Information and Computation 159, 2-21 (2000) ®
doi:10.1006/inco.2000.2874, available online at http://www.idealibrary.com on IDE %l.

The Combinator S

iew metadata, citation and similar papers at core.ac.uk

Institut fiir Informatik, Universitit Leipzig, Augustusplatz 10-11, D-04109 Leipzig, Germany
E-mail: joe@informatik.uni-leipzig.de
URL: http://www.informatik.uni-leipzig.de/ ~ joe/

The combinator S has the reductionrule Sxy z— x z (y z). We investigate
properties of ground terms built from S alone. The first part of the paper
shows that this term rewriting system admits no ground loops. This extends
the known result of the absence of cycles. In the second part, we give a
procedure that decides whether an S-term has a normal form. This algo-
rithm makes use of rational tree languages. Finally we show that the set
of normalizing S-terms is in itself a rational tree language, by explicitly
giving its grammar. In all, this paper shows the surprisingly rich structures
that are implied by a seemingly small rewrite rule. © 2000 Academic Press

1. INTRODUCTION

It is well known that the combinators S and K with their reduction rules
Sxyz->xz(yz) and Kxy— x form a complete basis for combinatory logic.
Therefore, most of the interesting properties of an (S, K)-term are necessarily
undecidable.

Now CL(K) is strongly normalizing. One is led to assume that the difficulty of
CL(S, K) comes from S. That is the reason for studying the system CL(S). We will
start by giving two examples of infinite reductions in CL(S).

ExAMPLE 1 (Zachos [22]). Let T=SS; X,=STT. The expression X, X, has
an infinite reduction.

Define X, ;=T X,,. All redexes that occur during the reduction of X, X, have
the form X, X,, for some n and m. There are two types of reduction steps: one goes
downward,

X,

n

+1Xm:SSXnXm_)SXm(XnXm)9

and the other goes upward,

Xo X, =STTX, »-TX, (TX,)=X,, 01 Xons1-

0890-5401/00 $35.00 2
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.

https://core.ac.uk/display/82822105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COMBINATOR S 3

It is interesting to note that the reduction graph of X, X, is a pure line (each
expression contains exactly one redex).

ExaMpPLE 2 (Barendregt [3]). The expression A A A, where A=SSS, has an
infinite reduction.

Again the reduction can be described by a pattern,
Yo=SA(SAA), Y, .1=AY,.
First we show that the above pattern is reached:

AAA->SA(SA)A-AA(SAA)-SA(SA)NSAA)
—-A(SAA)Y,—>S(SAA)(SAA)S(SAA) Y,
>SAAYyx Y, Y, *.

Here, * denotes a subexpression whose value is irrelevant because no later reduction

touches it.
Then we show how the pattern reduces. There are a downward move,

Y, E=AY,E>SY,(SY,)E-> Y, Ex,
and an upward move,
YoF=SA(SAA)F5>AF(SAAF)>SF(SF)(SAAF)>F(SAAF)x.
Here, the placeholder F is instantiated with Y, to give
Yo Yy > YL (SAAY,) *
and now E=SAA Y, gives
Y. (SAAY,) > Y, (SAAY)x* --- »>SAAY % - > Y Vi % -

This is an infinite head reduction.

Note that in both examples, the reduction follows a doubly periodic pattern that
is more complicated than a cycle or a loop.

The rest of the paper is organized as follows. After providing some notation and
preliminaries, in the first part of the paper we will prove that CL(S) does not admit
ground loops. However, our method is not general enough to show the absence of
non-ground loops. In the second part of the paper we will prove that it is decidable
whether a ground S-term has a normal form. Finally, we give a regular grammar
for the set of normalizing S-terms. The first part builds around one standard proof
idea, recursive path orders. The second part applies a collection of useful ad hoc
lemmas whose rather technical proofs are relegated to Appendix 1. The grammar

4 JOHANNES WALDMANN

presented in the third part is rather large. Its correctness has been verified by a
computer program. Its underlying idea is described.
This paper is a revised and extended combination of [19, 20].

2. NOTATIONS AND PRELIMINARIES

We use standard notation for term rewriting systems (see [2]) and combinatory
logic (see [3]).

We consider combinatory logic CL(S) as a term rewriting system. Its signature
consists of one nullary symbol S and one binary symbol o (application). CL(S) has
only one rule,

((Sex)oy)ez) = ((xeoz)e(yoz)).

Symbols appear in different fonts. We use bold, uppercase, for combinators (S, K, ...);
italic, lowercase, for variables in the system (x, y,...), italic, uppercase; for meta-
variables that denote terms or sets of terms (X, Y, ...); calligraphic, uppercase, for fixed
sets of terms (2, 2, ...); and sans serif, uppercase, for certain fixed terms (T, A).

Unless stated otherwise, all terms are ground terms (they do not contain variables).

X<Y (X<1Y) means X is a (strict) subterm of Y.

X2 ¥ means that X reduces to Y in one step by contracting the redex R < X.

X— Y means X—> Y for some R.

X < Y means that when X is reduced, Y occurs as a subterm: 3Z: X —> Z
and ZD Y.

The transitive closure of a relation R is denoted by R*, while R* denotes the
transitive and reflexive closure of R.

We also write - for —»* and <~ for —*.

We write | (X) if X normalizes, and X — oo or 1(X) if X has an infinite
reduction.

