
A Survey of Desynchronization in a

Polychronous Model of Computation

Julien Ouy1

IRISA, Université de Rennes I, France

Abstract

The synchronous hypothesis arose in the late Eighties as a conceptual framework for the computer-
aided design of embedded systems. Along with this framework, the issue of desynchronization was
simultaneously raised as the major topic of mapping the ideal communication and computation
model of synchrony on realistic and distributed computer architectures.
The aim of the present article is to survey the development of this topics in the particular yet
promising model of one of the prominent environments that were build along these principles:
Signal and its polychronous (synchronous multi-clocked) model of computation, before to give
some hints and ideas about ongoing research addressing this issue.

Keywords: Synchronous programming, desynchronization, GALS design, endochrony and
isochrony

1 Introduction

The synchronous paradigm[3] has been proposed as a conceptual framework to
ease the computer-assisted design of embedded systems by abstracting tim-
ing issues with an idealized mathematical models in which communication
and computation take no time. In this framework, the timing properties of
causality and synchronization are represented in relational algebra and to ease
compilation and verification purposes. While the specification and verification
of a system are greatly simplified, the actual code generation and physical
mapping remain equally complex tasks [2].

1
Email: Julien.Ouy@irisa.fr

Electronic Notes in Theoretical Computer Science 146 (2006) 151–167

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.05.040
Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82822217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Julien.Ouy@irisa.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

In particular, the synchronous hypothesis requires all components of a sys-
tem to share a common notion of time. However, getting all components
of a distributed system to share is most of the time impossible and, in the
case of hardware implementations, an additional issue of wires length incurs
additional constraints to already hard to manage timing issues, thereby com-
promising the ideal assumption of timeless computations and communications
made during the functional specification of the system.

One conservative solution to this issue is to enforce resynchronization of
distributed components all the way by making extensive use of synchronization
protocols that clock the system at the pace of its slowest component and
at the cost of efficiency. More elaborated methods are developed, especially
in circuit design, that consist of replacing the clock distribution by a hand-
shaking network[11] or by generic wrappers ensuring latency insensitivity to
the designed system[8].

In embedded software design, however, the only way to go is with desyn-
chronization: to map the synchronous model of a system on a virtual architec-
ture consisting of several synchronous components communicating with asyn-
chronous channels: a GALS architecture. In this survey, we study the issue
of desynchronization in the particular context of a multi-clocked synchronous
model of computation by considering the simple yet challenging example of
the crossbar switch and study different method to implement it on a globally
asynchronous and locally synchronous architecture.

2 Position of the problem

We consider the synchronous modeling and implementation of a simple cross-
bar switch depicted in figure 1. The switch consists of three input signals: two
data signals x and y and one control signal r (the reset). It has two output
signals a and b.

As in [14], the switch can be specified using guarded commands in the
formalism of synchronous transition systems of Pnueli. The system has an
internal state e that is initially set to 1 and toggled upon the presence of the
reset signal r: if r is present then e equals the negation of its previous value,
noted e$

e0 = 1 | r ⇒ e = ¬e$

If e=0, the output a is connected to the input y and b to x, and when e=1 a

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167152

r

y a

x

e

b

Fig. 1. The switch

is connected to x and b to y.

| x̂ ∧ e ⇒ a = x

| ŷ ∧ e ⇒ b = y

| ŷ ∧ ¬e ⇒ a = y

| x̂ ∧ ¬e ⇒ b = x

Asynchrony

In an asynchronous environment no clock can be defined and no absence
sensed. Signals are ordered sequence of values, behaviours are tuples of signals
and processes are sets of behaviours. The composition of two processes consists
of the unification of all signal shared by the processes.

This paradigm is much closer to real architectures than synchrony. It only
requires communication channels to respect the condition that an ordered
stream of data sent reaches its destination in the same order.

