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In this paper we show that for a wide class of totally unrectifiable 1-sets in the
plane (or even a Hilbert space) satisfying a mild measure-theoretic flatness condi-
tion almost everywhere, at sufficiently small scales, the lower spherical density is
bounded above by 1

2 at almost every point, thereby affirming Besicovitch's conjec-
ture, which states that for all totally unrectifiable 1-sets in the plane (or possibly
even in Rn, or a Hilbert space), the lower spherical density is bounded above by 1

2

at almost every point. � 2000 Academic Press

1. INTRODUCTION

Recall that E is called a 1-set if 0<H1(E)<�, where H1 is the 1-dimen-
sional Hausdorff measure, and that E is said to be totally unrectifiable if
H1(E & 1)=0 for every rectifiable curve 1. One of the fundamental charac-
terizations of rectifiability is that of density. For a rectifiable set E in Rn (say),
we have

31(E, x)# lim
r � 0+ \H1(B(x, r) & E

2r +
=1, (1.1)

for almost every x # E, where B(x, r) is the closed ball with center at x, and
radius r. This is basically due to Besicovitch [Be1], and for subsets of
metric spaces it is due to Kirchheim [Ki]. The situation for totally unrec-
tifiable 1-sets on the other hand is drastically different. In fact, the density
31(E, x) does not exist for a.e. x # E, as first proved in [Be2] and, more
recently, for m-sets in Rn in Preiss' remarkable paper [Pr]. Recall that
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_1(Rn) is defined to be the smallest number such that if E is a totally unrec-
tifiable 1-set in Rn, then the lower spherical density

31

*
(E, x)# lim

r � 0+
inf \H1(B(x, r) & E

2r +
�_1(Rn) (1.2)

for a.e. x # E (see e.g., [Pr], [Ma]). In 1928, Besicovitch [Be1] proved
that

_1(R2)�1&10&2576, (1.3)

thereby characterizing rectifiability by means of the lower spherical density.
In 1938 [Be2], he showed that

_1(R2)� 3
4 . (1.4)

He also gave an example showing that

_1(R2)� 1
2 , (1.5)

and conjectured that _1(R2)= 1
2 . The upper estimates on _1(R2) were

shown to hold for _1(Rn) by Moore [Mo], and to metric spaces by Preiss
and Tis� er [PT]. Thus the conjecture is just as reasonable for _1(H), where
H can even be a Hilbert space (my guess is that it may not hold for general
metric spaces).

Only recently has there been any progress on this problem, namely in
[PT] where it was shown that, for a metric space,

_1(M)�
2+- 46

12
r0.732. (1.6)

It is hoped that the present paper will shed some light on the nature of this
problem. Treatments of Besicovitch's results can be found in [Fal], and
[Far1]. The rest of this paper is organized as follows:

Section 2: we provide the appropriate definitions that we need to state
the main results.

Section 3: we give the statement of the main results.

Section 4: we present a technical reduction of the problem using standard
techniques in geometric measure theory.

Section 5: this is devoted to the proof of the main results.
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Section 6: we remark on some possible extensions of the method, state
a corresponding theorem in the setting of a Hilbert space, and comment on
a strategy for possible further progress.

2. THE NOTION OF ESSENTIAL FLATNESS

Our goal is to show that a certain class of totally unrectifiable 1-sets
which look somewhat flat, or thin, at sufficiently small scales, satisfies
Besicovitch's 1

2 -conjecture. In this section we make precise the notion of
flatness that will be needed to state the main results.

Definition 2.1. If E/R2, x # R2, and r>0, we let ;E (x, r) be the
smallest number such that E & B(x, r) is contained in a strip S of width w,
with w�r�;E (x, r).

Note that for any set E, ;E (x, r)�2, for all x # R2, r>0. See [Jo] where
the systematic use of such numbers to characterize rectifiability first
appeared, and quickly opened numerous applications and developments
(see e.g., [DS]).