Operations are understood to be extended from terms to sets of terms, in the
following way:

If E and F are sets of terms, then (E-F) denotes the set of terms (Xo Y) with
XeFE and YeF.

If £ and F are sets, E— F denotes VXe FE:3Ye F: X— Y, while £ F stands for
VXeFE: 1dYeF:X—- Y.

Also, | (E) denotes VXeE: | (X), and 7(FE) denotes VXe E: 7(X). We often
write just a term when meaning a set containing exactly this term.

We follow the usual conventions about suppressing the application symbol and
omitting parentheses. So the S reduction rule just given is written as Sx yz —
xz(yz).

The system CL(S) is left-linear and non-overlapping, thus confluent. Moreover,
it is non-erasing. Therefore [12], weak and strong normalization coincide: if one
reduction leads to normal form, then all do. (In our notation, | (X) and 1 (X) are
mutually exclusive.)

COMBINATOR S 5

3. LOOPS

The introductory examples showed infinite reductions that obey certain patterns.
Here we are going to show that these patterns cannot be too simple. (A precise
formulation follows.)

The most basic repetitive pattern is a cycle:

DEFINITION 3. A cycle is a reduction X - * X.

A cycle can be composed with itself infinitely often, so the presence of cycles
shows non-termination of a rewrite system.
The following is known:

ProrosiTiON 4. CL(S) admits no cycles.

Proof (Bergstra and Klop [4]). All reductions in CL(S) increase the term size,
except for Sxy S— xS (y S), but those change the shape of the term. ||

Still a term rewriting system might have infinite reductions that are not cycles,
but something more general:

DEFINITION 5. A loop is a reduction X - * C[Xo], where X is a term possibly
containing variables, C[-] is a context, and ¢ is a substitution.

Again a loop can be composed with itself, giving an infinite reduction. Yet infinite
reductions in CL(S) do not seem to look like that:

CONJECTURE 6. CL(S) admits no loops.

For a general account of loops in rewriting, see [24]. For a treatment of cycles
in combinatory logic, see [11].

In this section, we will prove a weaker version of Conjecture 6, namely that
CL(S) does not admit ground loops.

DEFINITION 7. A ground loop is a reduction X - * C[X].

A ground loop, composed with itself, would lead to an infinite reduction contain-
ing only finitely many different redexes. So the size of the redexes that are being
reduced during this infinite reduction would be bounded by some constant. Yet we
are going to show that for any fixed n, the restriction of CL(S) that only allows
rewrites where the redex size does not exceed » is terminating.

In fact we are not bounding the size of the redexes but rather their right depth
(length of their right spine). Moreover, we do not measure this depth exactly but
use a safe approximation instead. This approximation is attached as a label to the
application nodes and conservatively updated where reductions take place. Our
method can be seen as a variant of semantic labelling as introduced by Zantema [23].

The labelled system CL,(S) has the signature {S, o, o5, .., °,, .}, Where S is
as before, while the o, are labeled application nodes. There are n+ 1 of them. The
rewrite rules of CL(S) are

{((SO* X) oy J’)OkZ—’(xokz)ok+1(yok2)|k<”},

6 JOHANNES WALDMANN

where 7+ 1 = oo and the * match arbitrary numbers. Note that there is no rule that
has o as the top symbol of the left-hand side.

Next, we prove that CL,(S) is terminating.

After that we derive how this carries over to the original CL(S).

THEOREM 8. For all n, CL,(S) is terminating.

Proof. Order the signature by S> o; > 0,> -+« >0, > 0.

This gives a recursive path order >, which is a reduction order for CL,(S), as
can be easily verified:

We need to show that

L=((Soy X)oy, Y)or Z>po(Xox Z) o 11(Yor Z)=R

for all £ <n. The top symbols of L and R are o, > o, ;.

We verify L>,,,(X¢o, Z) and L>,,(Yo, Z). Here the top symbols coincide. We
have to prove the multiset relations {(So, X)c, Y, Z} > {X,Z} and {(Sc,X)
o X)o, Y, Z} > {Y,Z}. They hold because of (So, X)o, Y>> X as well as
(Se, X)o, YD Y. |

We are going to show that the labeling of the application nodes is preserved as a
correct approximation (from below) of the right depth of the terms.

DerINITION 9. The right (resp. left) depth of a term in CL(S) or CL,(S) is

d(S)=0, d(X-,Y)=1+d/(Y)
d(S)=0, di(Xo,Y)=1+d,(X).

DEerINITION 10. A labelled term X is called consistent iff for each subterm X’ < X
that has o, as its top symbol, d,(X') >k

Obviously, subterms of consistent terms are consistent. Consistency is maintained
by the reduction rules in CL,(S).

ProposITION 11. If X is consistent and X —> &y, (s) Y, then Y is consistent.

Proof. Consider one reduction step X & Y with R= (SBC)op D.

Subterms of B, C, and D just get copied and remain consistent.

Subterms whose position is incomparable to the redex position are not affected
at all.

Subterms lying on the path from the redex position to the root might increase
their right depth due to the reduction, but they do not change their top label. So
the approximation remains correct.

We consider terms Bo, D and Co, D in the contractum. We know that the redex
R = %0, D was consistent, so k <d,(R)=1+d, (D). The attachment of the label k in
Bo, D is allowed because d(BoD)=1+d,(D)>=k. The same reasoning is valid for
Cop D. So (Bo, D) and (Co, D) are consistent.