We cannot make a direct implementation of the switch in an asynchronous
environment as the interleaving of r and x or y may produce unpredictable
results like in figure 2. The trace in the upper-middle of the figure is obtained
if r is read before x and y. The trace in the lower-middle is possible if r is read
after one value of x and y. In the trace on the right, r is read after only one
value of x

Strict synchrony

The model of strict synchrony is the simplest and the most general. It
is used in system on chips design and in scientific engineering (for a discrete
model of time) and in automata theory. In this model, a state x assigns a
unique value to each variable of the system v ∈ V . A behaviour is a sequence
of states σ = x1, x2, . . . and a process a set of behaviour. A signal is a sequence

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167 153

x

y

r

x

y

r

Input

Output

a

b

a

b

a

b

y2

x2 x1

y1

1

y2

x2

y1

x1

y2

x2

x1

y1

y2

x2

y1 x1

Fig. 2. Unpredictability by brute-force desynchronization

of values σv = v(x1), v(x2), . . . for v ∈ V given. All signals are indexed by the
same set of integer, all behaviour are synchronous and ruled by the same
clock. Composition of processes is then defined as the intersection of the sets
of behaviours.

P ||P ′ = P ∩ P ′

This paradigm is followed by programming languages such as Lustre. In
this model, our switch has two different states : e = 0 and e = 1, each relative
to a basic transition relation.

e = 1 ⇒ ¬r ⇒ a := x

e = 1 ⇒ ¬r ⇒ b := y

e = 1 ⇒ r ⇒ b := x

e = 1 ⇒ r ⇒ a := y

e = 1 ⇒ e′ := ¬r

e = 0 ⇒ ¬r ⇒ b := x

e = 0 ⇒ ¬r ⇒ a := y

e = 0 ⇒ r ⇒ a := x

e = 0 ⇒ r ⇒ b := y

e = 0 ⇒ e′ := r

If we feed the system with the the signals x = x1, x2, x3, x4, y = y1, y2, y3, y4,
and r = 0, 1, 0, 0 it deterministically reacts as in figure 3, producing a =
x1, y2, y3, y4 and b = y1, x2, x3, x4.

y1

x1y2

x2x3x4

y4 y3

1 000

x1x2x4 x3

y4 y3 y2 y1y

r

Input

a

Output

x x

y

r

t1t2

b

t3t4 t4 t3 t2 t1

Fig. 3. Input and output of the switch with strictly synchronous signals

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167154

Synchrony

The strict synchronous paradigm can be extended by augmenting every
domain of data with the special value ⊥ to mean absence. The non-informative
value ⊥ is equivalent to the absence of value of a signal at a given time.
Synchronous programs are able to interpret absence as control information and
the Signal language implements this paradigm[13]: multiclocked synchrony.

In Polychrony, a state can assign a non-informative value to any variable, a
synchronous behaviour is a sequence of synchronous states, a synchronous pro-
cess is a set of synchronous behaviours. A synchronous signal is a sequence of
informative and non-informative values. Composition of process is still defined
by the intersection of sets of behaviours. Strictly synchronous processes can
be considered as synchronous one in which every value are always “present”.

A reaction is called silent if all variables are absent at the time of a reaction
and if every component of a system has its own local clock consisting of the
sequence of its non-silent reactions.

In the example of the figure 4, the left component (P) and the upper right
component (P1) of the system share the same local clock, they have height
reactions during the execution of the example. Components P2, P4 and P8
have respectively four, two and one time clock during the same time. Their
local clocks are slower.

C1 C101267 5 4 3

C2 C26 4 02

C4 C404

C8 C80

Fig. 4. Local clocks of different components of a system

In synchronous mode and at each instant, the switch produces a value only
if there is an available incoming value. The r signal can now be considered as
an alarm event, running only when needed and no longer emitting useless null
vale. The figure 5 shows an example with synchronous signals.

