Proof. The class V = {M ∈ D(R); X ⊗L
R M ∈ U } is a cocomplete pre-aisle of D(R) that contains

R = R[0], therefore D�0(R) ⊂ V . �
Corollary 1.11. Let f : R → A be a morphism of rings and let U be a cocomplete pre-aisle of D(R). Then:

(1) f∗L f ∗U ⊂ U ;
(2) (L f ∗U )⊥ = (U ⊥)[ f∗];
(3) f ×(U ⊥) ⊂ (L f ∗U )⊥ .

If furthermore U is a total pre-aisle and W := ⊥((L f ∗U )⊥), then f∗W ⊂ U .

Proof. If M ∈ U then Proposition 1.10 shows that f∗L f ∗M = A ⊗L
R M ∈ U , from which assertion (1)

follows. Assertion (2) follows immediately from the adjunction isomorphism

HomD(A)

(
L f ∗M, N

) ∼= HomD(R)(M, f∗N)

for all M ∈ D(R) and N ∈ D(A). Due to (1), for all V ∈ U ⊥ and U ∈ U we have that
HomD(A)(L f ∗U , f ×V ) ∼= HomD(R)( f∗L f ∗U , V ) = 0, that is (3) follows.

In order to check the last assertion note that for any W ∈ W and V ∈ U ⊥ one has that 0 =
HomD(A)(W , f ×V ) by (3); therefore, 0 = HomD(R)( f∗W , V ). So f∗W ⊂ ⊥(U ⊥) = U . �
1.12. Let S ⊂ R be a multiplicative closed subset and f : R → S−1 R be the canonical ring homomor-
phism. The functor f ∗ is exact so L f ∗ = f ∗ : D(R) → D(S−1 R). As usual we denote f ∗ X = S−1 X for
every object X ∈ D(R), and given a class V in D(R), S−1 V stands for f ∗V . The forgetful functor iden-
tifies D(S−1 R) with a full subcategory of D(R). Throughout the paper we identify Spec(S−1 R) with
the subset {p ∈ Spec(R); p ∩ S = ∅} ⊂ Spec(R). If S = R \ q where q is a prime ideal of R we will
write, as usual, S−1 V = Vq .

Proposition 1.13. Let Z ⊂ Spec(R) be an sp-subset, and let us fix i an integer. Let us denote U = U i
Z (see

Corollary 1.9), and F = U ⊥ . For any multiplicative closed subset S ⊂ R the pair (S−1 U , S−1 F [1]) is a t-
structure on D(S−1 R), furthermore S−1 U = U ∩ D(S−1 R) and S−1 F = F ∩ D(S−1 R).

Proof. For every M ∈ D(R) the canonical map S−1RΓZ M → RΓZ S−1M is an isomorphism (see
Section 1.7), therefore τ

�
U S−1M ∼= S−1τ

�
U M . It follows that S−1 U = U ∩ D(S−1 R) and S−1 F =

F ∩ D(S−1 R). Moreover, for any M ∈ D(S−1 R) the triangle in D(R)

τ
�

U M −→ M −→ τ>
U M

+−→

is also in D(S−1 R), because τ
�

U M = τ
�

U S−1M ∼= S−1 τ
�

U M . As a result (S−1 U , S−1 F [1]) is a t-
structure on D(S−1 R). �
Remark. Note that in particular we have that (S−1 U )⊥ = S−1(U ⊥) (where the first orthogonal is
taken in D(S−1 R) and the second in D(R)).
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2. Aisles determined by filtrations of supports

2.1. Let us denote by ja : R → R/a the canonical morphism determined by the ideal a ⊂ R . We be-
gin this section describing the induced t-structures on D(R) by the standard t-structures on D(R/a)

through the adjunction ja∗ � j×a .
Let X be a complex of R-modules such that aXi = 0, for all i ∈ Z. Then X can be also viewed as

a complex of R/a-modules, in such a way that ja∗ X = X . That being so, for any Y ∈ D(R), there are
isomorphisms

HomD(R)(X, Y ) ∼= HomD(R/a)

(
X, j×a Y

)
. (2.1.1)

Lemma 2.2. Let a ⊂ R be an ideal, and k ∈ Z. For a complex Y ∈ D(R), the following statements are equivalent:

(1) Y ∈ aisle〈R/a[−k]〉⊥;
(2) j×a Y ∈ D>k(R/a).

Proof. As a consequence of 2.1 it holds that

HomD(R)

(
R/a[i], Y

) ∼= HomD(R/a)

(
R/a[i], j×a Y

)
= H−i(R Hom·

R/a(R/a, j×a Y )
) = H−i( j×a Y )

for all i ∈ Z. So the result follows. �
Lemma 2.3. Let a ⊂ R be an ideal. If X ∈ D�0(R/a), then X = ja∗ X ∈ aisle〈R/a〉.

Proof. Clear. �
Proposition 2.4. The following statements hold for any ideals a,b ⊂ R:

(1) If a ⊂ b then R/b ∈ aisle〈R/a〉.
(2) We have that aisle〈R/ab〉 = aisle〈R/a, R/b〉 = aisle〈R/a ∩ b〉.
(3) For all n � 1, aisle〈R/an〉 = aisle〈R/a〉.
(4) If rad(a) = rad(b) then aisle〈R/a〉 = aisle〈R/b〉.

Proof. The statement (1) is the particular case of Lemma 2.3 in which X ∈ D�0(R/a) is the stalk
complex R/b.

In order to prove (2) note that a/ab is also an R/b-module then a/ab ∈ aisle〈R/b〉 by Lemma 2.3.
As a consequence the middle point in the exact sequence 0 → a/ab → R/ab → R/a → 0 belongs to
aisle〈R/a, R/b〉 because the extreme points do. Therefore aisle〈R/ab〉 ⊂ aisle〈R/a, R/b〉. We finish the
proof of (2) applying (1) to the chains of ideals ab ⊂ a ∩ b ⊂ a and ab ⊂ a ∩ b ⊂ b.

Statement (3) follows by induction on n � 1 from the first equality in (2).
The ring R is Noetherian, so if rad(a) = rad(b) there exist s, t ∈ N such that as ⊂ b and bt ⊂ a.

Therefore (4) follows from (1) and (3). �
Corollary 2.5. Let {p1, . . . ,ps} be the minimal prime ideals over the ideal a ⊂ R. Then aisle〈R/a〉 =
aisle〈R/p1, . . . , R/ps〉.

Proof. Using that rad(a) = p1 ∩ · · · ∩ ps and the second identity in Proposition 2.4(2) we easily prove
by induction on s that aisle〈R/ rad(a)〉 = aisle〈R/p1, . . . , R/ps〉. Finally apply (4) in Proposition 2.4. �
Corollary 2.6. Let a ⊂ R be an ideal and Z := V(a) ⊂ Spec(R). Let Y ∈ D(R) be a complex such that Y ∈
aisle〈R/a〉⊥ , then RΓZ Y ∈ D>0(R).
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Proof. Without lost of generality we may assume that Y is K -injective, so RΓZ Y = ΓZ Y . By Proposi-
tion 2.4 it holds that Y ∈ aisle〈R/an〉⊥ for all n � 1, that is, HomD(R)(R/an[i], Y ) = 0 for all n � 1 and
all i � 0. As a consequence for all i � 0

H−iΓZ Y = H−i lim−→
n�1

Hom·
R

(
R/an, Y

)

= lim−→
n�1

H−i Hom·
R

(
R/an, Y

)

= lim−→
n�1

HomD(R)

(
R/an[i], Y

) = 0. �

Proposition 2.7. Let Z ⊂ Spec(R) be an sp-subset, i ∈ Z, and U i
Z be the aisle defined in Corollary 1.9. Then

U i
Z = aisle

〈
R/p[−i]; p ∈ Z

〉
.

Proof. To prove this result it is enough to deal with the case i = 0. Let us recall from Corollary 1.9
that τ�0RΓZ is the left truncation functor associated to the aisle U 0

Z .
Let {aα}α∈I be the Gabriel filter of ideals such that Zα := V(aα) ⊂ Z . By Corollary 2.5 it is enough

to prove that U 0
Z = aisle〈R/aα; α ∈ I〉. Trivially U := aisle〈R/aα; α ∈ I〉 ⊂ U 0

Z . To prove the equality
let us check that U ⊥ ⊂ U 0 ⊥

Z . Let j � 0 and Y ∈ U ⊥ , then Corollary 2.6 asserts that H j(RΓZα Y ) = 0 for
all α ∈ I , therefore

H j(RΓZ Y ) = lim−→
α∈I

H j(RΓZα Y ) = 0.

That is, τ�0RΓZ Y = 0, equivalently Y ∈ U 0 ⊥
Z . �

2.8. A filtration by supports of Spec(R) is a decreasing map

φ : Z −→ P
(
Spec(R)

)

such that φ(i) ⊂ Spec(R) is an sp-subset for each i ∈ Z. To abbreviate, we will refer to a filtration by
supports of Spec(R) simply by an sp-filtration of Spec(R).

Let U be an aisle of D(R). Having in mind that U [1] ⊂ U and the statement (1) in Proposition 2.4,
the aisle U determines an sp-filtration φU : Z → P(Spec(R)) by setting, for each i ∈ Z,

φU (i) := {
p ∈ Spec(R); R/p[−i] ∈ U

}
.

The other way round an sp-filtration φ : Z → P(Spec(R)) has an associated aisle Uφ := aisle〈R/p[−i];
i ∈ Z and p ∈ φ(i)〉.

Fix i an integer and Z ⊂ Spec(R) an sp-subset. Let φ : Z → P(Spec(R)) be the sp-filtration defined
by φ( j) = Z for all j � i, and φ( j) = ∅ if j > i. The previous proposition shows that U i

Z = Uφ . The
following shows the compatibility of these aisles with respect to localization in a multiplicative closed
subset of R , generalizing Proposition 1.13:

Proposition 2.9. Let S ⊂ R be a multiplicative closed subset. Given an sp-filtration φ : Z → P(Spec(R)) let us
denote by Fφ the right orthogonal of Uφ in D(R). Then (S−1 Uφ, S−1 Fφ[1]) is a t-structure on D(S−1 R), fur-
thermore S−1 Uφ = Uφ ∩D(S−1 R) and S−1 Fφ = Fφ ∩D(S−1 R). Besides S−1 Uφ ⊂ D(S−1 R) is the associated
aisle to the sp-filtration

φS : Z → P
(
Spec

(
S−1 R

))

defined by φS(i) := φ(i) ∩ Spec(S−1 R), for i ∈ Z.
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Proof. The aisle U := Uφ is the smallest containing all the aisles in the set {Ui := U i
φ(i); i ∈ Z}, equiv-

alently F := Fφ is obtained by intersecting the classes {Fi := U i ⊥
φ(i); i ∈ Z}. For any M ∈ D(S−1 R) the

distinguished triangle in D(R) associated to (U , F [1])

N −→ M −→ Y
+−→ (2.9.1)

belongs to D(S−1 R). Indeed, S−1N ∈ U by Proposition 1.10. Given a complex Y ∈ F we have that
Y ∈ Fi for any i ∈ Z, then by Proposition 1.13, we have that S−1Y ∈ Fi for all i ∈ Z, that is S−1Y ∈ F .

Necessarily the distinguished triangle S−1N −→ M −→ S−1Y
+−→ is canonically isomorphic to (2.9.1).