Finally Z=(Boy D)oy, (Cox D) is consistent because d.(Z)=1+d,(Ce; D)
=>1+k |

COMBINATOR S 7

From an unlabeled term in CL(S), we can create a consistently labeled term in
CL,(S) (for large enough n) by just tagging each node:

DerFINITION 12. The mapping
tag: CL(S) - CL,(S)

replaces the top o of each non-leaf subterm X with o, (x,.
We might as well delete all labels:

DEerFINITION 13. The mapping
forget: CL,(S) — CL(S)

replaces all o, with o.
Obviously, reductions in CL,(S) can be unlabelled.
PROPOSITION 14. If X > ¢y (s) Y for some n, then forget(X) — cys) forget(Y).

Can reductions in CL(S) be labelled? Yes, as long as the right depth of their
redexes is bounded.

ProPOSITION 15. Assume there is a (finite or infinite) reduction
R R, Ry
X2 x, 2 x5
in CL(S). Assume that for all k we have d(R;) <n. Then there is a reduction
x5 x5y B

in CL,(S) with X' =tag(X,) and for all k, forget(X})= X,.

Proof. Each redex R} is a consistent subterm, by Proposition 11. That is why
the top label of R} is less than or equal to d,(R}) but that is equal to d,(R;) <n.
Therefore R} really was an CL,,(S)-redex. |

THEOREM 16. Assume there is an infinite reduction
R, R, Ry
X=X -=>x—= ..

in CL(S). Then the sequence d,(R;) is not bounded.

Proof. Otherwise, Proposition 15 would apply. Then all reductions could be
placed in some CL,(S). But this is a terminating system by Theorem 8§, so the
reduction chain could not be infinite. ||

CORrROLLARY 17. CL(S) admits no ground loops.

Proof. A ground loop would give an infinite reduction chain with only finitely
many different redexes, so their right depth would be bounded. This is impossible
by Theorem 16. ||

8 JOHANNES WALDMANN

This method does not show the absence of non-ground loops because they could
produce a sequence of redexes with unbounded right depth.

4. NORMALIZATION

In this part we are going to prove decidability of normalization of ground S-terms.

To decide whether an arbitrary S-term normalizes, we may assume that both
children of the root already are in normal form. If they were not, we could first
check these subterms recursively and compute their normal forms as long as they
both existed.

The decision procedure tests membership of terms in rational tree languages. For
a complete treatment of tree languages and tree automata, see [5, 7]. Here we just
recall basic definitions and facts on rational tree languages:

A set of trees is called

— regular iff it is generated by a regular tree grammar,

— recognizable iff it is accepted by a finite deterministic bottom-up tree
automaton,

— rational iff it is generated by a rational expression.
The above conditions are equivalent. Conversions between different representations
are computable. Rational tree languages are closed under union, intersection, and
complement. With the languages represented by finite automata, these operations

are computable, and emptiness, finiteness, membership, and inclusion are decidable.
Now we will define some sets of ground S-terms that will be used frequently.

DEerFINITION 18. T=SS, A=TS=SSS.

DEerFINITION 19. .# denotes the set of a/l ground terms. ./~ denotes the set of all
ground terms in normal form.

These sets are rational. They are generated by the grammars

N =>SuS AN uUS NN
M—>SOMM.

Inside an expression, we often just write * for ./.

DErFINITION 20. S =S, for k>1:S,,;,=SS,. For k>20: % =S, U --- US,.
For k=0: 92, =./\%..

The term S, has a right spine of length k£ — 1 and all its left children are S. The
set %, is the collection of all S; up to k (while % = (F). The complement of Z, is
denoted by 2,. These are exactly the terms whose right spine has length >k or
which have some subterm with left spine longer than 1. For example, 2, are all
terms, 2, are all terms except S and T, and A=S S Se 2, for any £.

From the above description we immediately derive

LemMa 21. For all k=0 we have %, =%, ., and 2, 29 .

COMBINATOR S 9

LemMA 22. If Xe 9, and X<]Y, then Ye 9, ,,.
Now we define an operation on languages.

DerFINITION 23. For a set of terms Y, the set of Y-directors, denoted (Y, is
generated by the grammar

D—>YuSD.#uS . # D.

The name has been chosen in analogy to director strings [10], because an
argument Z of an Y-director can be directed towards Y:

ProroSITION 24. (Y) Z—> YZ.
Proof. The claim is proved by structural induction. Let Y’ e { Y.

1. Y =Y. Then the claim is vacuously true.
2. YeS{Y)x.Then YZeS{(Y)*xZ->(KY)Z) = Z)D>LKY) Z.

3. Y'eS#{(Y). Then Y'ZeS+<(Y>Z— x Z{Y> Z)D>(Y>Z 1

DerFINITION 25. For sets X and Y, the set (X/Y) is defined by the grammar
D—->YuXD.

We immediately have

PropoOSITION 26. (SX/Y)c{(Y).

The following will be needed later. It is easily proved by structural induction.
ProrposiTION 27. (SX/Y)Z — (XZ)Y Z).

Note that (X/Y) and {X) are rational whenever X and Y are.

We will construct subsets of .4".4" that contain terms with similar reduction
properties. The construction begins by partitioning the set ./ itself into classes .44,
N1, and A5, and then combines pairs of these. It turns out that .4 is responsible
for finite reductions and .45 for infinite ones.