Global asynchrony and local synchrony

The Globally Asynchronous Locally Synchronous (GALS) [9] paradigm is
a combination of the asynchronous and the synchronous paradigm. It con-
sists of several synchronous modules that communicate asynchronously. In
circuit design, it relates to the modeling of small synchronous blocks commu-
nicating asynchronously. In software design, it relates to finite automatons

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167 155

y

r

Input

a

Output

x x

y

r

t1t2

b

t3t4 t4 t3 t2 t1

1

y1

x1

y2

x2

x2

y2

y1

x1

Fig. 5. Input and output with synchronous signals

that communicate with registers. There are many different paradigms for the
implementation of GALS systems and there are many ways to obtain them.
Some of them will be presented in this survey.

x

y

r

x

y

r

S
ch

ed
ul

er

S
ch

ed
ul

er

Fig. 6. Synchronous signals in GALS

3 Desynchronization

3.1 Latency Insensitive Systems

In [6], a general method to implement strictly synchronous distributed systems
over non synchronous channels is presented. With an appropriate protocols
and minimal assumptions on the modules behaviours, the theory of latency
insensitive protocols guarantees the correct behaviour of the system indepen-
dently of the channels latency.

Those latency-insensitive systems are composable using the synchronous
assumption (they must share the same clock) but if correctness is not affected
by latency, performances are: different modules cannot have different execu-
tion rate and delay between successive modules affects global computation
time.

Latency insensitive protocols use a system of buffers at input and output
of the synchronous systems: each signal has an associated FIFO buffer that
is filled until every buffer has a value. When this happens, a reaction is fired
and completed and the output buffers can deliver one value for each processed
signal.

In this model, processes need only be stallable, meaning that time between
two reactions is not fixed and that a reaction may occur at any time. This

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167156

recreates strict synchrony.

3.2 Automatic distribution in Post-compilation

The Ocrep tool [7] implements a post-compiler for the synchronous languages
Lustre and Esterel. This post-compiler automates the distribution of an OC
program (a finite automaton compiled from Lustre or Esterel) on a specific
distributed architecture. The source program is compiled once and distributed
code is generated for every component of the system. Each distributed com-
ponent runs its own share of the code and communications are implemented
by FIFOs to respect strict synchrony. Like with latency insensitive protocols,
every component in Ocrep retrieves available inputs, performs its share of pro-
cessing, signals the end of its reaction and waits upon a global synchronization
signal before to perform the next reaction.

The Ocrep distribution has been proved correct in [5]: distributed and
centralized program are equivalent.

The same approach is also supported for SC programs [12] (dual form of
a sequential control code and a table of external actions) named Screp. SC
compilation is for the moment only available for Esterel and permits to avoid
the combinatorial explosion due to the automaton nature of the OC support.

3.3 Isochrony and Endochrony

A solution to desynchronization consists of recreating non-strict synchrony
by adding signals that clock desynchronized signals. Each signal receives an
associated boolean signal telling whether it is present or absent at a given
instant: its models its clock. This technique permits to implement the criterion
of Isochrony [1].

Definition 3.1 Two processes are isochronous if there exists no pair of reac-
tions that are not synchronisable.

In Signal, the technique of associating a Boolean clock with a signal is
called booleanization. At each tick of a given clock C, we check if a signal s

defined in that clock domain is present or not. If it is, then the clock signal
of s is written C

s = 1 and, if not, Cs = 0.

The main issue with this approach lies in the choice of the reference clock
C. First we consider the clock of the emitting system.

In Figure 7, left, we have three synchronous signals, x,y and r. x and y
carry data and the signal r is an event, i.e. a signal that is always true when
present. In the middle, the same data are displayed without presence/absence
values. The clock signals r carry sufficient information to reconstruct the

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167 157

synchronization relation between x and y. On the right, the data are put in
asynchronous channel.