Our setting will be measure-theoretic in nature, and we will be able to
use a less restrictive notion.

Definition 2.2. We let ;1
E(x, r) be the smallest number such that there

is a strip S of width w, so that w�r�;1
E (x, r), and H1((E & B(x, r))"S)=0.

Since the problem is also local in nature, we can generalize even further
by defining ;E*

1(x) via

;E*
1(x)#lim sup

r � 0+
;1

E(x, r). (2.1)

We will also need the following, more general, tools:

Definition 3. For =>0, r>0, x # R2, let #1
E(x, r, =) be the smallest

number such that there is a strip S of width w, so that w�r�#1
E(x, r, =), and

H1((E & B(x, r))"S)�=r.

We now define #E*
1(x, =), #E*

1(x) via

#E*
1(x, =)#lim sup

r � 0+
#1

E(x, r, =), (2.2)

#E*
1(x)#sup

=>0

#E*
1(x, =). (2.3)
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In Section 5 it will be proved that sets with #E*
1(x) somewhat small (in

comparison with unity), almost everywhere, satisfy Besicovitch's 1
2-conjec-

ture. It is such sets that we refer to as essentially flat to indicate the
measure theoretic sense of that notion. In particular flat sets (i.e., those for
which ;E (x, r)<<1, for all x # E, r>0) satisfy the conjecture also.

3. THE MAIN RESULTS

Theorem 2 below is the main result of this paper, but we first state a
simpler version:

Theorem 1. Suppose E/R2 is a totally unrectifiable 1-set and that
;E*

1(x)� 1
4 for almost every x # E. Then 31

*
(E, x)� 1

2 for almost every x # E.

A weaker version of this result (when ;E*
1(x)� 1

10 almost everywhere)
was obtained in [Far2] using a different method which relied more on the
geometry imposed by the essential flatness condition than measure theoretic
estimates. Our method below will make use of flatness only at strategic places.
There are numerous examples of totally unrectifiable 1-sets satisfying the
hypothesis of Theorem 1 (or Theorem 2); say if the set lies on a quasicircle
with small constant. Elementary examples of self-similar 1-sets which can
be finely tuned for any ;E (x, r) desired, may be found in [Far1]. Our main
result is slightly stronger and more flexible to apply:

Theorem 2. Suppose E/R2 is a totally unrectifiable 1-set, and that
#E*

1(x)� 1
4 for almost every x # E. Then 31

*
(E, x)� 1

2 for almost every x # E.

Remark 3. The bound ``1
4 ,'' on #E*

1(x) or ;E*
1(x) is not the best possible

in our method, but this choice was made as a compromise between
strength of the theorem and difficulty of the proof. However, the method
seems to break down if one tries to push the bound beyond ``13'' for example.

4. A TECHNICAL REDUCTION OF THE PROBLEM

For the convenience of the reader we will briefly describe a technical
reduction of the problem. Our version is from [PT] which works for
general metric spaces. For an elementary version for subsets in the plane,
or Rn, see [Far1], or (respectively) [MR], which also appears in an
elegant presentation of Besicovitch's results in [Fal]. First we recall a few
basic facts about Hausdorff measures.
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4.1. Basic Density Properties

In what follows we assume that E is a 1-set. Let D� 1
c(E, x) denote the

upper convex density of E at the point x # Rn, i.e.,

D� 1
c(E, x)#lim sup

r � 0+ \
H1(E & U )

diam(U ) + , (4.1)

where the supremum is over all convex sets U, with x # U, and diam(U )�r.
Since a set and its convex hull have the same diameter, the definition above
in not altered if we allow U to be any set. We can now state the following
propositions:

Proposition 4. D� 1
c(E, x)=0 for a.e. x � E.

Proposition 5. D� 1
c(E, x)=1 for a.e. x # E.