During the process, the case ./; .4#; needs special attention. Here, a further
partition of /] into sets %, %, and %, is needed to completely analyze this case.

To make the case distinction complete, we finally consider the case .45 % by
showing that after some reductions it is.transformed into one of the cases that have
already been dealt with.

These constructions have been found empirically, by looking at lots of examples
and generalizing them. The verification of the claims is relegated to Appendix 1.

4.1. The Case NN

We will classify the set A4 of normal forms according to the existence of certain
subterms that might or might not occur during the reduction of X a, where Xe A"
and a is a variable.

The most restricted class is

10 JOHANNES WALDMANN

DEerFINITION 28. A5=(T/SuS /).
ExamPLE 29. A=SSS=TSe(T/S)< A;.

A term from ./ never moves its argument into functional position (it never
activates it):

ExampLE 30. Aa=SSSa—->Sa(Sa)

ProrposiTION 31. | (Apa), and Noga S a .

Proof. See Appendix 1. ||

A slightly more extended class is

DEFINITION 32. A5 1 =(S%/SUS A US(ST) %).
EXAMPLE 33. STTeSASAN)=(SA/SAN)S N 4.

A term from ./, ; might activate its argument but supply it with at most one
argument.

ExampLE 34. STTa—T a(Ta)— S(T a) (a(T a)).

PROPOSITION 35. | (A a), and Ny 1a S>> a *.

Proof. See Appendix 1. ||

By definition we have 4, = .44 ;. We introduce some more names:

DEFINITION 36.] = Ao\ Ag; A=A \Ap .

So /" is the disjoint union of .45, .41, and /5. Recall that ./; ignores its argument,
while A7 activates it once.
Essentially, ./} is responsible for normalization, and .4, for non-normalization:

PropoSITION 37. The following table shows the normalization (|) resp. nonnor-
malization (1) of ground terms X Y, with X and Y already in normal form.

Ye A Ye] Ye A,
XeN | by Proposition 57
XeMN | by Proposition 58 see Section 4.2 1 by Proposition 68
Xe N, see Section 4.3 1 by Proposition 67

Proof. See the propositions and proofs given in Appendix 1. ||

4.2. The Case NN

We look deeper into the set .#;. We single out the subset of terms that move
their argument « into functional position but which only supply them with the
argument S a.

DerFiNITION 38, % =(T/S(S#)NS).

COMBINATOR S 11

PROPOSITION 39. | (% a) and {Z: $ya——aZ} ={Sa}.
Proof. See Appendix 1. ||

ExampLiE 40. S(ST)Sa—>STa(Sa)->T(Sa)(a(Sa)) - S (a(Sa))
(Sa (a(Sa))).

Another useful subset of 4] is

DerFINITION 41. % =(T/ST(S%)).

It has the following property:

PROPOSITION 42. | (Aa), and {Z: L1a —a Z} ={S P a}.
Proof. See Appendix 1. ||

ExaMpLE 43. ST(ST)a—»Ta(STa)—»>S(STa)(a(STa)).

It would seem more intuitive to take Proposition 42 as definition and to derive
Definition 41 from that, and similarly for Proposition 39 and Definition 38. But the
given presentation is more compact.

DEFINITION 44. % ,= M \%; L=L4,\ 4.
So] is the disjoint union of %, %, and %,.

PrOPOSITION 45. The following table shows the normalization (|) resp. non-nor-
malization (1) of ground terms X Y, with X and Y from the set N].

Ye %, Yehu%=4,
Xe % | by Proposition 69
XeA 1 by Proposition 70 1 by Proposition 71
Xel, 1 by Proposition 72

Proof. See propositions and proofs given in the Appendix. ||

4.3. The Case N, Ny

We have A4, = A =% U 2,. By Proposition 67 (see Appendix 1), .45 2, —> oo.
Together with Propositions 37 and 45, this gives

ProrosITION 46. [t is decidable whether a term from N 2, has a normal form.

So we are left with the case .45 %. Here we start any innermost reduction and
continue until Proposition 46 can be used. We exploit the fact that redex sizes
(again we actually use their right depths) eventually increase. This will be made
precise now.

DEFINITION 47. A reduction X —> X’ is called innermost, iff the redex R has no
proper subterm that is itself a redex.

We highlight subterm positions that are important for innermost reductions. We
call a term active iff its left depth is at least 3 and its left child has a normal form.

12 JOHANNES WALDMANN

DEerFINITION 48. The set act (X) of active subterms of a term X is
act(X)={Y:BC=Y<X,d,(Y)=3, | (B)}.

Here, and in the remainder of this section, we deliberately confuse subterms and
their positions.

ProrosiTiION 49. If X 2, X' with R innermost, then React(X), but no proper
subterm of R is €act(X).

For active positions Y with fixed right child C, we collect information on the left
children B:

DEerFINITION 50. The weight of C in X is
weight(X) =) {|nf(B)|: B C = Yeact(X)}.

We set > F =0; furthermore nf (B) denotes the normal form of B, and |C]| is the
size of C, defined by |S|=1, |D E|=|D| + |E|.

Because we are dealing with 4" %, we are only interested in the weights of S
and T:

DerFINITION 51. The total weight of X is the pair
weight(X) = (weightg(X), weight;(X)).

During innermost reductions, the total weight decreases lexicographically.