1

1 0 0

0 0

0 0 1

1

1

0

x2

y2
1

0

0 0

0

1 0 1

11

0 01
1

x1x2

y1y2

Synchronized asynchronous input signals

Virtual Instants

=y

x

r

y

x

r

C_x

C_y

C_r C_r

C_y

C_x

signals
asynchronous

=

Instants

1

Synchronous input signals

y

r

x x2 x1

y2 y1

x1

y1

Fig. 7. Equivalent signals in synchronous and asynchronous form

We observe that the signal of r is not useful anymore. The information it
carries is also carried by its clock. C r replaces it.

With asynchronous signal carrying data and clocks, a unique synchronous
sequence of data is reconstructed. The system is endochronous This property
of endochrony by Benveniste [1] is defined by:

Definition 3.2 A process is Endochronous if presence/absence of all variables
can be inferred incrementally from already known values and variables present
in the system.

Input clocks in an endochronous system have sufficient relations to infer the
presence/absence status of all signals of the system at all time. The property
Endochrony actually authorizes a more efficient solution in that the use of a
master clock (one of the inputs) is just a choice and is not actually required
formally.

Endochronous systems are rather close from Carloni’s latency-insensitive
systems: schedulers that process inputs and reconstruct synchronous flows
while allowing the use of absence value, yielding some concurrency not avail-
able in strictly synchronous systems. Here, instants can be reconstruct as soon
as every clock signal and present data signals have reach destination.

The main problem is that this solution does not carry over to composition
(of endochronous processes). If two modules are ruled by different clocks, it
is impossible to build a global process, reading their respective asynchronous
signals and clocks. In fact, the problem comes from the impossibility to merge
two different relative instants of two endochronous processes. Information is
lacking to resynchronize the flow of both signals.

Composition is only possible if the two processes have the same clock or if
the clock of one is a fraction of that of the other, and then the processes may

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167158

need a protocol to initially synchronize their clocks and keep them synchro-
nized.

In figure 8, we notice that synchronous or asynchronous signals are not
composable as a common process. The problem is due to the lack of synchro-
nization information between signals of the two process since their clocks are
not related.

0

0

1 0 1

11

00 1 0

0

x2 x1

y1y2

1 0

10

a1

b1

P :=

Q :=

Instants

y

r

x
y

x

C_y

C_x

signals
asynchronous

C_r

b
C_b

C_a
a

b

a

x2 x1

a1

y1y2

b1

1

Fig. 8. Two signals in their both form

The signals from different processes may have many kind of synchrony
relations:

• The processes communicate together and share a clock.

• Processes do not communicate but share the same clock from a third process.

• Processes do not communicate and signals are not related.

For the two first cases, an external scheduler can reconstruct the instants.
For the last one, we must permit our processes to be polychronous: two signals
with different clocks / instants must be able to coexist in the same process.

3.4 Differential clocks and polychrony

In a polychronous process (or in an asynchronous one), the flow of unbounded
incoming data can not be known. Figure 9 displays two possible clock ref-
erences in a system, data can come, and be read, in different and unrelated
orders. However, the process must be able to reconstruct the same behaviour
whatever this order is.

With multi-clocked synchronous communication capabilities, two process

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167 159

y2

b1

x2

a1

1

y2

b1

x2

a1

1

y2

b1

x2

a1

y2

b1

x2

a1

1

1

y

r

x

a

y1

x1

b

y

r

x

a

y1

x1

b

y

r

x

a

y1

x1

b

y

r

x

a

y1

x1

b

Fig. 9. Different execution flows for the same data

can interact at the pace of another clock, a differential clock, without having
to agree upon a common or shared clock. The synchronous language Sig-
nal supports the specification of such polychronous processes. In the Signal
transformation-based compilation process, clocks will remain unrelated as long
as the user specifies some synchronization relation as needed. For instance,
Signal supports the following specification of the crossbar switch:

process switch = (? event r; boolean x, y ! boolean a, b)
(| e := not e$ init true when r default e$ init true
| a := (x when e) default (y when not e)
| b := (y when e) default (x when not e)
|) where boolean e;

end;

The signals r, x and y are the declared inputs of the switch and the signals
a and b its outputs. Signal e is a local variable that remembers the state of
the switch. It is defined with its former value and the actual value of r. a and
b are defined with x or y depending of e.