For proofs see e.g. [Fal]. Using the regularity of the Hausdorff measure,
one can prove the following proposition (see e.g., [Fal] for a proof ):

Proposition 4.3. Suppose 31

*
(E, x)>_>0, on a set of positive measure.

Then there exist =, \$>0, and a compact 1-set E$/E, such that

H1(E & B(x, r))�(_+=) 2r, (4.2)

for all x # E$, 0<r�\$.

4.2. A Strong Uniformization Principle

Proposition 6 gave a uniformization of the statement 31

*
(E, x)>_>0

on a set of positive measure and, in principle, this is all that one can
usually conclude. If we assume that E is totally unrectifiable however, the
statement of Proposition 6 cannot be violated ``too often'' if we replace E,
by E$ itself. Using the density properties in the previous section, the total
unrectifiability of the set E, and the compactness properties of Radon
measures, one can in fact prove (as in [PT]) the following proposition:

Proposition 7. Suppose E is a totally unrectifiable 1-set and 31

*
(E, x)

>_>0 on a set of positive measure. Then there exist =>0, a Radon measure
+ with support F/ E, and disjoint closed sets F1 , F2 /F, with attained distance,
such that

+(B(x, r))�\_+
=
2+ 2r, (4.3)

for all x # F, r>0.
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4.3. The Reduced Form

By Proposition 7, we see that if 31

*
(E, x)> 1

2 on a set of positive
measure, then we can find =>0, a Radon measure + with support F
contained in E, and disjoint closed sets F1 , F2 /F, such that

;(x, r))�(1+=) r, (4.4)

for x # F, r>0. Also, by compactness of measures and the density proper-
ties of Section 4.1, we can require that

+(U )�diam(U ), (4.5)

for all U/R2. This is essentially all the information that we have in a
general setting. In the next section, we will use (4.4), (4.5), and the flatness
hypothesis to get a handle on the problem.

5. PROOF OF THE MAIN THEOREM

Remark 8. The proof below contains many, delicate (though elemen-
tary), nonlinear estimates. This seems to be an unavoidable feature of the
problem. We will therefore detail the estimates as necessary, and we will
measure angles in degrees to help the reader build an intuition for the
geometric picture. Furthermore we will consider all angles to lie between
&180%, and 180%, unless otherwise stated (for example geometric angles of
the form xyz@ are understood to be nonnegative).

Assume, to get a contradiction, that 31

*
(E, x)> 1

2 on a set of positive
measure and, consequently, find =>0, a measure + with support F, and
compact F1 , F2 with the properties stated in Section 4.3. Recall the setup
of Section 4.3. By hypothesis, and compactness of measures again, we can
also guarantee that, for every x # F, and r>0,

;F (x, r)� 1
4 . (5.1)

The rest of the proof is devoted to obtaining a contradiction using only the
three estimates (4.4), (4.5), and (5.1).

5.1. The Idea behind the Proof

In this section we give the main geometric idea behind the proof by
showing how one can obtain the 1

2 from a very crude picture assuming that,
for all x # F, r>0, ;F (x, r)�; for some (very small) ;>0. The actual
proof in Section 5.2 is then devoted to handling the various obstructions
that arise when we try to achieve an optimal result using this idea.
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FIGURE 1

Recall the setup of Section 4.3. We have two disjoint pieces F1 , F2 /F.
Let w # F1 , w$ # F2 , be such that s#dist(F1 , F2)=|w&w$|. We first observe
that there exists a strip S of width ;s such that F1 & B(w, s)/S. All of our
arguments will take place in S. See Fig. 1. Now consider the ball B(w, s�2).
By (4.4), (4.5), there exists a pair of points w1 , z1 # F1 & B(w, s�2), with (by
choice of label) w1 closer to w, and such that

|w1&z1 |#diam \F1 & B \w,
s
2++

�(1+=)
s
2

.