As a consequence S−1 U is an aisle of D(S−1 R) with right orthogonal class S−1 F . Moreover S−1 U =
U ∩ D(S−1 R) and S−1 F = F ∩ D(S−1 R). Finally, note that E ∈ S−1 F if and only if, for each i ∈ Z

0 = HomD(R)

(
R/p[−i], E[ j]) ∼= HomD(S−1 R)

(
S−1(R/p)[−i], E[ j]),

for all p ∈ φ(i) and all j � 0. This fact amounts to saying that

0 = HomD(S−1 R)

(
S−1 R/q[−i], E[ j]),

for each i ∈ Z, all q ∈ φ(i)∩ Spec(S−1 R) and all j � 0. We conclude that S−1 U is the aisle of D(S−1 R)

associated to φS : Z → P(Spec(S−1 R)). �
Remark. Let us consider the notation in Proposition 2.9. Let W be any of the classes Uφ or Fφ . From
the previous results it follows that a complex X ∈ D(R) is in W if and only if Xp belongs to W for
any p ∈ Spec(R).

3. Compactly generated aisles

In Proposition 3.7 we study the aisles of D(R) generated by bounded above complexes with finitely
generated homologies. It is a key result in the proof of Theorem 3.10 and Theorem 3.11, the main
results in this section. We begin by proving some useful lemmas. Let us adopt the convention that
D�−∞(R) = 0 and D>−∞(R) = D(R).

Lemma 3.1. Let a ⊂ R be an ideal, ja : R → R/a the canonical map, and Y a complex of R-modules. Assume
that the following two conditions hold for a fixed m ∈ Z:

(1) j×a Y ∈ D>m(R/a),

(2) Supp(Hi(Y )) ⊂ V(a) for all i � m.

Then Y ∈ D>m(R).

Proof. It is enough to deal with the case m = 0. Let Z := V(a). By Theorem 1.8 the hypothe-
sis (2) is equivalent to assuming that the canonical map RΓZ τ

�0Y → τ�0Y is an isomorphism.
Furthermore, by Lemma 2.2 and Corollary 2.6, hypothesis (1) implies that RΓZ Y ∈ D>0(R). Bear-
ing in mind that RΓZ D�0(R) ⊂ D�0(R), it follows that the canonical map τ�0Y → Y induces
isomorphism H−i(RΓZ τ

�0Y ) → H−i(RΓZ Y ), for all i � 0; and so H−i(τ�0Y )←̃H−i(RΓZ τ�0Y )→̃
H−i(RΓZ Y ) = 0. �
Lemma 3.2. Assume R is local with maximal ideal m ⊂ R. If Y ∈ D(R) is a complex such that Supp(H j(Y )) ⊂
{m}, for all j ∈ Z, then for any X ∈ D−

fg(R) the following are equivalent:

(1) For all i � 0, HomD(R)(X[i], Y ) = 0.
(2) There is n ∈ Z ∪ {−∞}, such that X ∈ D�n(R) and Y ∈ D>n(R).
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Proof. The implication (2) �⇒ (1) is trivial. Assume (1) for a non-acyclic complex X ∈ D−
fg(R). Due to

Proposition 1.10 we have that, for all i � 0,

HomD(R)

(
X ⊗L

R R/m[i], Y
) = 0.

Let n := max{ j ∈ Z; H j(X) �= 0}, then Hn(X ⊗L
R R/m) ∼= Hn(X) ⊗R R/m �= 0 by Nakayama’s lemma.

Since X ⊗L
R R/m is a complex of R/m-vector spaces we get

HomD(R/m)

(
X ⊗L

R R/m[i], j×mY
) ∼= HomD(R)

(
X ⊗L

R R/m[i], Y
) = 0,

for all i � 0. Notice that Hn(X ⊗L
R R/m)[−n] is isomorphic in D(R/m) to a direct summand of X ⊗L

R
R/m, therefore

0 = HomD(R/m)

(
Hn(X ⊗L

R R/m
)[−n + i], j×mY

)
,

for any i � 0, which in turn implies that

0 = HomD(R/m)

(
R/m[i], j×mY

)
,

for all i � −n. That is j×mY ∈ D>n(R/m). Now from Lemma 3.1 we can conclude that Y ∈ D>n(R). �
3.3. Let us fix the convention that max(∅) = min(∅) = −∞ for the empty subset ∅ ⊂ Z. Then for
X ∈ D−

fg(R) and p ∈ Spec(R) the following are well-defined elements in the set Z ∪ {−∞}

mp(X) := max
{

j ∈ Z; p ∈ Supp
(
H j(X)

)}
,

hp(X) := max
{

j ∈ Z; Supp
(
H j(X ⊗L

R R/p
)) = Spec(R/p)

}
.

Lemma 3.4. For any X ∈ D−
fg(R) and p ∈ Spec(R), it holds that mp(X) = hp(X).

Proof. Let us put m = mp(X) and h = hp(X). From the canonical isomorphisms

(
X ⊗L

R Rp

) ⊗L
Rp

k(p) ∼= X ⊗L
R k(p) ∼= (

X ⊗L
R R/p

) ⊗L
R/p k(p),

it follows that for any integer j ∈ Z such that Xp ∈ D� j(Rp) necessary (X ⊗L
R R/p) ⊗L

R/p k(p) ∈
D� j(k(p)). Then having in mind that m and h can be computed as m = min{ j ∈ Z; Xp ∈ D� j(Rp)}
and h = min{ j ∈ Z; (X ⊗L

R R/p) ⊗L
R/p k(p) ∈ D� j(k(p))} we get that h � m.

Trivially h = m = −∞ when p /∈ ⋃
i∈Z

Supp(Hi(X)). Assume that p ∈ ⋃
i∈Z

Supp(Hi(X)). Then
X ⊗L

R Rp ∈ D�m(Rp) and Hm(X ⊗L
R Rp) ∼= Hm(X) ⊗R Rp �= 0. Hence (X ⊗L

R Rp) ⊗L
Rp

k(p) ∈ D�m(k(p))

and

Hm((
X ⊗L

R Rp

) ⊗L
Rp

k(p)
) ∼= Hm(

X ⊗L
R Rp

) ⊗Rp
k(p)

By Nakayama’s lemma, the module Hm(X ⊗L
R Rp) ⊗Rp

k(p) is nonzero, so Hm((X ⊗L
R R/p) ⊗L

R/p k(p))

is nonzero, hence m = h. �
Lemma 3.5. Let R be a commutative Noetherian integral domain. Let X ∈ D−

fg(R) be a complex and 0 ∈
Spec(R) be the generic point. With the notation in 3.3, m0(X) = max{i ∈ Z; Supp(Hi(X)) = Spec(R)}. If
Y ∈ D(R) satisfies the following conditions:
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(1) HomD(R)(X, Y [i]) = 0, for all i � 0, and
(2) for every 0 �= p ∈ Spec(R), R Hom·

R(R/p, Y ) ∈ D>m0 (R),

then Y ∈ D>m0 (R).

Proof. Let K be the field of fractions of R and let us set Z := Spec(R) \ {0} and m := m0(X). Let us
study the non trivial case, so assume that m ∈ Z. The complex X belongs to D�n

fg (R) for an integer
n � m. By Proposition 2.7, the hypothesis (2) on Y is equivalent to saying RΓ Y ∈ D>m(R), where Γ :=
ΓZ : Mod(R) → Mod(R) is the usual torsion radical. Applying the homological functor Hom(X,−) :=
HomD(R)(X,−) to the canonical triangle

RΓ Y −→ Y −→ Y ⊗L
R K

+−→ (3.5.1)

we get exact sequences

Hom
(

X, Y [i − 1]) → Hom
(

X, Y ⊗L
R K [i − 1]) → Hom

(
X,RΓ Y [i])

for all i ∈ Z. Notice that X ∈ D�n(R), RΓ Y [m − n] ∈ D>n(R) and Y [−1] ∈ aisle〈X〉⊥ , then we get
0 = HomD(R)(X, Y ⊗R K [i − 1]) for i � m − n � 0. As a consequence

HomD(K )

(
X ⊗R K , Y ⊗R K [i − 1]) ∼= HomD(R)

(
X, Y ⊗R K [i − 1]) = 0

for all i � m−n. Recall that X ⊗R K ∈ D�m
fg (K ) and Hm(X ⊗R K ) �= 0, therefore Y ⊗R K [m−n] ∈ D>m(K )

since K is a field and so Lemma 3.2 applies here. Then we conclude that Y ⊗R K ∈ D+(R). Therefore
Y ∈ D+(R) by the existence of the distinguished triangle (3.5.1). From this fact we are going to prove
a more precise homological bound for Y ⊗R K , namely Y ⊗R K ∈ D>m(K ). Indeed, for all i ∈ Z there
is a canonical isomorphism

HomD(K )

(
X ⊗R K , Y ⊗R K [i]) ∼= HomD(R)

(
X, Y [i]) ⊗R K ,

since Y ∈ D+(R) and X ∈ D−
fg(R). Then, by adjunction, hypothesis (1) and Proposition 1.10

HomD(K )

(
X ⊗R K , Y ⊗R K [i]) ∼= HomD(R)

(
X, Y ⊗R K [i]) = 0,

for all i � 0. Hence Y ⊗R K ∈ D>m(K ) by Lemma 3.2. Using once again the distinguished triangle
(3.5.1) we conclude Y ∈ D>m(R) as desired. �
Lemma 3.6. Let R be a commutative Noetherian ring. Let X ∈ D−

fg(R) and Y ∈ D(R). If HomD(R)(X, Y [i]) = 0
for all i � 0, then

HomD(R)

(
R/p[−k], Y [i]) = 0

for all i � 0, k ∈ Z and any p ∈ Supp(Hk(X)).

Proof. As a consequence of Corollary 1.11, it follows from the hypothesis that HomD(R)(X ⊗L
R R/p,

Y [i]) = 0 for any i � 0, and

HomD(R/p)

(
X ⊗L

R R/p,R Hom·
R(R/p, Y )[i]) = 0

for all i � 0 and every p ∈ Spec(R).
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Let us fix an integer k ∈ Z such that Hk(X) �= 0 and take any p ∈ Supp(Hk(X)). Then we have
k � mp = hp , where mp = mp(X) and hp = hp(X) (see Lemma 3.4).

We proceed by reductio ad absurdum assuming that the set

S := {
p ∈ Spec(R); p ∈ Supp

(
Hk(X)

)
and Y /∈ aisle

〈
R/p[−k]〉⊥}

is nonempty. The ring R is Noetherian so we can choose a maximal element p0 in S . Note that for
X0 := X ⊗L

R R/p0 ∈ D−
fg(R/p0) the complex Y0 := R Hom·

R(R/p0, Y ) ∈ D(R/p0) satisfies the following
properties:

(1) HomD(R/p0)(X0, Y0[i]) = 0, for all i � 0 (see the remark at the beginning of the proof).
(2) If q ∈ Spec(R) is such that p0 � q, then q ∈ Supp(Hk(X)) and q /∈ S since p0 is maximal in S .

Therefore Y ∈ aisle〈R/q[−k]〉⊥ . This fact amounts to saying that R Hom·
R/p0

(R/q, Y0) ∈ D>k(R/p0),
since HomD(R/p0)(R/q, Y0[i]) ∼= HomD(R)(R/q, Y [i]).

Then Lemma 3.5 shows that Y0 ∈ D>k(R/p0), so HomD(R)(R/p0[i], Y ) = 0 for all i � −k. This fact
contradicts the assumption p0 ∈ S , then necessarily S = ∅, and the result follows. �

We are now ready to prove a key result in this section.

Proposition 3.7. Let R be a commutative Noetherian ring. For X ∈ D−
fg(R) and Y ∈ D(R), the following are

equivalent:

(1) HomD(R)(X, Y [i]) = 0, for all i � 0;
(2) HomD(R)(H j(X)[− j], Y [i]) = 0, for any j ∈ Z and i � 0;
(3) HomD(R)(R/p[− j], Y [i]) = 0, for all j ∈ Z, i � 0 and all prime ideals p (minimal) in Supp(H j(X));
(4) HomD(R)(R/p[− j], Y [i]) = 0, for every j ∈ Z, i � 0 and all prime ideals p (minimal) in Ass(H j(X)).