The Signal compiler decomposes specifications into a format called Dc+
that defines a directed graph obtained by causality analysis and a clock hier-
archy obtained by analysing synchronization relations.

From the Dc+ format, a system of equation on clocks is constructed. The
solution of this system defines inclusion relations between clocks. The clocks
are organized in a hierarchy according to this inclusion relation.

The main phase of the compilation of a Signal program is the clock calculus.
First, every clock involved in the program are collected: they can be

• the clock of an input signal of the program, present when the signal is

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167160

available

• the positive and negative sampling of a boolean condition, they are present
when the boolean is present and respectively true or false

• the sum of two clocks, present when at least one of the clocks is present

• the product of two clocks, present when both clocks are present

• the complementary of a clock with reference to an other clock, present when
the second is true and the first is false.

Clock trees are build by placing every clock of the program under their
predecessor.

This results a forest of trees of which every root is a free clock. If only
one root is present (one tree), this root is the main clock of the program,
the program is endochronous. If not it is exochronous, however it is still
possible to construct either a multi-clocked system in which each root clock
yields a process for parallel execution or a boolean single-clocked program for
sequential execution.

In our example standard dC+ compilation produces a Signal program with
the same interface

(? event r; boolean y1, y2;

! boolean x1, x2;)

and bdC+ or C compilation produces an endochronous program that re-
quires a main clock in input:

(? boolean y1, y2, C_r, C_y1, C_y2, C_;

! boolean x1, x2;)

This transformation can be decompiled in Signal code as in the specifi-
cation switch ABSTRACT listed next. The clocks of the switch are computed
and causality relations specified but clocks are not hierarchized one to the
other: the clock hierarchy has no common root. This means that the switch
specification is not endochronous but that the compiler can refine it into a
C program that is indeed endochronous by synthesizing the missing master
clock.

Here is an abstract of the Signal program in which we can read compu-
tations over clocks. In the first three lines is the signature of the program,
in the following block of four lines containing “when” are the actions of the
program (not detailed). The last block of twelve lines is the calculus of the
clocks when actions occur.

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167 161

process switch_ABSTRACT =

(? event r;

boolean x, y;

! boolean a, b;

)

spec

(| (| {x --> a} when CLK_16

| {y --> a} when CLK_59

| {x --> b} when CLK_54

| {y --> b} when CLK_31

|)

| (| (| CLK_x ^= x

| CLK_x := ^CLK_x

|)

| (| CLK_16 := CLK_x ^* CLK_13 |)

| (| CLK_y ^= y

| CLK_y := ^CLK_y

|)

| (| CLK_31 := CLK_13 ^* CLK_y |)

| (| CLK_b ^= b

| CLK_b := CLK_31 ^+ CLK_38

|)

| (| CLK_a ^= a

| CLK_a := CLK_16 ^+ CLK_24

|)

| (| CLK_54 := CLK_40 ^+ CLK_b |)

| (| CLK_59 := CLK_26 ^+ CLK_a |)

|) where event CLK_59, CLK_54, CLK_a,

CLK_b, CLK_31, CLK_y, CLK_16, CLK_x;

end

|)

pragmas Black_Box "switch"

end pragmas

%switch_ABSTRACT%;

The generated C code displays this synthesized clock C along which an
arbitrary hierarchy is chosen. Apart from that clock, one notices that all
subsequent computations are independent one from each other (a sequential
scheduling order is chosen for the purpose of code generation).

Each computations start with a test of the clock: if (C_), then the ac-
tion of the specified clock is performed. Here only control code appends at
clocks C , C x and C y but for the two last clocks C b and C a, actions are
performed: w_switch_b(b) and w_switch_a(a).