ProrposITION 52. If X 2, X with R=SDEF innermost, then weight(X)
=1 Weight(X") with strict inequality for Fe %,.

Proof. See Appendix 1. ||

COROLLARY 53. For any n, an infinite innermost reduction reduces only finitely
many redexes Re N %,.

This is, essentially, a statement about the minimum right depth of redexes during
innermost reductions. Compare this with the situation in Theorem 16. This was a
statement about the maximum right depth of the redexes, in arbitrary reductions.
The assumption of innermost reduction cannot be dropped in Corollary 53.

In an infinite innermost reduction, eventually all redexes are of the form A" 2,.
At least one of them has no normal form.

PrOPOSITION 54. [t is decidable whether a term from N % has a normal form.

Proof. Call the term X. Perform any innermost reduction sequence, starting
from X. For each redex that is reduced, and that has the form .4/" 2,, check whether
it has a normal form, using Proposition 46. By the previous argument, this
sequence either stops (because X normalizes) or contains a redex in 4" 2, without
a normal form (then X itself has no normal form). ||

COMBINATOR S 13

44. Deciding Normalization

THEOREM 55. There is a procedure that decides whether a ground term in CL(S)
has a normal form.

Proof. S has a normal form. Therefore assume the expression is X Y.

Recursively apply the procedure to X and Y and compute their normal forms if
they exist. This recursion is terminating because it is structural. If one (or both) of
the normal forms does not exist, halt and answer not normalizing. Otherwise call
them X’ and Y’, respectively. If Y’ €2,, apply Proposition 46. If Y’ €%, use
Proposition 54. |1

5. RATIONALITY

The procedure that decides normalization of S-terms checks membership in
rational sets. This does not directly imply that the set of normalizing S-terms is
itself rational because the procedure also performs some intermediate reductions.
Perhaps surprisingly, the following nevertheless holds:

THEOREM 56. The set of normalizing terms in CL(S) is rational.

Appendix 2 contains a grammar that produces the set of normalizing S-terms. It
has been found by manual completion w.r.t. backward reduction in CL(S), starting
from the normalizing subsets of .4".4", obtained from Propositions 37 and 45.

By a tedious case analysis it can be checked that this grammar indeed produces
normalizing terms. On the other hand it is more difficult to verify that it indeed
produces all normalizing terms, or equivalently, that it generates ./", and is closed
w.r.t. backwards application of the S rule.

To check this, one verifies that each non-terminal that produces a term X Z(Y Z)
also produces the term S X Y Z. Translated to automata this reads: for all states x,
¥, z, a, b, ¢ with transitions x z > a, y z — b, a b — ¢, there must be states p, ¢ and
transitions Sx —p, py—¢q, qy— c. Because of the S rule being non-linear, this
only works for a deterministic automaton (we have to make sure that both Zs in
X Z(Y Z) are accepted in the same state).

Indeed the computer program RX [21] is able to make the given grammar deter-
ministic (the result has 43 states and 1600 transitions) and to check its backward
closure.

6. CONCLUSION

Apparently, a seminar held by Barendregt, Bergstra, Klop, and Volken in 1975
started the detailed study of S-terms. They placed a bet on the existence of terms
without normal form, and Barendregt collected 25 guilders from the other three by
producing A A A (and later SA A (S A A)). Later Duboué found STSSSS (and
its reduct A TS S) to be the smallest S-terms that do not normalize.

The decidability of normalization had already been conjectured by Zachos in
1978. He completely analyzed the normalization of S-terms of size up to 9, by either

14 JOHANNES WALDMANN

finding the normal form or exhibiting patterns (similar to those given in the Examples
1 and 2) that lead to an infinite reduction.

Still a proof that each non-normalizing term admits such a pattern would be
desirable. (It does not follow directly from the results presented here. The main
problem is that the case distinctions in the proofs of Propositions 61 and 63 are not
“constructive.”)

One would also like to be able to automatically derive the grammar for non-
normalizing S-terms, just starting from the grammar for /", and the S rule. There
are a number of completion and approximation results (see [8, 9]), but none of
them applies to CL(S) because the S rule is neither linear nor shallow.

The combinator L with reduction rule Lxy—x(y y) is called the lark in
Smullyan’s book [16]. It has been investigated in depth by Statman [18] and
Sprenger and Wymann-Boni [17]. Convertibility is decidable for CL(L). I conjecture
that this should also be decidable for S (the starling) but it might be substantially more
difficult than for the lark: If deciding normalization is a step toward deciding conver-
tibility, then this first step is trivial for the lark, but, as we have seen, quite hard
for the starling.

I proved [19] that CL(S) is top-terminating, meaning that, even in infinite reduc-
tions, the root of a term is rewritten only finitely often. Top-termination guarantees
the existence of limits (of fair infinite reductions). They seem to admit finite descrip-
tions that could be used to decide convertibility of non-normalizing terms.

This paper’s introductory question was “does the difficulty of CL(S, K) come
from S?” The answer is “no,” in a sense. We have seen that CL(S) certainly is com-
plicated, but still manageable (by tree automata). The important step from here to
undecidability is caused by the addition of the K combinator. So the (non-disjoint)
union of CL(S) and CL(K) is a vastly more powerful system than each of its
constituents.

This paper also shows that the seemingly small S rule is far from being com-
pletely understood. It is a challenging test case for the application of known results
on tree automata and term rewriting and a motivation to develop new techniques
that would better explain the results obtained so far, by putting them in a more
general framework.