Proof. The equivalence between (3) and (4) follows directly from Proposition 2.4(1).
Lemma 3.6 is just (1) ⇒ (3). To show that (3) ⇒ (1), we only need to assume here that X ∈ D−(R).

For simplicity let us suppose that X ∈ D�0(R). Let U = Uφ where φ : Z → P(Spec(R)) is the sp-
filtration defined, for each i ∈ Z, by setting φ(i) := ⋃

j�i Supp(H j(X)) (cf. 2.8). Item (3) says that

Y ∈ U ⊥ . So to prove (1) is enough to check that X ∈ U . Let us consider the canonical triangle

τ
�
φ X −→ X −→ τ>

φ X
+−→

and denote N = τ
�
φ X and B = τ>

φ X . We claim that B = 0, equivalently the canonical map N → X is

an isomorphism whence we get the desired result X ∼= N ∈ U . Note that B ∈ D�0(R) because N and
X belong to D�0(R). If B �= 0, let us choose q ∈ Spec(R) minimal in the set

⋃
t�0 Supp(Ht(B)). By

localizing from the above triangle we get the distinguished triangle in D(Rq)

Nq −→ Xq −→ Bq
+−→ . (3.7.1)

Recall from Proposition 2.9 that Nq ∈ Uq, and Bq ∈ (U ⊥)q = (Uq) (notation as in 1.12). Let b :=
max{ j � 0 | q ∈ Supp(H j(B))} and Z := {qRq} ⊂ Spec(Rq). Then RΓZ (Bq) ∼= Bq ∈ D�b(Rq), that is
τ�bRΓZ (Bq) ∼= Bq . Hence Bq ∈ aisle〈Rq/qRp[−b]〉 as a consequence of Proposition 2.7. If Xq = 0
then Bq

∼= Nq[1] ∈ Uq , so in this case Bq = 0. Suppose that Xq �= 0, and set m := max{ j � 0; qRq ∈
Supp(H j(Xq))} = max{ j � 0; q ∈ Supp(H j(X))}. Notice that then Xq ∈ D�m(Rq). The aisle Uq ⊂ D(Rq)

is generated by the set {Rq/pRq[−i]; p ∈ Supp(Hi(X)), i ∈ Z} = {Rq/pRq[−i]; p ∈ Supp(Hi(Xq)),

i ∈ Z} (see Proposition 2.9). Hence Uq is contained in D�m(Rq), and so Nq ∈ D�m(Rq). Using the
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triangle (3.7.1) we get that b � m. Therefore aisle〈Rq/qRq[−b]〉 ⊂ aisle〈Rq/qRq[−m]〉 ⊂ Uq . Then
Bq ∈ Uq , and again as a result Bq = 0.

Finally the equivalence between (2) and (3) is a consequence of (1) ⇔ (3) for the complex

⊕
j∈Z

H j(X)[− j] ∈ D−
fg(R). �

Corollary 3.8. For any X ∈ D−
fg(R),

aisle〈X〉 = aisle
〈
H j(X)[− j]; j ∈ Z

〉
= aisle

〈
R/p[− j]; j ∈ Z and p ∈ Supp H j(X)

〉
.

Proof. Immediate from the above proposition. �
Corollary 3.9. Let i be an integer and let Z be an sp-subset of Spec(R). The aisle U i

Z ⊂ D(R) is compactly
generated.

Proof. It is enough to discuss the case i = 0. For each ideal a ⊂ R such that V(a) ⊂ Z , let us fix
a system of generators {a1, . . . ,ar} of a. Let K ·(a1, . . . ,ar) be the Koszul complex associated to the
sequence {a1, . . . ,ar} [EGA, III, (1.1.1)]. Recall that K ·(a1, . . . ,ar) is the complex of R-modules defined
by

K ·(a1, . . . ,ar) :=
r⊗

j=1

K ·(a j),

where K ·(a j) is the complex (0) in all degrees apart from degrees −1 and 0, and whose differential in

degree −1 is R
a j−→ R the map multiplying by a j . The complex K ·(a1, . . . ,ar) is a complex of finitely

generated free modules in degrees [−r,0] and 0 elsewhere, and whose homologies are killed by the
ideal a. The complex K ·(a1, . . . ,ar) is compact (cf. 1.5). Furthermore, Supp(Hi(K ·(a1, . . . ,ar))) ⊂ V(a)

and H0(K ·(a1, . . . ,ar)) = R/a. Therefore, Proposition 3.7 shows that the aisle generated by the family
of complexes

{
K ·(a1, . . . ,ar); {a1, . . . ,ar} ⊂ R and V

(〈a1, . . . ,ar〉
) ⊂ Z

}

agrees with U 0
Z . �

We are now ready to state and prove the main results in this section.

Theorem 3.10. Let R be a commutative Noetherian ring and (U , F [1]) be a t-structure on D(R). The following
assertions are equivalent:

(1) U is compactly generated;
(2) U is generated by stalk complexes of finitely generated (resp. cyclic) R-modules;
(3) U is generated by complexes in Db

fg(R);

(4) U is generated by complexes in D−
fg(R);

(5) there exists an sp-filtration φ : Z → P(Spec(R)) such that U = Uφ .

Proof. Using [R, Proposition 6.3], the equivalence (1) ⇔ (2) follows from Proposition 3.7 and Corol-
lary 3.9. Again Proposition 3.7 provides (2) ⇔ (3) ⇔ (4).
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(5) ⇒ (2) is obvious. In order to prove (2) ⇒ (5) we only should realize that U = Uφ where φ

is the sp-filtration φ = φU . Trivially Uφ ⊂ U because φ = φU . Moreover, under hypothesis (2) for U ,
Proposition 3.7 shows that U ⊥

φ = U ⊥ that implies Uφ = U . �
Let Ais(R) be the class of aisles of D(R) and Filsp(R) be the set of all sp-filtrations of Spec(R). Let

us denote by Aiscp(R) the compactly generated aisles of D(R). Let us consider on Ais(R) the usual
inclusion relation. The order on Filsp(R) is the induced order by the usual one on P(Spec(R)). We
define a couple of order preserving maps

Ais(R)
f

�
a

Filsp(R)

by setting a(φ) := Uφ for any φ ∈ Filsp(R), and f(U ) := φU for any aisle U of D(R) (see 2.8).

Theorem 3.11. The maps f and a establish a bijective correspondence between Aiscp(R) and Filsp(R). Further-
more, given φ ∈ Filsp(R) the corresponding t-structure (Uφ, U ⊥

φ [1]) is described in terms of the sp-filtration
by:

Uφ = {
X ∈ D(R); Supp

(
H j(X)

) ⊂ φ( j), for all j ∈ Z
}
,

U ⊥
φ = {

Y ∈ D(R); RΓφ( j)Y ∈ D> j(R), for all j ∈ Z
}

Proof. In the proof of (2) ⇒ (5) in Theorem 3.10 we have shown that a ◦ f(U ) = U for any U ∈
Aiscp(R).

Conversely, if φ ∈ Filsp(R) let us prove that φ = f ◦ a(φ). Let

U := {
X ∈ D(R); Supp

(
H j(X)

) ⊂ φ( j) for all j ∈ Z
}
.

The class U is a cocomplete pre-aisle of D(R) which contains {R/p[− j]; j ∈ Z and p ∈ φ( j)} and,
hence, it also contains Uφ = a(φ). If X ∈ U then the proof of the equivalence (3) ⇔ (1) in Theorem 3.7
shows that τ�n X belongs to Uφ , for every n ∈ Z. So in the canonical distinguished triangle

⊕
n�0

τ�n X −→
⊕
n�0

τ�n X −→ X
+−→,

the two left vertices are objects in Uφ , as a consequence X ∈ Uφ . Therefore Uφ = U , and from this
identification it is easy to derive that φ = f(Uφ).

To conclude let us recall from Proposition 2.7 that

(
U i

φ(i)

)⊥ = {
Y ∈ D(R); RΓφ(i)Y ∈ D>i(R)

}
(∀i ∈ Z).

Hence the displayed description for U ⊥
φ in the statement of the current theorem follows from the

obvious relation U ⊥
φ = ⋂

i∈Z
(U i

φ(i))
⊥ . �

Remark. The existence of aisles of D(R) which are not compactly generated is well known, as it can
be easily derived from [N1, Theorem 3.3]. But unlike the situation in [N1] residue fields are not the
right objects to classify compactly generated t-structures. If R is an integral domain (commutative
and Noetherian) and not a field, then the aisle U of D(R) generated by {k(p); p ∈ Spec(R)} is not
compactly generated. Indeed, otherwise its associated sp-filtration would be given by φ(i) = Spec(R),
for i � 0, and φ(i) = ∅, for i > 0 (see Theorem 3.11). Then we would have U = D�0(R). But that is
impossible because R[0] ∈ U ⊥ since HomR(k(p), R) = 0, for every p ∈ Spec(R).



L. Alonso T. et al. / Journal of Algebra 324 (2010) 313–346 329
Corollary 3.12. Let � ∈ {−,+,b, “blank”}. Let V be an aisle (or more generally, any total pre-aisle) of D�
fg(R)

generated by bounded above complexes, and let E be its right orthogonal in D�
fg(R). Then there exists a unique

φ ∈ Filsp(R) such that V = Uφ ∩ D�
fg(R) and E = Fφ ∩ D�

fg(R).

Proof. It follows from Proposition 1.4 and Proposition 3.7. The uniqueness of φ follows from the fact
V = Uφ ∩ D�

fg(R) determines φ (by Theorem 3.11 above). �
4. The weak Cousin condition

We proceed to classify, under sufficiently general hypotheses, on R , all the compactly generated
t-structures on D(R) that restrict to t-structures on D�

fg(R). The main result of this section is Theo-

rem 4.4—it provides a necessary condition on an sp-filtration φ in order to Uφ ∩ D�
fg(R) be an aisle

of D�
fg(R). Note that the statement of Theorem 4.4 here and [Sta, Proposition 7.4] are almost the same.

Here we treat with the case of the unbounded category Dfg(R) and obtain in particular the result for
Db

fg(R) (the framework in [Sta]).

4.1. Given an sp-filtration φ : Z −→ P(Spec(R)) we will denote by τ
�
φ the left truncation functor

associated to the aisle Uφ and by τ>
φ the right truncation functor. So that for each M ∈ D(R) the

diagram

τ
�
φ M −→ M −→ τ>

φ M
+−→

denotes the natural distinguished triangle determined by the t-structure (Uφ, U ⊥
φ [1]) for M; we refer

to this triangle as the φ-triangle with central vertex M ∈ D(R) or just a φ-triangle.
The assumption that Uφ ∩ D�

fg(R) is an aisle of D�
fg(R) is equivalent to the fact that the φ-triangle

in D(R) with central vertex X belongs to D�
fg(R) whenever X ∈ D�

fg(R). In other words, Uφ ∩ D�
fg(R) is

an aisle of D�
fg(R) if and only if τ

�
φ X ∈ D�

fg(R) (or equivalently τ>
φ X ∈ D�

fg(R)) for all X ∈ D�
fg(R).

The following lemmas are useful in the proof of Theorem 4.4.

Lemma 4.2. Let φ : Z → P(Spec(R)) be an sp-filtration. Then, for every j ∈ Z, we get τ
�
φ D� j(R) ⊂ D� j(R)

and τ>
φ D� j(R) ⊂ D� j(R).