EXTERN logical switch_iterate()

{

if (!r_switch_C_r(&C_r)) return FALSE;

if (!r_switch_C_x(&C_x)) return FALSE;

if (!r_switch_C_y(&C_y)) return FALSE;

if (!r_switch_C_(&C_)) return FALSE;

C_56 = C_r && C_;

if (C_)

{

if (C_56) s = !XZX; else s = XZX_17;

}

s_63 = (C_ ? s : FALSE);

C_68 = (C_ ? !s : FALSE);

C_86 = C_x && s_63;

C_98 = C_y && s_63;

if (C_x)

{

if (!r_switch_x(&x)) return FALSE;

}

x_77 = (C_x ? x : FALSE);

C_92 = C_68 && x_77;

C_b = C_92 || C_98;

if (C_y)

{

if (!r_switch_y(&y)) return FALSE;

}

y_71 = (C_y ? y : FALSE);

C_89 = C_68 && y_71;

C_a = C_86 || C_89;

if (C_b)

{

if (C_98) b = y; else b = x;

w_switch_b(b);

}

if (C_a)

{

if (C_86) a = x; else a = y;

w_switch_a(a);

}

switch_STEP_finalize();

return TRUE;

}

3.5 Weak Isochrony and Weak Endochrony

In our desynchronization model, we add the possibility to define a local syn-
chronization relation between two signals without defining a synchronization
scheme that is global to the system. This allows us to simply decompose a

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167162

polychronous system into smaller subsets of strictly synchronous computa-
tions.

Definition 3.3 Let x1 and x2 two signals of clocks Cx1
and Cx2

and assume
a function σ(x1, x2) that reconstruct the synchronization relation between x1

and x2. If x1 and x2 are not synchronisable then σ(x1, x2) = ∅.

Back to the example of the switch, we would like the signals x and y to
be of different clocks but both synchronized to r. In our example, x and y are
supposed to be frequent and to possibly come from independent sources (they
are not synchronized) and r is supposed to be an interrupt, emitted by one
of the two sources but interrupting both flows. In fact, a non-⊥ value of the
signal r is always associated with a value on x and y and a non-⊥ value on
x or y is always associated with a value on r like in the figure 10. Therefore,
σ(x, y) = ∅, σ(x, r) �= ∅ and σ(y, r) �= ∅

r

y

x x

y

r

x2

y2 y1

x1

Fig. 10. Example of weakly-isochronous data flow

This rather weak constraint permits to lower the number of possible runs of
the switch. Between two occurrences of a reset r, x and y can interleave without
changing system’s behaviour but each time a (non-⊥) value is emitted/received
along r, the system synchronizes. We now want the system to be isochronous
over the interfaces I = {x, r} and I ′ = {y, r}

To obtain the corresponding desynchronization, we add clocks. Those
clocks, called the differential clocks x/r and y/r of the system, are emitted as
follows with the asynchronous channels x, y and r:

• when a value is emitted along the channel r only, an additional 0 is emitted
along both x/r and y/r.

• when a value is emitted along x or y and nothing along r channel, an addi-
tional 2 is emitted alongx/r or y/r.

• when a value is emitted along r and either x or y, an additional 1 is emitted
along either of the corresponding x/r or y/r.

The flow of the synchronous channels r, x and y may then be reconstructed
the way the Petri net of figure 11 does. We have the expected guarantee that
σ(x, r) = x/r and σ(y, r) = y/r.

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167 163

?x/r = 2
?x !x
sync

A

B
?x/r = 1
?x !x

C ?x/r = 0

D ?y/r=0

E
?y/r=1
?y !y

?y/r=2
?y !y
sync

F

?r !r
syncG

A B C D E F

G

Fig. 11. Reconstruction of the desynchronized flows of r, x and y.

In this net, “?” means “read a value” and “!” means “write a value”.
Since the system is a synchronizer, every read is done on an asynchronous
channel and every write on a synchronous one. The sync instruction means
that an instant is finalized and a new one is starting.