Let us now rescale and set |w1&z1 |#1. We now consider the ball B(w1 , 1).
By the same argument, we must have w2 , z2 # F1 & B(w1 , 1), labeled as before,
such that

|w1&z1 |#diam(F1 & B(w1 , 1))

�(1+=).

Note that we also have

;F (w1 , 1)�;.
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Set a=|z1&z2 |. As we will see in Section 5.2, the Pythagorean Theorem
implies that

|z2&w2 | � 1+;a.

For the sake of our crude argument, let us ignore the curvature of the circle
(which is reasonable when ;<<1). Let us also assume that the line
segments w1z1 is horizontal and z1z2 is vertical. We also assume that
B(z1 , a) & F1 is contained in a vertical strip S$ of width ;a. Consider now
the three balls B(w1 , 1&;a), B(z1 , a�2), B(z2 , a�2). While the last two have
disjoint interior, the first one may overlap them except when intersected
with F1 . By (4.4), if U=B(w1 , 1&;a) _ B(z1 , a�2) _ B(z2 , a�2), we then
have

+(U )>1&;a+a, (5.2)

whereas by definition of z2 , w2 , the estimate on their distance, and the
triangle inequality, we get

diam(U )�1+;a+
a
2

, (5.3)

which contradicts (4.5), if ; � 1
4 .

We must warn the reader that the bound on ; just obtained is rather
deceptive. In fact, if we believe the above simplistic picture, we can get a
much better bound for ; (close to 1

2), but the reason that we have a bound
like 1

4 in our main result really comes from the details of the proof in
Section 5.2. A more realistic picture would have to allow for all possible
positions and orientations of the strip S$, the curvature of the circle, and
we cannot always use w1 as the center for the big ball we took in the con-
struction of U. We will have to allow w2 to also be the center in some cases.
This however introduces new points from F1 into the picture, and we must
chase a sequence of quadruplets like z1 , z2 , w1 , w2 , to get a contradiction
like the one illustrated above.

5.2. The Body of the Proof

We now give the details of the proof. The next lemma is a statement of
the Pythagorean Theorem in circles which will play an essential role in our
analysis.

Lemma 5.2. Suppose w1 , z1 # R2, |w1&z1 |=1. Suppose also that w2 , z2

# B(w1 , 1) & B(z1 , 1), let f1=1&|w1&z2 |, f2=1&|w2&z1 |, %=z1w1 z2@ .
Define :, such that |:|=w2 z1w1@ , and : is positive whenever w2 , z2 lie on

96 HANY M. FARAG



FIGURE 2

opposite sides of the line segment w1z1 , and negative if they lie on the same
side. Let L=|w2&z2 |, then

L2=1+2 sin(%) sin(:)+8 sin2 \%
2+ sin2 \:

2++ f 2
1+ f 2

2

&2f1 \1+sin(%) sin(:)&2 sin2 \:
2++4 sin2 \%

2+ sin2 \:
2++

&2f2 \1+sin(%) sin(:)&2 sin2 \%
2++4 sin2 \%

2+ sin2 \:
2++

+2f1 f2 \1+sin(%) sin(:)&2 sin2 \:
2+&2 sin2 \%

2+
+4 sin2 \%

2+ sin2 \:
2++ (5.4)

Proof. See Fig. 2. Let a=|z1&z2 |, $=w1z1 z2@ . By the Pythagorean
Theorem,

L2=((1& f2) cos(:)&a cos($))2+((1& f2) sin(:)+a sin($))2. (5.5)
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By projecting on, and orthogonal to, the line segment w1z1 , we find that

(1& f1) cos(%)=1&a cos($) (5.6)

and

(1& f1) sin(%)=a sin($). (5.7)

Upon substituting and simplifying some trigonometric identities we can
cas-t (5.5) in the advertized form. K

The geometry of Lemma 9 will repeat throughout the rest of the proof
and we will repeatedly use the notation of this lemma without further
warning whenever such a geometry is present. The labeling of the points
will always be made clear so that no confusion should arise. The next
lemma introduces the role that (5.1) will play in our method.