APPENDIX 1: PROOFS

At a few places during the presentation (in the proofs of Propositions 67, 71, and
72) we rely on inclusion/exclusion relations between certain rational tree languages.
They could be verified by pen and paper as well, but we employed the computer
program RX [21] that performs the standard operations on rational tree languages
(represented by finite automata).

ProrosiTiON 31. | (AGa) and Ny F>a *.

Proof. By Proposition 27, Aya=(T/SuS A)a—> (Sa/SauS 4 a) and no
further reductions can happen. We see that a always is the right child of its
parent. ||

COMBINATOR S 15

PropoSITION 57. | (A A7)

Proof. The normal form of Ay A" is that of 4, a with a replaced by .4". No

reductions can happen inside ./, because it already is a normal form. No new
redexes can be created. ||

PROPOSITION 35. | (Mg, a) and N a Sa* x. Moreover, if Ny a=alX,
then a <l|X.

Proof. The base cases are
1. Sais in normal form,
2. S ./ ais in normal form,
3. S(ST)Sa—-»STa(Sa)-T(Sa)a(Sa))->S(a(Sa))(Sa(a(Sa))),

4. S(ST)Ta—>STa(Ta)>T(Ta)a(Ta))—>S(a(Ta))(Ta(a(Ta)))
—S(a(Ta))(S (a(Ta))(a(a(Ta))),

where the claim can be verified at the underlined subterms.
The inductive steps are

1. SSAHa—=Sa(AN,a),
2. STy a—Ta(g, a)—>S (So, aalHo,a) I

PROPOSITION 58. | (A, 1 o).

Proof. First reduce g ; A, as if A; were a variable. By Proposition 35, the
only redexes that might arise are of the form .4 . They might be nested, but all
of them can be reduced to normal form by Proposition 57. ||

DEFINITION 59. # =<2, 2,>.
Lemma 60. 2, F < &.
Proof. Let X Ye 2, #. We use the fact that 2, =T U 2,.
I. X=T.Then X YeSxF =(F)<= Z.
2. Xe9,.As YeF =2,wehave XYe 2, 7. |
ProrosiTION 61. (2, 2,>{2, 2, —> 0.

ExaMPLE 62. STT is the smallest term in {2, 2,>. We have STT(STT)
—> 00, as seen already in Example 1.

Proof. We have (2, 2,>(2, 2,> > 2,9, F. Let XY Ze€2,9, F.
If X = oo, then the XYZ — 0. So assume X has a normal form. It could have
shape S = or S = .

1. X—>S2,.

SUYF -2 F(YF)€£2 F (2, F)=F F — oo by applying Lemma 60
twice.

16 JOHANNES WALDMANN

2. X > S

Sxx 2% - = 2/(*2)%. By Lemmata 22 and 21 we have * 2, = 2,< 2,, so
x N(x2)F LU F =F F —> 0.

In either case we find an infinite reduction because we have done at least one
reduction step and the result again has the form & 7. |

ProrosITION 63. <(2; 2,>9, —> 0.
ExampLE 64. AAA€2;9,,s0 AAA — oo. See Example 2.

Proof. Let <232,> 2, > 2,2, 2,,and let X YZe 2,2, 2,.
If X - o0, then the X Y Z — c0. So assume X has a normal form. It could be
S92, 0r S

1. X—>S2,.
S2,92 9 —-292 (2,2)=% F —> oo by Proposition 61
2. X —> Sxx

Sxx9,9 - %*2,(*x92,)2, By Lemmata 22 and 21 we have %2, =2, <9, so
x Dy (x D) 2 <959, 9, > oo by induction. |
PrOPOSITION 65. S 25 2,> 2, &> 0.

ExaMPLE 66. SAS(SAS)e{S 2 2, 2,. Its reduction graph is a pure line,
and all reductions are head reductions.

Proof. (S 252 2, =S 25 2y 2 > 232 (2 %) =22, 2. Then apply
Proposition 63. |1

PrOPOSITION 67. A5 2, = 0.

Proof. Tt can be shown that 45 =<{2; 2,> U<{S 2; 9,>. (See the introductory
remark on verification of such relations.) This is exactly the right form to apply
Propositions 63 and 65. ||

PROPOSITION 68. .A] AN, —> 0.

Proof. Let X Ye /] A,. There is a reduction from X Y that activates Y, ie.,
that produces a subterm Y Z. By the second part of Proposition 35, we have
Y<Z. Since Ye.N; =9,, clearly Z€ 2,. So we have Y Ze .45 2, and can apply
Proposition 67. |1

PROPOSITION 39. | (% a), and {Z: Sya=—>aZ} ={Sa}.
Proof. The base cases are

1. STSa—Ta(Sa)—S(Sa)(a(Sa)),

2. S(ST)Sa—-»STa(Sa)-T(Sa)a(Sa))—(a(Sa))(Sa(a(Sa))).

The inductive step reads T % a— S a(F%a). |

ProrosiTION 69. | (%).

COMBINATOR S 17

Proof. Reduce %, /] as if /] were a variable. By Proposition 39, the only redexes
that may arise have the form A{(S A7). But S 4] =S A" < g, so N (S A7) S AN N,
and therefore they normalize, by Proposition 58. ||

PROPOSITION 42. | (% a) and {Z: ¥,a —>aZ} ={S P a}.