Proof. Without loss of generality, we may assume that j = 0. Let X ∈ D�0(R) be any complex and put
T = τ

�
φ X and Y = τ>

φ X . From the long exact sequence of homology associated to the canonical φ-

triangle with central vertex X we obtain isomorphisms Hi−1(Y ) ∼= Hi(T ) for all i < 0, and a monomor-
phism of R-modules H−1(Y ) ↪→ H0(T ). In particular Supp(H j(Y )) ⊂ Supp(H j+1(T )) ⊂ φ( j + 1) ⊂ φ( j)
for all j � −1. The explicit description of Uφ given in Theorem 3.11 shows that τ�−1Y ∈ Uφ . So having
in mind that Y ∈ U ⊥

φ the canonical map τ�−1Y → Y is zero. Thus Y ∈ D�0(R) and as a consequence

T ∈ D�0(R). �
As usual, we denote by Ass(M) the set of associated prime ideals of a module M ∈ Mod(R) (for

the basic properties of associated prime ideals cf. [Mat, §6, p. 38]).

Lemma 4.3. Let φ be an sp-filtration of Spec(R). Let j be an integer and M be a finitely generated R-module
such that Ass(M) ∩ φ( j) = ∅ (e.g. M = R/p, with p /∈ φ( j)). Let

T
a−→ M[− j] b−→ Y

+−→
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be the canonical φ-triangle with central vertex M[− j] ∈ D(R). Then:

(1) T ∈ D> j(R);
(2) Y ∈ D� j(R) and Γφ( j)(H j(Y )) = 0; and
(3) the homomorphism of R-modules H j(b) : M → H j(Y ) is an essential extension.

Proof. Assuming again that j = 0 and rewriting the proof of Lemma 4.2 for X = M[0] = M , we get
that Y and T belong to D�0(R) and that the canonical map H0(a) : H0(T ) → M is a monomorphism
of R-modules. Then Ass(H0(T )) ⊂ Ass(M). The hypothesis on Ass(M) implies that Ass(H0(T )) = ∅,
then H0(T ) = 0 and T ∈ D>0(R).

Having in mind that H0(Y )[0] ∼= τ�0Y , we get that

HomR
(
N,H0(Y )

) = HomD(R)

(
N[0], τ�0Y

)
∼= HomD(R)

(
N[0], Y

) = 0

for every R-module N such that Supp(N) ⊂ φ(0); therefore Γφ(0)(H0(Y )) = 0. Finally, let us check that
the monomorphism ι := H0(b) : M ↪→ H0(Y ) is essential. Consider the exact sequence

0 → M
ι−→ H0(Y )

ν−→ H1(T ) → 0

of R-modules associated to the φ-triangle with central vertex M = M[0]. Let V ⊂ H0(Y ) be a finitely
generated submodule such that Im(ι) ∩ V = 0. Then Ker(ν) ∩ V = Im(ι) ∩ V = 0, so the composi-

tion V ↪→ H0(Y )
ν−→ H1(T ) is also a monomorphism, hence Supp(V ) ⊂ Supp(H1(T )) ⊂ φ(1) ⊂ φ(0).

Therefore V = Γφ(0)(V ) ⊂ Γφ(0)(H0(Y )) = 0. �
Theorem 4.4. Let φ : Z → P(Spec(R)) be an sp-filtration. Suppose that p � q is a strict inclusion of prime
ideals of R such that p is maximal under q. Let

T −→ R/p[− j + 1] −→ Y
+−→

be a φ-triangle in D(R) with central vertex R/p[− j + 1]. If q ∈ φ( j) and p /∈ φ( j − 1), then neither T nor Y
belongs to Dfg(R).

Proof. For simplicity assume j = 1, and put U = Uφ . Suppose that one of the objects T or Y belongs

to Dfg(R), then the other belongs as well. Hence T → R/p[0] → Y
+→ is a triangle in Dfg(R) with

T ∈ U and Y ∈ U ⊥ . By Proposition 2.9 localizing at q, we get a triangle

Tq −→ Rq/pRq[0] −→ Yq
+−→

in Dfg(Rq), such that Tq ∈ Uq and Yq ∈ U ⊥
q . Moreover, from Proposition 2.9 we know that the sp-

filtration φq of Spec(Rq) associated to Uq is given by φq(i) = φ(i) ∩ Spec(Rq). As a consequence
qRq ∈ φq(1) but pRq /∈ φq(0). Let us simplify the notation assuming that R = Rq is local, q = m is the
maximal ideal of R , and p is maximal under m.

By Lemma 4.3, under the present hypothesis T ∈ D>0(R), Y ∈ D�0(R), Γm(H0(Y )) = 0 and the
induced homomorphism R/p → H0(Y ) is an essential extension. Then Supp(H0(Y )) = V(p), and
hence Supp(H1(T )) ⊂ V(p) ∩ φ(1) = {m}. Therefore H1(T ) is a finitely generated R-module with
Supp(H1(T )) ⊂ {m}, so one can find r ∈ N such that mrH1(T ) = 0.
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Let us fix an integer k > 0. Let j : R → R/p be the canonical homomorphism of rings. The ring
A := R/p is an integral local domain of Krull dimension 1 with n := m/p as its maximal ideal. Notice
that the canonical map

Ext1
A

(
A/nk, A

) α−→ Ext1
R

(
R/

(
p + mk), R/p

)

is injective. Moreover, applying the homological functor HomD(R)(−, R/p) to the short exact sequence
of R-modules

0 → (
p + mk)/mk −→ R/mk −→ R/

(
p + mk) → 0,

we obtain an exact sequence

0 −→ Ext1
R

(
R/

(
p + mk), R/p

) β−→ Ext1
R

(
R/mk, R/p

)

because HomR((p + mk)/mk, R/p) = 0. Therefore we get a monomorphism βα : Ext1
A(A/nk, A) ↪→

Ext1
R(R/mk, R/p). Now

Ext1
A

(
A/nk, A

) ∼= HomA
(

A/nk, Q (A)/A
)
,

because Q (A) = k(p), the field of quotients of A = R/p, is the injective hull of A in Mod(A). Note that
this hom can be described as the A-submodule of Q (A)/A of those elements x̄ = x + A ∈ Q (A)/A
such that nkx̄ = 0. Since for each k > 0 one can always find elements x̄ ∈ Q (A)/A such that nk−1 x̄ �=
0 = nkx̄, we conclude from the existence of the monomorphism βα that

mk−1 Ext1
R

(
R/mk, R/p

) �= 0, ∀k > 0. (4.4.1)

On the other hand, since m ∈ φ(1) (i.e. R/m[−1] ∈ U ), by Proposition 2.4(3) we get that
R/mk[−1] ∈ U , for all k > 0. The properties of the triangle in the hypothesis of the theorem give
us isomorphisms

Ext1
R

(
R/mk, R/p

) ∼= HomD(R)

(
R/mk[−1], R/p

)
∼= HomD(R)

(
R/mk[−1], T

)
.

But, since T ∈ D>0(R), we have that

HomD(R)

(
R/mk[−1], T

) ∼= HomR
(

R/mk,H1(T )
)
,

so HomD(R)(R/mk[−1], T ) is isomorphic to a submodule of H1(T ). Hence mr Ext1
R(R/mk, R/p) = 0, for

all k > 0. This fact contradicts (4.4.1). �
Remark. A dualizing complex can be explicitly realized as a residual complex and determines a
codimension functor (see remark 6.2 further on). The codimension function provides an sp-filtration
φCM : Z → P(Spec(R)) that satisfies the following condition:

For any j ∈ Z, and any pair of prime ideals p � q, with p maximal under q, then q ∈ φCM( j) if and
only if p ∈ φCM( j − 1).

We call this property the strong Cousin condition. For our purposes it is convenient to consider sp-
filtrations under a weaker version of the above condition (cf. Theorem 4.4). This fact justifies the
following.
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Definition. Let φ : Z → P(Spec(R)) be an sp-filtration. We say that φ satisfies the weak Cousin condi-
tion if the following property holds:

For every j ∈ Z, if p � q are prime ideals, with p maximal under q, and q ∈ φ( j) then p ∈ φ( j − 1).

Corollary 4.5. Let � ∈ {−,+,b, “blank”}. If φ is an sp-filtration of Spec(R) such that Uφ ∩ D�
fg(R) is an aisle

of D�
fg(R), then φ satisfies the weak Cousin condition.

Proof. Straightforward consequence of Theorem 4.4. �
Our next goal is to see whether the converse of the statement in Corollary 4.5 is also true. For that

we study the sp-filtrations satisfying the weak Cousin condition.

4.6. Recall that for two prime ideals p,q ∈ Spec(R) the relation p ⊂ q can be expressed saying that p

is a generalization of q or, equivalently, q is a specialization of p. A subset Y ⊂ Spec(R) is stable under
generalization if p ∈ Y whenever p ⊂ q with q ∈ Y . For instance if q ∈ Spec(R) we identify Spec(Rq)

with the subset of all generalizations of q in Spec(R).
Under the assumption that R is a Noetherian ring, a subset Y ⊂ Spec(R) is stable under spe-

cialization (sp-subset) and generalization if and only if Y is open and closed, equivalently Y is the
union of connected components of Spec(R). Indeed, let Y ⊂ Spec(R) be stable under specialization
and generalization. If p ∈ Spec(R) is a minimal prime ideal such that V(p) ∩ Y �= ∅ necessarily p ∈ Y
because Y is stable under generalization; thus V(p) ⊂ Y since Y is also stable under specializa-
tion. Let Min(R) = {p1, . . . ,ps} be the set of minimal prime ideals of R order in such a way that
Min(R) ∩ Y = {p1, . . . ,pr}, for an integer r � s. Then Y = ⋃r

i=1 V(pi) so it is closed, and it is open
because Spec(R) \ Y = ⋃s

i=r+1 V(pi).

Proposition 4.7. Let φ : Z → P(Spec(R)) be an sp-filtration that satisfies the weak Cousin condition. Then
there exists an integer j0 ∈ Z such that φ( j) = φ( j0) for all j � j0 , and the subset φ( j0) ⊂ Spec(R) is open
and closed. Also, the set

⋂
i∈Z

φ(i) is open and closed.

Proof. The class of sp-subsets of Spec(R) is closed under taking arbitrary unions and intersections,
from which we get that

⋂
i∈Z

φ(i) and
⋃

i∈Z
φ(i) are sp-subsets. Furthermore, the weak Cousin con-

dition implies that the sets
⋂

i∈Z
φ(i) and

⋃
i∈Z

φ(i) are both also stable under generalization, so they
are at once open and closed in Spec(R) (see 4.6). The set of minimal prime ideals of Y = ⋃

i∈Z
φ(i)

is finite, so we can find a small enough integer j0 such that φ( j0) contains all minimal prime ideals
of Y since the sp-filtration is decreasing. Then φ( j0) = Y , and φ( j0) = φ( j) for all j � j0. �
Corollary 4.8. If Spec(R) is connected and φ is not one of the two trivial constant sp-filtrations, then the
following assertions hold:

(1) The sp-filtration φ is separated, i.e.
⋂

i∈Z
φ(i) = ∅.

(2) There exists an integer j0 ∈ Z such that φ( j0) = Spec(R).
(3) If R has finite Krull dimension, then there exists a large enough k ∈ Z such that φ(k) = ∅.

Proof. Being Spec(R) connected and φ not one of the two trivial constant sp-filtrations it follows that⋂
i∈Z

φ(i) = ∅ and
⋃

i∈Z
φ(i) = φ( j0) = Spec(R) with j0 as in the previous proposition.