The system reads the x and y streams as long as x/r and y/r gets the value
2. When one of them gets a 0 or a 1, it stops reading its associated stream
until the other gets its own 0 or 1. Then, the r value is read, the intern
state of the system (e) is modified and the system can go on. We notice that
communicating the signal r is no longer useful: it can be reconstructed from
x/r and y/r.

Weak Endochrony

In the aim of allowing for compositionally in the concurrent execution of
synchronous modules, Potop et al. have defined a more liberal assumption
than endochrony that allow for the asynchronous composition of the modules
to meet determinism: weak-endochrony[4].

With weak endochrony, minimal reactions have to be constructed and syn-
chronization clocks (σ) defined and associated to reactions. Once this is de-
fined, one has to define a scheduling of the reactions that makes best usage

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167164

of these data. For maximized concurrency within a synchronous block, data
must be used as soon as it is available and an order of execution not imposed
unless explicitly specified. This amounts to decomposing a process into ele-
mentary blocks, each of them being activated upon availability of an input
signal, each of them being inhibited by a conflicting signal (e.g. values 0 and 1
for a given differential clock). As shown in figure 12, communication between
blocks is the same as communication between processes.

y

r

b

ax B1

B2

b1

a1

a2

b2

a2/r

b1/r

a1/rx/r

b2/r

b/r

a/r

S1

S2

y/r

Fig. 12. decomposition of the switch process into blocks

Each block contains a single-clocked process and shares the inputs from the
interface of the main process plus the outputs from other blocks. When more of
one block contributes to define one signal, a synchronizer block is needed and,
in this case, contributing signals have to be synchronizable (σ(x1, x2) �= ∅).

Reaction Clock

The role of a reaction or activation clock is to define a set of instants.
The clocks of signals involved in this reaction have to be sub-clocks of the
reaction clock. With a synchronous language, like Signal, it is easy to merge
two signals and hence build a reaction clock.

Since input signals are asynchronous, we need to specify each synchroniza-
tion relation between them: if two input signals x1 and x2 need to be syn-
chronized, their builder has to provide the synchronization function σ(x1, x2).
This can be a ternary signal, like in the example of the switch, this can also be
a pair of binary signals clocked by the synchronous sum of the two signals and
respectively true when one is present. Signals written by a block are always
sons of its activation clock.

How to synchronize two signals produced by different blocks ?

If two output signals are build by different blocks then, most of the time,
they are not synchronous. A solution to synchronize them is to activate both

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167 165

blocks at the same clock, and the output signals then belong both to the set
of instant of the common clock and can be synchronized to it.

We can also use a token to define writing turns. The blocks produce signals
synchronized with the token signal. Every block can write when the token is
present instant but each block can write between two tokens only every n
tokens, where n is the number of blocks. A first turn is described on the figure
13. Synchronization only happen when token are present but writing turns
permit to exclude overlapping conflicts.

t

x x5
P1

t

y y4
P2

t

z z4
P3

1

1

1

x4 x3 x2

y3 y2

z2z3

1

1

1

x1

1

1

1

y1

z1

1

1

1

Fig. 13. Synchronization with a token

4 Conclusion

Solutions to the issue of desynchronized multi-clocked specifications are not
unique. The generic and automated method of latency-insensitive design, sec-
tion 3.1, is easy to develop since it does not require modifying the initial spec-
ification. This is at the cost of efficiency compared to other solutions such as
endo-isochronous design, section 3.3, which achieves some better performances
at the cost of compositionality. Weak endo-isochronous design, section 3.5, re-
laxes synchronization constraints enforced in the endo-isochronous approach
and brings compositionality in a way that requires less resynchronization as
in latency insensitive design.