Proof. The base case is ST(SA)a—Ta(SPAa)—>S(SHAa)(a(SPa)). The
inductive stepis T #a—>Sa (L a). |

ProrosiTioN 70. | (A %)

Proof. Reduce ¥ %, treating %, as a variable. By Proposition 42, the only
new redexes have the form % (S % %). We have %, < ./7; therefore S % %, =
S #, N = .4 by definition. But then % (S % %) < %, ./;, which normalizes by
Proposition 69. |1

ProrosITION 71. & , £, = 0.

Proof. We have ¥ , =<{2, 2,. (See the introductory remark on verification of
such relations.) So Proposition 61 is applicable. ||

ProrpoSITION 72. %, N] —> 0.

Proof. We use the fact that %, < (T/S(ST)TUST 2;). (See the introductory
remark on verification.) Also, for any k, we have 4] < 2,, because N "%, =
since %4, < ./,. Then we have two base cases:

1. ST N >T N (2547])—>S (25 M7) (N (25.47)). By Proposition 35,
applied to the underlined expression, there is a reduction A] (25 ;) &> 25 M X
with 2,47 < X, so that X < 2,. Moreover we have /] = 2,, therefore the 2, /] X
< 92,9, 9, >> oo by Proposition 63.

2. SST)T A ST M(T N)ESST 2, 4] because AN =2;. This gets us
back to the previous case.

The inductive step is just T % A > S A7 (% A7), |

PROPOSITION 52. If X > X' with R=S B C D innermost, then weight (X) >
weight (X') with strict inequality for Fe %.

Proof. Denote the contractum of R=S BCD by R'=B D (C D). Consider an
active subterm EF=Y < X. Call Y' = E'F' the subterm of X’ that is at the same
position as Y in X. We list the relative positions of Y and R:

1. None is a subterm of the other. Then weight (Y) = weight(Y’).
2. Y=R. The left child of Ris S B C. In R’, we possibly have active subterms
BD and CD, but |SBC|>|B|+]|C|.

Additionally, we might create an active subterm B D(C D). This could (in case
C =D =1S) affect the second component of weight (X"). But this is irrelevant for the
lexicographic ordering, since the first component strictly decreases.

3. Y is a proper subterm of R. Impossible by Proposition 49.

18 JOHANNES WALDMANN

4. R is a subterm of the left child £ of Y. The reduction does not change the
size of the normal form: |E| = |E’|

5. R is a subterm of the right child F of Y. Then F'is not in %, so the weight
is not affected.

Adding this for all possible Y, the first claim is proved. Since case 2 happens
exactly once, strict inequality is proved. ||

APPENDIX 2: GRAMMAR

The set of (many step) predecessors of a set Z is denoted by
DEFINITION 73. pred(Z)={X: X — Z}.

We are also interested in the set of all terms X that reduce to a term in Z when
supplied with an argument from Y.

DEFINITION 74. pred(Z)={X: XY — Z}.
In this section, we will give a grammar for pred(./"), the set of normalizing
S-terms. From Propositions 37 and 45 we derive
pred(A") — S U pred(.A;) pred(.A4”) U pred(.%) pred (A5, 1)
u pred(¥;) pred() w pred(.A5,) pred(.A5)
upredg(A)Supred(A) T
Here and later, all expressions pred(Z) and pred y(Z) are considered as different
non-terminals of the grammar. Its productions are
pred(Ay) = S U S pred(A7) U T pred(.Ag)
upredg(Ag) Supred+(Ag) T
pred(Ag, 1) = SuS pred(A7) US(ST) % U S pred(Hy, 1)
upredg(Ag, 1) Supred (A) T
preds(%) — (T/S(S %))
pred(%) — (T/preds(%) S)
pred+(&%)—>STUA
preds(<£;) — (T/(T/ST) S)
pred(Z) - (T/ST(ST)upredr(£) T upredg(Z) S).

It is interesting to note that the set
Noo > SUT ANgg U Ao S

1s closed w.r.t. forward and backward reduction.

COMBINATOR S 19
pred(Ap) = Z; predg(Ag) = Ao

)
predy (45,) = Ao U preds (%)
predg (A5, 1) = predr(A5 1) U (T/(T/S Az0))
pred+ (A7) = SuUS pred(A”) U pred+ (A 1) % US % pred(A)
u predg(pred+(.47)) Su pred+(pred+(A47)) T
preds (predr (A7) - preds (g,) U (T/S predr (45, 1))
pred(pred+(.47)) = (T/S predr (A5, 1))
pred+(predg (A7) = (T/S(ST) T u predg (7).
For notational convenience, we introduce short names for these non-terminals of

the grammar:

DErFINITION 75.

one =predg (A7), two = predg(one)

three = predg(two), four = predg(three).
The following rules complete the grammar:

one — S Ny, one, two = T two, three > T three, four - T four
one = two S, two — three S, three — four S
Sfour — Ny, three > Ny, two — Ny, one — Ny,
four > SAUSAT
three > S Ngo US(T/ST)USA N5 UASAUTTA
two =S Ngo Noo WS TTTuUS predg (A5, 1)
US(T/S pred(A5,1)) UAS Ao UT T Ay
one — S pred(A") U S predg (%) predg(Ap, 1) U S predg(Z;) predg(%)
U (T/S preds(.A4o,1)) preds(.A4o)
u pred(predg (A7) T Moo Ngo W (T/STT) Ao
UAS predg (%) U TT predg(%) UA(ST).