To prove (3), denote by d the Krull dimension of R and by Min(R) the set of minimal prime ideals
of Spec(R). By (1) we can associate to each maximal m ⊂ R an integer im = max{i ∈ Z; m ∈ φ(i)}.
Let us fix a maximal ideal m ⊂ R and take a maximal chain of prime ideals p0 � p1 � · · · � pr = m

(then r � d). The weak Cousin condition for φ implies that the minimal prime ideal p0 belongs to
φ(im − r) ⊂ φ(im − d). In particular, we have Min(R) ∩ φ(im − d) �= ∅, which implies that im − d �
m := max{i ∈ Z; Min(R)∩φ(i) �= ∅}. Then im � d +m, for every maximal m ⊂ R . So φ(d +m + 1) does
not contain any maximal ideal, which means that φ(d + m + 1) = ∅. �
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Remark. For a general sp-filtration φ the result in Lemma 4.2 shows that Uφ ∩ D+(R) is an aisle
of D+(R). If furthermore there is an integer k such that φ(k) = ∅ then Uφ ⊂ D<k(R). Therefore

τ
�
φ D−(R) ⊂ D−(R) (equivalently τ>

φ D−(R) ⊂ D−(R)). In this case Uφ ∩ D�(R) is an aisle of D�(R)

for all � ∈ {−,+,b}.

As a consequence of the above proposition we get the following.

Corollary 4.9. Assume that Spec(R) is connected, R has finite Krull dimension, and that φ is a nonconstant sp-
filtration of Spec(R) satisfying the weak Cousin condition. For any superscript � ∈ {−,+,b}, Uφ ∩ D�(R) is an
aisle of D�(R). Moreover, there exist integers j � k for which the canonical maps τ<k X → X and X → τ> j X
induce isomorphisms τ

�
φ τ<k X→̃τ

�
φ X and τ>

φ X→̃τ>
φ τ> j X , for all X ∈ D(R).

Proof. By Corollary 4.8 there exist integers j � k such that φ( j) = Spec(R) and φ(k) = ∅. So the
remark preceding this corollary shows that Uφ ∩ D�(R) is an aisle of D�(R).

The canonical homomorphism X → τ> j X induces natural isomorphisms

HomD(R)(τ
> j X, Y )→̃ HomD(R)(X, Y )

for all Y ∈ U ⊥
φ because D� j(R) ⊂ Uφ . As a consequence of the natural adjunction isomorphisms

HomD(R)(N, Y )→̃ HomD(R)(τ
>
φ N, Y ) for any N ∈ D(R) and Y ∈ U ⊥

φ , we get that the natural map

τ>
φ X→τ>

φ τ> j X is an isomorphism.

Following a dual path, note that the canonical map τ<k X→X induces, for all U ∈ Uφ , natural
isomorphisms

HomD(R)

(
U , τ<k X

)→̃HomD(R)(U , X)

because Uφ ⊂ D<k(R). Then the adjunction isomorphism

HomD(R)(U , N)→̃ HomD(R)

(
U , τ

�
φ N

)
,

for any N ∈ D(R) and U ∈ Uφ , lead us to conclude that the natural map τ
�
φ τ<k X → τ

�
φ X is an

isomorphism. �
Corollary 4.10. Let φ be an sp-filtration of Spec(R). Consider the following assertions:

(�) Uφ ∩ D�
fg(R) is an aisle of D�

fg(R),

with � ∈ {−,+,b, “blank”}. Then (−) ⇒ (b) and, if R has finite Krull dimension then the assertions (−), (+),
(b) and (“blank”) are equivalent.

Proof. First of all note that under any of the assumptions labeled (�) the sp-filtration φ satisfies the
weak Cousin condition (cf. Corollary 4.5). Furthermore, we can assume that Spec(R) is connected and
φ is not one of the two trivial constant sp-filtrations.

We can rewrite each of the four statements here by saying that τ
�
φ X ∈ D�

fg(R) (equivalently τ>
φ X ∈

D�
fg(R)) for all X ∈ D�

fg(R).

First let us show that (−) ⇒ (b). If X ∈ Db
fg(R) then the φ-triangle with central term X is in D+(R)

(see Lemma 4.2). By assumption (−) we also have that it lays on D−
fg(R), hence on Db

fg(R).
In the rest of the proof we suppose in addition that R has finite Krull dimension. Then Corollary 4.9

applies here. Let j � k be the integers in the statement of Corollary 4.9. In order to prove (b) ⇒ (+) let
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us take any complex X ∈ D+
fg(R); then we get that τ

�
φ X ∼= τ

�
φ τ<k X ∈ Db

fg(R) ⊂ D+
fg(R) by (b) because

τ<k X ∈ Db
fg(R). To check (+) ⇒ (“blank”) notice that for every X ∈ D(R) it holds that τ>

φ X ∼= τ>
φ τ> j X

by Corollary 4.9; then τ>
φ X ∼= τ>

φ τ> j X ∈ D+
fg(R) ⊂ Dfg(R) by (+). Finally (“blank”) ⇒ (−) is a conse-

quence of the fact that Uφ ⊂ D�k(R). �
Corollary 4.11. Over a commutative Noetherian ring of finite Krull dimension the problems of classifying t-
structures on D−

fg(R) and Db
fg(R) are equivalent. They are also equivalent to classifying on Dfg(R) and D+

fg(R)

all t-structures generated by perfect complexes (or, by bounded above complexes).

Proof. It follows from Corollary 3.12 and Corollary 4.10. �
4.12. The sp-filtrations of Spec(R) corresponding to Bousfield localizations on D(R) are exactly the
constant sp-filtrations. If φ is a constant sp-filtration inducing a Bousfield localization on D�

fg(R) then
φ satisfies weak Cousin condition (for any � ∈ {−,+,b, “blank”}). By Proposition 4.7, there exists a
subset Z ⊂ Spec(R) open and closed such that φ( j) = Z for all j ∈ Z. Hence Z = V(e) for an idempo-
tent element e ∈ R . For each complex X ∈ D(R) the Bousfield triangle associated to Z is

RΓV(e) X −→ X −→ Xe
+−→ .

Note that X ∼= RΓV(e)(X) ⊕ Xe , because the third map in the triangle is zero. So trivially the Bous-

field localization (Uφ, U ⊥
φ [1]) restricts to a Bousfield localization on D�

fg(R). These are all the Bousfield

localizations on D�
fg(R). In particular, if Spec(R) is connected then the Bousfield localizations gen-

erated by bounded above complexes (equivalently, the Bousfield localizations generated by perfect
complexes) on D�

fg(R) are just the trivial ones.

5. Aisles determined by finite filtrations by supports

In this section we set the stage to show that, under sufficiently general hypotheses, the converse
of the statement in Corollary 4.5 is true.

5.1. If R has finite Krull dimension and Spec(R) is connected, for each nonconstant sp-filtration
φ : Z → P(Spec(R)) satisfying the weak Cousin condition there exist integers j0 � k such that
φ( j0) = Spec(R) and φ(k) = ∅ (cf. Corollary 4.8). For a general commutative Noetherian ring R we
introduce the following definition.

Definition. Let φ : Z → P(Spec(R)) be an sp-filtration. Let s � n two integers. We say that φ is deter-
mined in the interval [s,n] if φ( j) = φ(s) for all j � s, φ(s) � φ(s + 1) and φ(n) � φ(n + 1) = ∅.

If the sp-filtration φ : Z → P(Spec(R)) is determined in the interval [s,n] ⊂ Z we say that φ is
finite of length L(φ) := n − s + 1. For any finite sp-filtration φ we have that L(φ) � 1.

Remark. Although a constant sp-filtration is never determined in an interval in the above sense, we
adopt the convention that a constant sp-filtration φ of Spec(R) is finite of length L(φ) := 0. The asso-
ciated aisle to a constant sp-filtration is a localizing class corresponding to an ⊗-compatible Bousfield
localization (cf. Section 1.6).

5.2. Let φ : Z → P(Spec(R)) be a finite sp-filtration of length 1, that is an sp-filtration such that
Uφ = U i

Z for a fixed i ∈ Z and Z = φ(i). Corollary 1.9 shows that its associated left truncation functor

τ
�
φ is τ�iRΓφ(i) . Note that for each complex X ∈ D(R), τ>

φ X is determined by the existence of a
distinguished triangle in D(R)

τ>iRΓZ X −→ τ>
φ X −→ RQ Z X

+−→
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built as follows. The natural map π : τ
�
φ X→X is the composition of the canonical maps α :

τ�iRΓZ X→RΓZ X and ρ : RΓZ X→X . Applying the octahedron axiom to the commutative diagram
π = ρ ◦ α

we get the vertex of the triangle with base π : τ�
φ X → X inserted in the triangle we are looking for.

5.3. Our next task is the description of the truncation functors associated to any finite sp-filtration,
see Proposition 5.5 and Corollary 5.6. These results are used in the proof of Lemma 5.7 that let us
establish an inductive way to achieve the classification of aisles of D�

fg(R) in the last section of the
paper.

In Section 5.2 we have described the truncation functors associated to any finite sp-filtration
of length 1. Let φ : Z → P(Spec(R)) be any sp-filtration. For each integer i ∈ Z let us denote
by φi : Z → P(Spec(R)) the sp-filtration determined by Uφi := U i

φ(i) . The family {φi; i ∈ Z} of sp-
filtrations of length 1 determines φ.

Starting from a finite sp-filtration φ : Z → P(Spec(R)) determined in the interval [s,n] ⊂ Z, we
construct a finite sp-filtration φ′ : Z → P(Spec(R)) of length L(φ′) � L(φ) by setting φ′(n) = ∅ and
φ′( j) = φ( j), for all j � n − 1 (that is, φ′

j = φ j for any j � n − 1). If L(φ) > 1, then φ′ is a finite
sp-filtration of length 1 � L(φ′) = L(φ) − 1. Note that if φ satisfies the weak Cousin condition then so
does φ′ .

Lemma 5.4. Let us fix two integers i � j and Z j , Zi two sp-subsets of Spec(R). Let φi and φ j be the sp-filtration
of Spec(R) of length 1 determined by Uφk := U k

Zk
with k ∈ {i, j}. If M ∈ U ⊥

φi
then τ>

φ j
M ∈ U ⊥

φi
.

Proof. By 5.2 there is a distinguished triangle in D(R)

τ> jRΓZ j M −→ τ>
φ j

M −→ RQ Z j M
+−→ .

First note that RΓZi τ
> jRΓZ j M belongs to D> j(R) and as a consequence

τ
�
φi

τ> jRΓZ j M = τ�iRΓZi τ
> jRΓZ j M = 0,

that is, τ> jRΓZ j M ∈ U ⊥
φi

. Let us check that RQ Z j M ∈ U ⊥
φi

. This follows from the canonical isomor-
phisms

τ
�
φi

RQ Z j M = τ�iRΓZi RQ Z j M ∼= τ�iRQ Z j RΓZi M.

Indeed, M ∈ U ⊥
φi

therefore RΓZi M ∈ D>i(R), hence RQ Z j RΓZi M ∈ D>i(R), thus τ
�
φi

RQ Z j M ∼=
τ�iRQ Z j RΓZi M = 0. �
Proposition 5.5. Let φ : Z → P(Spec(R)) be a finite sp-filtration determined in the interval [s,n] ⊂ Z. Then
τ

�
φ X ∈ D�n(R) for all X ∈ D(R). Furthermore, using the notation in 5.3:



336 L. Alonso T. et al. / Journal of Algebra 324 (2010) 313–346
(1) The right truncation functor τ>
φ is computed as the composition

τ>
φn

τ>
φn−1

· · ·τ>
φs

.