Lemma 10. Let x, y, z # R2 & S; , where S; is a strip of width ; |x& y|.
Suppose | y&z|�|x& y|� |x&z|>0. If %=xyz@, then sin(%)�;.

Proof. See Fig. 3. We observe (by an elementary argument) that the
best possible strip (i.e., one of minimal width) must have one of the sides
of the triangle xyz on one of its boundary components and the opposite
vertex on the other component. Comparing the widths of these three strips

FIGURE 3
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while keeping in mind that |z& y|�|x& y|�|x&z|, we find that the best
strip is the one with yz on one of its boundary components and x on the
other component. Thus, we conclude that |x& y| sin(%)�; |x& y|. K

Now we consider the ball B(w, s�2). By (4.4) and (4.5), there must exist
w1 , z1 # B(w, s�2) & F, such that

|w1&z1 |=diam \B \w,
s
2+& F+�(1+=)

s
2

. (5.8)

We observe here that |z1&w1 | satisfies the following estimate

|z1&w1 |�1.2 \s
2+ , (5.9)

which is a consequence of the fact that, by the law of cosines,

|z1&w1 |2

s2

is (crudely) dominated by 1+( 3
2)2&3 cos(A+B), where A and B are acute

angles such that sin(A)+sin(B)� 1
4 . We leave the simple details to the

reader. Next, consider the ball B(w1 , |w1&z1 | ). By (4.4) and (4.5), there
must exist w2 , z2 # B(w1 , |w1&z1 | ) & F, so that

|w2&z2 |�diam(B(w1 , |w1&z1 | ) & F )�(1+=) |w1&z1 |. (5.10)

We also observe that z2 , w2 # B(w1 , |w1&z1 | ) & B(z1 , |w1&z1 | ). It will
now be convenient to rescale and set |w1&z1 |#1, and we will use the
notation of Lemma 9.

Lemma 11. max[sin(:), sin(%)]� 1
4 .

Proof. This is just an application of Lemma 10 to each of the triplets
[z1 , w1 , z2], and [w1 , z1 , w2]. K

Proposition 12. Suppose Q=[w1 , w2 , z1 , z2]/R2, such that

1. |w1&z1 |=1,

2. w2 , z2 # B(w1 , 1) & B(z1 , 1),

3. L# |w2&z2 |�1,

4. ;Q(x, r)� 1
4 for x # Q, r>0.
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If z2 , w2 , are labeled so that |z2&z1 |�|z2&w1 |, then, for i=1, 2,

L2�1+2 \(1.017) sin(%) sin(:)&
fi

(1.05)+ , (5.11)

sin(%)�|z1&z2 |�(1.05) sin(%), (5.12)

and

fi�(1.07) sin(:) sin(%). (5.13)

Proof. First observe that (3) implies that : is positive according to our
convention (i.e., z2 , w2 , must lie on opposite sides of w1z1 ). By (2)�(4), we
can assume (without loss of generality that) z2 # B(z1 , 1

2), w2 # B(w1 , 1
2). Thus

max
i

[ fi]� 1
2 . (5.14)

Using (5.14) and Lemma 11 we find that, for any 0� f1� 1
2 , the right-hand

side of (5.1) is decreasing with respect to f2 (it helps to check the linear
terms). By (3), we conclude that

0�2 sin(%) sin(:)+8 sin2 \%
2+ sin2 \:

2++ f 2
1

&2 f1 \1+sin(%) sin(:)+4 sin2 \%
2+ sin2 \:

2+&2 sin2 \:
2++ . (5.15)

Let

b(%, :)=sin(%) sin(:)+4 sin2 \%
2+ sin2 \:

2+ , (5.16)