References

[1] Benveniste, A., B. Caillaud and P. Le Guernic, From synchrony to asynchrony, Technical
Report PI-1233, IRISA (1999).
URL ftp://ftp.irisa.fr/techreports/1999/PI-1233.ps.gz

[2] Benveniste, A., L. Carloni, P. Caspi and A. S. Vincentelli, Heterogeneous reactive systems
modeling and correct-by-construction deployment, Technical Report PI-1549, IRISA (2003).
URL ftp://ftp.irisa.fr/techreports/2003/PI-1549.ps.gz

[3] Benveniste, A., P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic and S. Simone, The
synchronous languages twelve years later, Proceedings of the IEEE, Special issue on Embedded
Systems 91 (2003), pp. 64–83.

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167166

ftp://ftp.irisa.fr/techreports/1999/PI-1233.ps.gz
ftp://ftp.irisa.fr/techreports/2003/PI-1549.ps.gz

[4] Butucaru, D. P., B. Caillaud and A. Benveniste, Concurrency in synchronous systems, Formal
Methods in System Design, Special Issue on formal methods for GALS design (2005).

[5] Caillaud, B., P. Caspi, A. Girault and C. Jard, Distributing automata for asynchronous
networks of processors, JESA 31 (1997), pp. 503–524, research report Inria 2341.
URL http://www.inrialpes.fr/pop-art/people/girault/Publications/Jesa97

[6] Carloni, L. P., M. Mcmillan and A. L. Sangiovanni-Vincentelli, The theory of latency insensitive
design (2001).

[7] Caspi, P., A. Girault and D. Pilaud, Automatic distribution of reactive systems for
asynchronous networks of processors, IEEE Trans. on Software Engineering 25 (1999), pp. 416–
427.
URL http://www.inrialpes.fr/pop-art/people/girault/Publications/Tse99

[8] Casu, M. R. and L. Macchiarulo, A new approach to latency insensitive design, in: Proceedings
of the 41st Annual conference on Design Automation (DAC-04) (2004), pp. 576–581.

[9] Chapiro, D. M., “Globally-Asynchronous Locally-Synchronous Systems,” Ph.D. thesis,
Stanford University (1984).

[10] Colaço, J.-L., A. Girault, G. Hamon and M. Pouzet, Towards a higher-order synchronous data-
flow language, in: G. Buttazzo, editor, 4th International Conference on Embedded Software,
EMSOFT’04 (2004).

[11] Cortadella, J., A. Kondratyev, L. Lavagno, L. Lwin and C. Sotiriou, From synchronous to
asynchronous: an automatic approach, in: Proc. Design, Automation and Test in Europe
(DATE), 2004, pp. 1368–1369.

[12] Girault, A. and C. Ménier, Automatic production of globally asynchronous locally synchronous
systems, in: A. Sangiovanni-Vincentelli and J. Sifakis, editors, International Workshop on
Embedded Software, EMSOFT’02, LNCS 2491 (2002), pp. 266–281.
URL http://www.inrialpes.fr/pop-art/people/girault/Publications/Emsoft02

[13] Maffeis, O. and P. Le Guernic, Distributed implementation of SIGNAL: Scheduling and graph
clustering, Lecture Notes in Computer Science 863 (1994).

[14] Talpin, J.-P. and P. L. Guernic, An algebraic theory for behavioral modeling and protocol
synthesis in system design, Formal Methods in System Design, Special Issue on formal methods
for GALS design (2005).

J. Ouy / Electronic Notes in Theoretical Computer Science 146 (2006) 151–167 167

http://www.inrialpes.fr/pop-art/people/girault/Publications/Jesa97
http://www.inrialpes.fr/pop-art/people/girault/Publications/Tse99
http://www.inrialpes.fr/pop-art/people/girault/Publications/Emsoft02

	Introduction
	Position of the problem
	Desynchronization
	Latency Insensitive Systems
	Automatic distribution in Post-compilation
	Isochrony and Endochrony
	Differential clocks and polychrony
	Weak Isochrony and Weak Endochrony

	Conclusion
	References