(2) For all X ∈ D(R), τ�
φn

τ>
φ′ X ∈ D[n,n](R).

Proof. For simplicity we assume in the proof that [s,n] is the interval [0,n]. Let us set Zi := φ(i) for
each i ∈ [0,n]. Trivially τ

�
φ X ∈ D�n(R). In order to prove the statement (1) we proceed by induction

on the length of the sp-filtration φ. The case L(φ) = n + 1 = 1 is trivial. Let n > 0, then 1 � L(φ′) <

L(φ). By inductive hypothesis the result is true for φ′ . Let us consider the commutative diagram of
distinguished triangles

built up from the commutative diagram w = v ◦ u and the octahedron axiom. The triangle

τ
�
φ′ X −→ N −→ τ

�
φn

τ>
φ′ X

+−→

proves that N ∈ Uφ because τ
�
φ′ X ∈ Uφ′ ⊂ Uφ and τ

�
φn

τ>
φ′ X ∈ Uφn ⊂ Uφ . Note that U ⊥

φ′ = ∩n−1
i=0 U ⊥

φi
and

U ⊥
φ = U ⊥

φ′ ∩ U ⊥
φn

, therefore Lemma 5.4 shows that τ>
φn

τ>
φ′ X belongs to U ⊥

φ . Hence the horizontal triangle

in the above diagram is the φ-triangle with central vertex X , that is τ
�
φ X = N and τ>

φ X = τ>
φn

τ>
φ′ X .

The next question we address is to show that τ
�
φn

τ>
φ′ X = τ�nRΓφ(n)τ

>
φ′ X belongs to D[n,n](R) or,

equivalently, that RΓZnτ
>
φ′ X ∈ D>n−1(R). To prove it we begin by recalling some useful results. Let

ΓZn−1/Zn : Mod(R)→Mod(R) be the functor determined by the short exact sequence of functors in
Mod(R)

0 −→ ΓZn −→ ΓZn−1 −→ ΓZn−1/Zn −→ 0.

(Cf. [H, variation 2 on p. 219].) Write Γn−1/n = ΓZn−1/Zn , Γn = ΓZn for each n ∈ Z. Deriving these
functors on the right the above abelian exact sequence provide a distinguished triangle for any Y ∈
D(R)

RΓnY −→ RΓn−1Y −→ RΓn−1/nY
+−→ . (5.5.1)

Applying the functor RΓn to this triangle we get RΓnRΓn−1/nY = 0 since RΓnRΓn−1Y → RΓnRΓnY =
RΓnY is an isomorphism (cf. Section 1.7). Furthermore, the natural transformation RΓn−1 → 1 induces
morphisms of distinguished triangles
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RΓn−1RΓnY

�

RΓn−1RΓn−1Y

�

RΓn−1RΓn−1/nY
+

RΓnY RΓn−1Y RΓn−1/nY
+

RΓnRΓn−1Y

�

RΓn−1RΓn−1Y

�

RΓn−1/nRΓn−1/nY
+

that are in fact isomorphisms of triangles because the two vertical maps on the left are isomorphisms
(see Section 1.7). Therefore

RΓn−1RΓn−1/nY ∼= RΓn−1/nRΓn−1Y ∼= RΓn−1/nY

for all Y ∈ D(R).
Going back to our aim, set Y := τ>

φ′ X . Note that Y ∈ (Uφn−1 )
⊥ , so that τ�n−1RΓn−1Y = 0, that is,

RΓn−1Y ∈ D>n−1(R). But then RΓn−1/nY ∼= RΓn−1/nRΓn−1Y also belongs to D>n−1(R). Now the exis-
tence of the triangle (5.5.1) allows us to conclude that RΓnτ

>
φ′ X = RΓnY ∈ D>n−1(R), as desired. �

Corollary 5.6. Let us consider the notation in the above proposition. Then for each X ∈ D(R) it holds that
τ

�
φn

τ>
φ′ X ∼= Hn(τ

�
φ X)[−n] and there is a diagram of distinguished triangles in D(R)

in which:

(1) the triangle τ
�
φn

τ>
φ′ X −→ τ>

φ′ X −→ τ>
φ X

+−→ is canonically isomorphic to τ
�
φ τ>

φ′ X −→ τ>
φ′ X −→

τ>
φ τ>

φ′ X
+−→; and

(2) the triangle τ
�
φ′ X −→ τ

�
φ X −→ τ

�
φn

τ>
φ′ X

+−→ is canonically isomorphic to τ�n−1τ
�
φ X −→ τ

�
φ X −→

τ>n−1τ
�
φ X

+−→ .

Proof. The diagram whose existence we assert is the diagram of distinguished triangles at the begin-
ning of the proof of Proposition 5.5. From the very same proof note that τ

�
φn

τ>
φ′ X ∈ Uφn ⊂ Uφ hence

the triangle

τ
�
φn

τ>
φ′ X −→ τ>

φ′ X −→ τ>
φ X

+−→

is the φ-triangle with central vertex τ>
φ′ X , so assertion (1) follows.

We also derive from Proposition 5.5 that (2) holds true, since τ
�
φ′ X ∈ D�n−1(R) and τ

�
φn

τ>
φ′ X ∈

D[n,n](R) ⊂ D>n−1(R). And also as a consequence τ
�
φn

τ>
φ′ X ∼= Hn(τ

�
φ X)[−n]. �
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Lemma 5.7. Let � ∈ {−,+,b, “blank”} and let φ be a finite sp-filtration of Spec(R) determined in the interval
[s,n] ⊂ Z. The following statements are equivalent:

(1) Uφ ∩ D�
fg(R) is an aisle of D�

fg(R).

(2) Uφ′ ∩ D�
fg(R) is an aisle of D�

fg(R) and Hn(RΓφ(n)M) is a finitely generated R-module, for every M ∈
U ⊥

φ′ ∩ D�
fg(R).

(3) Uφ′ ∩ D�
fg(R) is an aisle of D�

fg(R) and τ�n(RΓφ(n)M) ∈ D�
fg(R), for every M ∈ U ⊥

φ′ ∩ D�
fg(R).

Proof. As a consequence of the remark after Corollary 4.8, it is enough to prove the current Lemma
for � = “blank”.

Take M ∈ U ⊥
φ′ ∩ Dfg(R) so the canonical map M → τ>

φ′ M is an isomorphism. Then τ
�
φ M ∼= τ

�
φn

M

by Corollary 5.6(1). From the initial statement of that same corollary we get that τ
�
φ M ∼= τ

�
φn

M =
τ�nRΓφ(n)M ∼= Hn(RΓφ(n)M)[−n]. This proves (2) ⇔ (3). And also proves that τ

�
φ M ∈ Dfg(R) (equiva-

lently τ>
φ M ∈ Dfg(R)) if and only if Hn(RΓφ(n)M) is a finitely generated R-module. This said, to prove

(1) ⇒ (2) we just need to check that Uφ′ ∩ Dfg(R) is an aisle of Dfg(R). But it follows from the fact

that, for every X ∈ Dfg(R), τ
�
φ′ X ∼= τ�n−1τ

�
φ X , see Corollary 5.6(2).

Finally let us show (2) ⇒ (1). Let X ∈ Dfg(R), assuming (2) we have that both M = τ>
φ′ X and

τ
�
φn

τ>
φ′ X = Hn(RΓφ(n)M)[−n] (see Proposition 5.5(2)) belong to Dfg(R) and we conclude by the triangle

in Corollary 5.6(1). �
Proposition 5.8. Let φ be an sp-filtration satisfying the weak Cousin condition and such that L(φp) � 2 for
all prime ideal p ∈ Spec(R) (equivalently for all maximal ideal p ∈ Spec(R)), then Uφ ∩ Dfg(R) is an aisle of
Dfg(R).

Proof. The question is local so we can assume that R is local (hence Spec(R) is connected and of
finite Krull dimension). Then φ is a finite sp-filtration of length � 2 which, without loss of generality,
we assume φ nonconstant and concentrated in the interval [0,n]. If L(φ) = 1, that is n = 0, then
Uφ ∩ Dfg(R) is trivially an aisle since in the present setting the condition L(φ) = 1 is equivalent to

saying that Uφ = D�0(R). If L(φ) = 2, that is n = 1, then Uφ′ ∩ Dfg(R) = D�0
fg (R) is the aisle of the

canonical t-structure on Dfg(R). On the other hand, if M ∈ U ⊥
φ′ ∩ Dfg(R) = D>0(R) ∩ Dfg(R), we have

that H1(RΓφ(1)M) ∼= Γφ(1)(H1(M)), which is finitely generated because it is a submodule of the finitely
generated module H1(M). Hence Uφ ∩ Dfg(R) is an aisle of Dfg(R) by Lemma 5.7. �
6. The classification over rings with dualizing complex

We begin this section by recalling briefly some basic results on dualizing complexes from
[H, Chapter V, §2] in our context.

6.1. A complex X ∈ D(R) is reflexive with respect to D ∈ D(R) if the natural morphism

σX : X −→ R Hom·
R

(
R Hom·

R(X, D), D
)

is an isomorphism in D(R).
Let D ∈ Db

fg(R) be a complex quasi-isomorphic to a bounded complex of injective R-modules. Then
following assertions are equivalent [H, Chapter V, §2, Proposition 2.1]:

(1) The contravariant functor R Hom·
R(−, D) : Dfg(R) → Dfg(R) is a triangulated duality quasi-inverse

of itself.
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(2) The contravariant functor R Hom·
R(−, D) : Db

fg(R) → Db
fg(R) is a triangulated duality quasi-inverse

of itself.
(3) Every finitely generated R-module is reflexive with respect to D .
(4) The stalk complex R[0] is reflexive with respect to D .

A complex D ∈ Db
fg(R) quasi-isomorphic to a bounded complex of injective R-modules that satisfies

the above equivalent conditions is called a dualizing complex for R . More generally, D ∈ D+
fg(R) is called

a pointwise dualizing complex for R in case Dp is a dualizing complex over Rp , for every p ∈ Spec(R).
If R possesses a dualizing complex then R has finite Krull dimension (cf. [H, Chapter V, Corol-

lary 7.2, p. 283]). Furthermore, D is a dualizing complex for R if and only if D is a pointwise dualizing
complex and the Krull dimension of R is finite.

6.2. Let D ∈ Db
fg(R) be a complex. As we easily derive from [H, Chapter V, Proposition 3.4, p. 269], D

is a pointwise dualizing complex if, and only if, for each p ∈ Spec(R) there is a unique ip ∈ Z such
that

HomD(Rp)

(
k(p), Dp[ j]) =

{
0, if j �= ip,

k(p), if j = ip.

In that case we define a map d : Spec(R) → Z by setting d(p) = ip , for all p ∈ Spec(R). Observe that
the map d : Spec(R) → Z obeys the rule:

d(p) = i ⇐⇒ [
HomD(Rp)

(
k(p), Dp[ j]) = 0, ∀ j ∈ Z such that j �= i

]
.

Moreover d : Spec(R) −→ Z is a codimension function, that is, if p � q and ht(q/p) = 1 then d(q) =
d(p) + 1 [H, Chapter V, §7, Proposition 7.1].

The following lemma gives a useful characterization of d : Spec(R) → Z.

Lemma 6.3. If D ∈ D(R) is a dualizing complex, then

d(p) = max
{
n ∈ Z; RΓV(p)D ∈ D�n(R)

}

for each p ∈ Spec(R).