ACKNOWLEDGMENT

I thank Henk Barendregt, Thomas Genet, Alfons Geser, Dieter Hofbauer, Florent Jacquemard, Jan
Willem Klop, Vincent van Oostrom, and Rick Statman, who provided many useful comments as well
as general remarks and historical anecdotes on combinators. I also thank the anonymous referees for
valuable suggestions for improving the presentation of this paper.

20

JOHANNES WALDMANN

Several years ago when I began to look at the problem... I found that 25 of the
letters were comparatively easy to deal with. The other letter was “S”. For three days
and nights I had a terrible time trying to understand how a proper “S” could really
be defined. The solution I finally came up with turned out to involve some interesting
mathematics.

—DONALD E. KNUTH.

Received September 1998

10.

11.

12.

13.
14.

16.

17.

18.

19.

REFERENCES

. Abramsky, S., Gabbay, D., and Maibaum, T. (1992), “Handbook of Logic in Computer Science,”

Vol. 2, Clarendon, Oxford.

. Baader, F., and Nipkow, T. (1998), “Term Rewriting and All That,” Cambridge Univ. Press,

Cambridge, UK.

. Barendregt, H. P. (1984), “The Lambda Calculus, Its Syntax and Semantics,” Elsevier, Amsterdam/

New York.

. Bergstra, J., and Klop, J. W. (1979), Church-Rosser strategies in the lambda calculus, Theoret.

Comput. Sc. 9, 27-38.

. Comon, H., Dauchet, M., Gilleron, R., Lugiez, D., Tison, S., and Tommasi, M. (1997), “Tree

Automata Techniques and Applications,” available at http://www.grappa.univ-lille3.fr/tata.

. Ganzinger, H. Ed., (1996), “Rewriting Techniques and Applications,” Lecture Notes in Computer

Science, No. 1103, Springer-Verlag, Berlin/New York.

. Gécseg, F., and Steinby, M. (1984), “Tree Automata,” Akadémiai Kiado, Budapest.

. Genet, T. (1998), Decidable approximations of sets of descendants and sets of normal forms, in

“Rewriting Techniques and Applications” (T. Nipkow, Ed.), pp. 151-165, Springer-Verlag, Berlin/
New York.

. Jacquemard, F. (1996), Decidable approximations of term rewriting systems, in “Rewriting

Techniques and Applications” (H. Ganzinger, Ed.), pp. 362-376, Springer-Verlag, Berlin/New York.
Kennaway, R., and Sleep, R. (1988), Director strings as combinators, ACM Trans. Program.
Languages Systems 10, (4) 602-626.

Klop, J. W. (1980), Reduction cycles in combinatory logic, in “To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism” (J. P. Seldin and J. R. Hindley, Eds.),
pp. 193-214, Academic Press, San Diego.

Klop, J. W.(1992), Term rewriting systems, in “Handbook of Logic in Computer Science” (S. Abramsky,
D. Gabbay, and T. Maibaum, Eds.), Vol. 2, pp. 2-117, Clarendon, Oxford.

Knuth, D. E. (1980), The letter S, Math. Intelligencer 2, 114-122.

Nipkow, T. Ed., (1998), “Rewriting Techniques and Applications,” Lecture Notes in Computer
Science, Vol. 1379, Springer-Verlag, Berlin/New York.

. Seldin, J. P., and Hindley, J. R. Eds., (1980), “To H. B. Curry: Essays on Combinatory Logic,

Lambda Calculus and Formalism,” Academic Press, San Diego.

Smullyan, R. (1985), “To Mock a Mockingbird: And Other Logic Puzzels Including an Amazing
Adventure in Combinatory Logic,” Knopf, New York.

Sprenger, M., and Wymann-Boni, M. (1993), How to decide the lark, Theoret. Comput. Sc. 110,
419-432.

Statman, R. (1989), The word problem for Smullyan’s lark combinator is decidable, J. Symbolic
Comput. 7, 103-112.

Waldmann, J. (1997), Nimm Zwei, Research Group Theoretical Computer Science, Internal Report
IR-432, Vrije Universiteit Amsterdam.

20.

21.
22.

23.

24.

COMBINATOR S 21

Waldmann, J. (1998), Normalization of S terms is decidable, in “Rewriting Techniques and
Applications” (T. Nipkow, Ed.), pp. 138-150, Springer-Verlag, Berlin/New York.

Waldmann, J. (1998), The RX home page, available at http://www.informatik.uni-leipzig.de/ ~ joe/rx/.
Zachos, E. (1978), “Kombinatorische Logik und S-Terme,” Berichte des Instituts fiir Informatik,
No. 26, Eidgendssische Technische Hochschule Ziirich, Ziirich.

Zantema, H. (1993), “Termination of Term Rewriting by Semantic Labelling,” Technical Report
UU-CS-93-24, Utrecht University.

Zantema, H., and Geser, A. (January 1996), “Non-Looping Rewriting,” Technical Report UU-CS-1996-03,
Utrecht University.

	1. INTRODUCTION
	2. NOTATIONS AND PRELIMINARIES
	3. LOOPS
	4. NORMALIZATION
	5. RATIONALITY
	6. CONCLUSION
	APPENDIX 1: PROOFS
	APPENDIX 2: GRAMMAR
	ACKNOWLEDGMENT
	REFERENCES