Proof. First note that for every p ∈ Spec(R) and j ∈ Z the support of the R-module HomD(R)(R/p,

D[ j]) is contained in V(p). Moreover

HomD(R)

(
R/p, D[ j])

p
∼= HomD(Rp)

(
k(p), Dp[ j])

because D is bounded below. The result mentioned in 6.2 guaranties that 0 �= (R Hom·
R(R/p, D))p ∈

D[d(p),d(p)](Rp). As a consequence (RΓV(p)D)p ∼= RΓpRp
Dp belongs to D�d(p)(Rp) and does not belong

to D>d(p)(Rp). Whence Hd(p)(RΓV(p)D) �= 0 and therefore

max
{
n ∈ Z; RΓV(p)D ∈ D�n(R)

}
� d(p), for all p ∈ Spec(R).

Let T be the set of prime ideals in Spec(R) for which the desired equality does not hold, i.e. T = {p ∈
Spec(R); RΓV(p)D /∈ D�d(p)(R)}. Assume that T is nonempty and choose a prime ideal p ∈ T maximal
among the prime ideals in T (recall that R is Noetherian). Then for all q ∈ Spec(R) such that p � q it
holds that

d(q) = max
{
n ∈ Z; RΓV(q)D ∈ D�n(R)

}
.



340 L. Alonso T. et al. / Journal of Algebra 324 (2010) 313–346
Let Wp := {q; q ∈ Spec(R) and q � p} = Spec(R) \ Spec(Rp). Let us consider the canonical Bousfield
triangle determined by Wp for RΓV(p)D

RΓWp
RΓV(p)D −→ RΓV(p)D

u−→ (RΓV(p)D)p
+−→ .

By the remark in the previous paragraph (RΓV(p)D)p is in D�d(p)(R) and does not belong to
D>d(p)(R). Let us prove that the left vertex in the above triangle is in D�d(p)+1(R). Let W ′

p be
the set of prime ideals W ′

p := Wp ∩ V(p) = V(p) \ {p}. Then using the canonical isomorphism

RΓWp
RΓV(p)

∼= RΓW ′
p

(cf. Section 1.7) we deduce that RΓWp
RΓV(p)D ∼= RΓW ′

p
D ∈ D�d(p)+1(R), be-

cause

RΓV(q)D ∈ D�d(q)(R) ⊂ D�d(p)+1(R),

for all q ∈ W ′
p (see Corollary 2.5). From the above Bousfield triangle we conclude that RΓV(p)D ∈

D�d(p)(R) against the fact that p ∈ T . �
6.4. Let D ∈ Db

fg(R) be a dualizing complex for R and d : Spec(R) → Z its associated codimension
function.

The duality functor R Hom·
R(−, D) : Db

fg(R) −→ Db
fg(R) transforms the canonical t-structure on

Db
fg(R) onto a t-structure on Db

fg(R). We call this t-structure the Cohen–Macaulay t-structure on Db
fg(R)

with respect to D , because it can be proved that the objects in its heart are precisely the Cohen–
Macaulay complexes in the sense of [H, pp. 238–239].

By Corollary 3.12 there exists a unique sp-filtration of Spec(R) associated to the Cohen–Macaulay
t-structure on Db

fg(R) (with respect to D). We denote this filtration by

φCM : Z −→ P
(
Spec(R)

)

and we name it the Cohen–Macaulay filtration (with respect to D).
Trivially the filtration φCM satisfies the weak Cousin condition, actually as a consequence of Propo-

sition 6.5 right below, the filtration φCM does satisfy the strong Cousin condition (cf. the remark after
Theorem 4.4) because d is a codimension function.

Proposition 6.5. Let us consider the hypothesis and notation in the above paragraph. The Cohen–Macaulay
filtration φCM attaches to each i ∈ Z the set

φCM(i) = {
p ∈ Spec(R); d(p) > i

}
.

Proof. Let (V , E [1]) be the t-structure on Db
fg(R) image by the duality functor R Hom·

D(R)(−, D) of the

canonical t-structure on Db
fg(R). The class V consists of those complexes X ∈ Db

fg(R) such that

0 = HomD(R)

(
X,R Hom·

R(N, D)
)

for all N ∈ D�0(R)∩Db
fg(R). The canonical aisle D�0

fg (R) is generated by the stalk complex R , therefore

a complex X ∈ Db
fg(R) is in V if and only if

0 = HomD(R)

(
X,R Hom·

R

(
R[i], D

)) ∼= HomD(R)

(
X[i], D

)
(6.5.1)

for all i � 0. Then the filtration φCM is defined, for each i ∈ Z, by

φCM(i) = {
p ∈ Spec(R); HomD(R)

(
R/p[ j], D

) = 0, for all j � −i
}
,
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a formula that can be rewritten as

φCM(i) = {
p ∈ Spec(R); RΓV(p)D ∈ D>i(R)

}

(see Corollary 1.9 and Proposition 2.7). Then we get from Lemma 6.3 that φCM(i) = {p ∈ Spec(R);
d(p) > i}, for all i ∈ Z. �
6.6. Given a total pre-aisle V of Db

fg(R) and E its right orthogonal in Db
fg(R) there is a unique sp-

filtration φ ∈ Filsp(R) such that V = Uφ ∩Db
fg(R) and E = Fφ ∩Db

fg(R), where Fφ is the right orthogonal
of Uφ in D(R) (see Corollary 3.12). Assume that R admits a dualizing complex D with codimension
function d : Spec(R) → Z. Then the image by the duality functor R Hom·

R(−, D) of the class E is a
total pre-aisle of Db

fg(R) that we denote by E d . The right orthogonal of E d in Db
fg(R) is the image

of V by the duality functor R Hom·
R(−, D), that we denote by V d . Therefore there exists a unique

sp-filtration φd ∈ Filsp(R), that we call the dual of φ (with respect to D), such that E d = Uφd ∩ Db
fg(R)

and V d = Fφd ∩ Db
fg(R).

Recall that X ∈ E = Fφ ∩ Db
fg(R) if and only if HomD(R)(R/p[− j], X) = 0, for all j ∈ Z and p ∈ φ( j).

Then it follows from duality that X ∈ E if and only if

HomD(R)

(
R Hom·

R(X, D),R Hom·
R

(
R/p[− j], D

)) = 0,

for any j ∈ Z and p ∈ φ( j). That is, E d = Uφd ∩ Db
fg(R) is the left orthogonal in Db

fg(R) to the set
of objects Y = {R Hom·

R(R/p[− j], D); j ∈ Z, p ∈ φ( j)}. Therefore the dual of φ is the sp-filtration
defined by

φd(k) = {
q ∈ Spec(R); HomD(R)

(
R/q[−k], Y

) = 0 for all Y ∈ Y
}

for each k ∈ Z.

Lemma 6.7. Let R be a ring that admits a dualizing complex D with φCM : Z → P(Spec(R)) as its associated
Cohen–Macaulay filtration, and let Z ⊂ Spec(R) be an sp-subset. For a complex X ∈ Db

fg(R) and n ∈ Z, the
following assertions are equivalent:

(1) RΓZ X belongs to D>n(R);
(2) for each k ∈ Z and all q ∈ Supp(HomD(R)(X, D[k])), one has that

Supp
(
TorR

i (R/q, R/p)
) ⊂ φCM(k + n − i)

for all i � 0 and all p ∈ Z ;
(3) Z ∩ Supp(HomD(R)(X, D[k])) ⊂ φCM(k + n), for all k ∈ Z.

Proof. Let φ be the sp-filtration determined by the aisle U n
Z ⊂ D(R). Recall from the above paragraph

that

φd(k) = {
q ∈ Spec(R)

∣∣ R/q[−k] ∈ ⊥Y
}
,

where now Y := {R Hom·
R(R/p[− j], D) | p ∈ Z , j � n}.

Note that RΓZ X ∈ D>n(R) is equivalent to

(1′) Supp(Hk(R Hom·
R(X, D))) = Supp(HomD(R)(X, D[k])) ⊂ φd(k)
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for all k ∈ Z. In order to prove the equivalence between (1) and (2) we will give an alternative
description of the dual sp-filtration φd .

Let us fix k ∈ Z an arbitrary integer. Notice that q ∈ φd(k) if and only if

0 = HomD(R)

(
R/q[−k],R Hom·

R

(
R/p[− j], D

))
∼= HomD(R)

(
R/q,R Hom·

R(R/p, D)[k + j])
= Hk+ j(R Hom·

R

(
R/q,R Hom·

R(R/p, D)
))

, (6.7.1)

for all j � n and all p ∈ Z . Using ⊗ − hom adjunction, the latter fact is equivalent to

0 = Hk+ j(R Hom·
R

(
R/q ⊗L

R R/p, D
))

∼= H j−n(R Hom·
R

(
R/q ⊗L

R R/p[−k − n], D
))

,

for all j � n and all p ∈ Z . Making the change of variables i = j − n, we conclude that q ∈ φd(k) if and
only if

HomD(R)

(
R/q ⊗L

R R/p[−k − n], D[i]) = 0, (6.7.2)

for all i � 0 and all p ∈ Z . Proposition 3.7 shows that (6.7.2) is equivalent to saying that

0 = HomD(R)

(
Hs(R/q ⊗L

R R/p[−k − n])[−s], D[i])
∼= HomD(R)

(
Hs−k−n(R/q ⊗L

R R/p
)[−s], D[i]),

for all s ∈ Z, all i � 0 and all p ∈ Z . The expression labeled (6.5.1) in the proof of Proposition 6.5 tells
us that this last condition for q amounts to saying that Hs−k−n(R/q ⊗L

R R/p)[−s] ∈ UφCM ∩ Db
fg(R) or,

equivalently, that Supp(Hs−k−n(R/q⊗L
R R/p)) ⊂ φCM(s), for all s ∈ Z and all p ∈ Z . Since the homology

of that (derived) tensor product could be nonzero only in case s − k − n � 0, we make a change of
variable −t = s − k − n, so that

H−t(R/q ⊗L
R R/p

) = TorR
t (R/q, R/p)

and s = n + k − t , for all t � 0. We then conclude that q ∈ φd(k) if and only if, for all t � 0 and all
p ∈ Z ,

Supp
(
TorR

t (R/q, R/p)
) ⊂ φCM(k + n − t). (6.7.3)

Together with the previous paragraph, this characterization of φd proves the looked-for equivalence.
Let us prove now the equivalence between (2) and (3). Let us introduce the sp-filtration ξ : Z →

P(Spec(R)) defined by

ξ(k) = {
q ∈ Spec(R); V(q) ∩ Z ⊂ φCM(k + n)

}
,

for each k ∈ Z. An easy exercise shows then that (3) is equivalent to

Supp
(
HomD(R)

(
X, D[k])) ⊂ ξ(k), for all k ∈ Z.

Our goal will be reached once we show that, for each k ∈ Z, ξ(k) is the set of prime ideals q ∈ Spec(R)

satisfying Supp(TorR
i (R/q, R/p)) ⊂ φCM(k +n− i) for all i � 0 and all p ∈ Z , otherwise said, ξ = φd (see
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the description of φd in (6.7.3)). For that, let us fix an integer k. Let us consider q ∈ ξ(k), let i � 0 be
a natural number and take an arbitrary p′ ∈ Supp(TorR

i (R/q, R/p)). Then

Tor
Rp′
i (Rp′/qRp′ , Rp′/pRp′) �= 0,

and this fact implies that p′ contains both q and p. Then p′ ∈ V(q)∩V(p) ⊂ V(q)∩ Z . Since q ∈ ξ(k), we
conclude that p′ ∈ φCM(k + n), which implies that p′ ∈ φCM(k + n − i) because φCM is decreasing. That
proves that q ∈ φd(k), so that we get the inclusion ξ(k) ⊂ φd(k). Conversely, assume that q ∈ φd(k)

that is (according to (6.7.1))

0 = Hk+ j(R Hom·
R

(
R/q,R Hom·

R(R/p, D)
))

for all j � n and all p ∈ Z or, equivalently, that

0 = Hi(R Hom·
R

(
R/q,R Hom·

R(R/p, D)
))

, (6.7.4)

for any i � k + n and all p ∈ Z . We need to prove that V(q) ∩ Z ⊂ φCM(k + n). Indeed, if p′ ∈ V(q) ∩ Z
then p′ ∈ φd(k) because φd(k) is an sp-subset. So the equality in (6.7.4) is true for q = p = p′ , that is

0 = Hi(R Hom·
R

(
R/p′,R Hom·

R

(
R/p′, D

)))
= HomD(R)

(
R/p′,R Hom·

R

(
R/p′, D

)[i]),
for all i � k + n. But then, viewing R Hom·

R(R/p′, D) as an object of D(R/p′), we get that
HomD(R/p′)(R/p′,R Hom·

R(R/p′, D)[i]) = 0 for all i � k + n (cf. 2.1). The last is equivalent to saying
that R Hom·

R(R/p′, D) belongs to D>k+n(R/p′). But R Hom·
R(R/p′, D) is a dualizing complex over R/p′

(cf. [H, Chapter V, Proposition 2.4, p. 260]) and then the associated codimension function, which we
denote by d̄, has the property that d̄(0̄) > k + n, where 0̄ ∈ Spec(R/p′) is the generic point. It will be
enough to check that d(p′) � d̄(0̄) or, equivalently, to prove that if HomD(Rp′ )(k(p′), Dp′ [i]) �= 0 then
HomD(k(p′))(k(p′),R Hom·

k(p′)(k(p′), Dp′ [i])) �= 0. But this last fact follows from remark 2.1. �
Lemma 6.8. Under the hypothesis of Lemma 6.7 the following assertions are equivalent for X ∈ Db

fg(R):

(1) τ�nRΓZ X belongs to Db
fg(R);

(2) for each k ∈ Z and all q ∈ Supp(HomD(R)(X, D[k])), either q ∈ Z or Z ∩ V(q) ⊂ φCM(k + n).

Proof. Continuing with the notation in the proof of Lemma 6.7, we have

φd(k) = ξ(k) = {
q ∈ Spec(R); V(q) ∩ Z ⊂ φCM(k + n)

}
,

for all k ∈ Z , so that condition (2) can be rewritten as:

(2′) Supp(HomD(R)(X, D[k])) ⊂ Z ∪ φd(k), for all k ∈ Z.

Let us check that (1) implies (2′). Assume that τ
�
φ X = τ�nRΓZ X belongs to Db

fg(R), then the third
vertex in the canonical triangle

τ
�
φ X −→ X −→ τ>

φ X
+−→, (6.8.1)
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is in Db
fg(R). Observe that the complex RΓZ τ>

φ X belongs to D>n(R) since τ>
φ X ∈ U ⊥

φ = U n ⊥
Z . Then, by

Lemma 6.7, we get that

Z ∩ Supp
(
HomD(R)

(
τ>
φ X, D[k])) ⊂ φCM(k + n),

for all k ∈ Z or, equivalently (see the proof of the referred lemma), that

Supp
(
HomD(R)

(
τ>
φ X, D[k])) ⊂ φd(k),

for any k ∈ Z. Furthermore, note that

(
HomD(R)

(
τ

�
φ X, D[k]))

p
∼= HomD(R)

(
(τ

�
φ X)p, Dp[k]),

for any p ∈ Spec(R), therefore Supp(HomD(R)(τ
�
φ X, D[k])) ⊂ Z because Supp(τ

�
φ X) ⊂ Z . Now applying

the homological functor Hom(−, D) := HomD(R)(−, D) to the triangle (6.8.1) we get an exact sequence
of R-modules

Hom
(
τ>
φ X, D[k]) −→ Hom

(
X, D[k]) −→ Hom

(
τ

�
φ X, D[k])

from which Supp(HomD(R)(X, D[k])) ⊂ φd(k) ∪ Z as desired.
Let us check that (2′) implies (1). The functor

R Hom·
R(−, D) : Db

fg(R) −→ Db
fg(R)

is a duality of triangulated categories and the class of objects

V = {
Y ∈ Db

fg(R); Supp
(
Hk(Y )

) ⊂ φd(k) ∪ Z for all k ∈ Z
}

can be built up by a finite number of iterated extensions from those objects in the class which are
stalk complexes of the form M[−k], with M a finitely generated R-module such that Supp(M) ⊂
φd(k) ∪ Z . So it is enough to prove that (2′) implies (1) for those complexes X ∈ Db

fg(R) such that

R Hom·
R(X, D) ∼= M[−k], with Supp(M) ⊂ φd(k) ∪ Z . Moreover every such M admits a filtration

0 = M0 � M1 � · · · � Mn−1 � Mn = M

such that Mi/Mi−1 ∼= R/pi , with pi ∈ Supp(M) for i ∈ {1, . . . ,n} (see [Mat, Theorem 6.4]). This implies
that M[−k] can be built by iterated extensions from stalk complexes R/p[−k], with p ∈ Supp(M) ⊂
φd(k)∪ Z . Therefore it is enough to prove (2′) �⇒ (1) in the particular case in which R HomR(X, D) ∼=
R/p[−k], with p ∈ φd(k) ∪ Z .

So let X = R Hom·
R(R/p[−k], D) with p ∈ φd(k) ∪ Z . If p ∈ Z then Supp(X) ⊂ Supp(R/p[−k]) =

V(p) ⊂ Z , whence RΓZ X ∼= X (by Theorem 1.8). Then τ�nRΓZ X ∼= τ�n X belongs to Db
fg(R). In case

that p ∈ φd(k), we have R Hom·
R(X, D) ∼= R/p[−k] so

Supp
(
HomD(R)

(
X, D[ j])) = Supp

(
H j(R/p[−k])) ⊂ φd( j),

for all j ∈ Z. That is exactly what condition (1′) in the proof of Lemma 6.7 says, hence RΓZ X ∈ D>n R ,
that is, τ�nRΓZ X = 0 and assertion (1) trivially holds in this case. �
Theorem 6.9. Let R be a commutative Noetherian ring that admits a dualizing complex. Given an sp-filtration
φ : Z → P(Spec(R)) the following are equivalent:
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(1) Uφ ∩ Db
fg(R) is an aisle of Db

fg(R);
(2) φ satisfies the weak Cousin condition.

Proof. By Corollary 4.5 we only need to prove (2) ⇒ (1). Without loss of generality we may assume
that Spec(R) is connected and that φ is a nonconstant sp-filtration (if it is necessary, localize respect
to an idempotent element of R and use Proposition 2.9). Let D be a dualizing complex for R , with
associated codimension function d : Spec(R) → Z. Under this hypothesis R has finite Krull dimension
(cf. [H, Chapter V, Corollary 7.2, p. 283]) and, hence, we know that the sp-filtration φ is finite of length
� 1. More precisely, there are integers t � n such that φ is determined in the interval [t,n] ⊂ Z, with
φ(t) = Spec(R) (see Corollary 4.8).

We claim that the following is true for an integer m ∈ Z and a prime ideal q ∈ Spec(R):

If q has the property that V(q) ∩ φ(i) ⊂ φCM(k + i), for all i < m, then either q ∈ φ(m) or V(q) ∩
φ(m) ⊂ φCM(k + m).

Indeed, suppose that q /∈ φ(m). If V(q) ∩ φ(m) = ∅ we are done, so we assume that V(q) ∩ φ(m) is
nonempty. Choose a minimal element p of V(q) ∩ φ(m) and consider a maximal chain of prime ideals

q = q0 � q1 � · · · � qs = p.

Then the weak Cousin condition says that qs−1 ∈ φ(m − 1), so that qs−1 ∈ V(q) ∩ φ(m − 1) ⊂ φCM(k +
m − 1). Therefore d(qs−1) > k + m − 1 and, since d is a codimension function, we conclude that
d(p) > k + m or, equivalently, that p ∈ φCM(k + m). That proves our claim.

For the rest of the proof assume, without loss of generality, that

Spec(R) = φ(0) � φ(1) � · · · � φ(n) � φ(n + 1) = ∅
with n + 1 = L(φ). The class Uφ ∩ Db

fg(R) is an aisle of Db
fg(R) if L(φ) = n + 1 � 2 by Proposition 5.8.

Suppose that L(φ) = n + 1 > 2, then φ′ is an sp-filtration satisfying the weak Cousin condition such
that L(φ′) = n. By induction on the length of the sp-filtrations we can assume that Uφ′ ∩ Db

fg(R) is an

aisle of Db
fg(R). Then, as a consequence of Lemma 5.7, checking that Uφ ∩ Db

fg(R) is an aisle of Db
fg(R)

turns out to be equivalent to proving that τ�nRΓφ(n)M belongs to Db
fg(R) for any M ∈ U ⊥

φ′ ∩ Db
fg(R). So

let M ∈ U ⊥
φ′ ∩Db

fg(R), then we have that RΓφ(i)M ∈ D>i(R), for all i < n. From Lemma 6.7, we conclude
that φ(i)∩ Supp(HomD(R)(M, D[k])) ⊂ φCM(k + i), for all k ∈ Z and all i < n. This, in particular, implies
that if k ∈ Z and q ∈ Supp(HomD(R)(M, D[k])) then V(q)∩φ(i) ⊂ φCM(k+ i), for all i < n. Now, applying
the claim above, we get that, for every k ∈ Z and every q ∈ Supp(HomD(R)(M, D[k])), either q ∈ φ(n)

or V(q)∩φ(n) ⊂ φCM(k+n). Then, by Lemma 6.8, we get that τ�nRΓφ(n)M ∈ Db
fg(R) as it is desired. �

Corollary 6.10. Let R be a commutative Noetherian ring with a pointwise dualizing complex. Then for any
sp-filtration φ : Z → P(Spec(R)) the following are equivalent:

(1) Uφ ∩ Dfg(R) is an aisle of Dfg(R);
(2) φ satisfies the weak Cousin condition.

Proof. Given a complex X ∈ Dfg(R) let us consider the φ-triangle with central vertex X

U −→ X −→ V
+−→ . (6.10.1)

By localizing at any prime ideal p, we obtain a φp-triangle in D(Rp) with central vertex Xp

Up −→ Xp −→ Vp
+−→ . (6.10.2)
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Note that the triangle (6.10.1) is in Dfg(R) if and only if for all p ∈ Spec(R) the triangle (6.10.2)
belongs to Dfg(Rp). Furthermore, an sp-filtration φ of Spec(R) satisfies the weak Cousin condition if
and only for any p ∈ Spec(R) the sp-filtration φp of Spec(Rp) satisfies the weak Cousin condition. So
we derive the truth of this result from Theorem 6.9 and Corollary 4.10 because for each p ∈ Spec(R)

the ring Rp admits a dualizing complex and, hence, has finite Krull dimension. �
Corollary 6.11. Let R be a commutative Noetherian ring with dualizing complex. For any � ∈ {−,+,b, “blank”},
the assignment φ � Uφ ∩ D�

fg(R) defines a one-to-one correspondence between:

(1) sp-filtrations of Spec(R) satisfying the weak Cousin condition;
(2) aisles of D�

fg(R) generated by bounded complexes; and

(3) aisles of D�
fg(R) generated by perfect complexes.

In particular, in case � ∈ {−,b}, the assignment φ � Uφ ∩ D�
fg(R) defines a bijection between the set of sp-

filtrations of Spec(R) satisfying the weak Cousin condition and the set of aisles of D�
fg(R).

Proof. Straightforward consequence of Theorem 6.9, using Corollary 4.10, Theorem 3.10 and Corol-
lary 3.12. �
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