%0=:0 #arc sin( 1
4), and b0=b(%0 , :0). Noting that for any f1� 1

2 , the
right-hand side of (5.15) is maximized when %=:=%0 , we can obtain the
crude estimate

f1�b0&
b2

0

2
+2b0 sin2 \:0

2 +&2 sin4 \:0

2 +
+

1
8 \1+b2

0&4b0 sin2 \:0

2 +&4 sin2 \:0

2 ++4 sin4 \:0

2 ++
&3�2

_\b2
0&4b0 sin2 \:0

2 +&4 sin2 \:0

2 ++4 sin4 \:0

2 ++
2

�
1.017

16
. (5.17)
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Similarly,

f2�
1.017

16
. (5.18)

Substituting (5.17), (respectively, (5.18)) back into (5.4), and using Lemma 11,
we get that for i=1, 2,

L2�1+2 {sin(%) sin(:) \1+4
sin2 \%0

2 + sin2 \:0

2 +
sin(%0) sin(:0) +&

f i

(1.05)= , (5.19)

which is (5.11). Using (3) and Lemma 11 we get (5.13). The left-most
inequality of (5.12) is obvious. Finally, using the law of cosines, we have
(recall a=|z1&z2 | )

a2=(1& f1)2+1&2(1& f1) cos(%)

=4 sin2 \%
2+ (1& f1)+ f 2

1 . (5.20)

Using (5.13), we get

a2�4 sin2 \%
2++(1.07)2 sin2(:) sin2(%)

�sin2(%) \4 sin2 \%0

2 +
sin2(%0)

+\1.07
4 +

2+
�(1.1) sin2(%), (5.21)

which implies the right-most inequality of (5.12). This concludes the proof
of the lemma. K

We now need a further improvement on Lemma 11:

Proposition 13. max[sin(:), sin(%)]� 3
16 .

Proof. We will only prove that sin(%)� 3
16 , since the proof for sin(:) is

identical. See Fig. 4. Suppose a�sin(%)> 3
16 . We choose natural coor-

dinates for the line segment z1 z2 . By a translation, and a rotation, we can
assume that the center line of the minimal strip S which contains
B(w1 , 1) & F, is horizontal, and that z is at the origin. We let |*| be the
acute angle that z1z2 makes with the vertical, and we define * to be
positive when z2 has a negative real part. Let h2 be the distance from z2 to
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FIGURE 4

the upper boundary of S, and h1 the distance from z1 to the lower boundary
of S. We start by proving:

Lemma 14. The following estimates hold :

&9.1%�*�14.9%, (5.22)

a cos(*)+h1+h2� 1
4 , (5.23)

and

max[0, (1& f2) sin(*&10.6%)]�h1 . (5.24)

Proof. We first record some crude estimates. Since z2 # B(z1 , 1) & B(w1 , 1),
then

$�90%&
%
2

. (5.25)

102 HANY M. FARAG



By (5.7), (5.12), (5.18), and our hypothesis, we must have

$�arc sin \\1&
1.017

16 +
(1.05) +�63.1%. (5.26)

Since the maximum acute angle that w1z1 makes with the horizontal
cannot exceed arc sin( 1

4), we conclude that

*�90%&$+arc sin( 1
4)

�41.4%. (5.27)

Using (5.12), (5.25), and Lemma 11, we get

*�90%&[90%& 1
2 arc sin( 3

16)+arc sin( 1
4)]

�&9.1%, (5.28)

which is the left inequality of (5.22). Projecting on the vertical axis, we
have

h1+a cos(*)+h2� 1
4 , (5.29)

which is (5.23), and

max[0, (1& f2) sin(:+$+*&90%)]�h1 , (5.30)

which is (5.24). Since L2�1, we have (by the law of cosines),

a2+(1& f2)2&2a(1& f2) cos($+:)�1. (5.31)

The left-hand side of (5.31) is decreasing with respect to f2 , and thus by
(5.12), we get

( 1.05
4 )2+1&2_ 3

16 cos(:+$)�1, (5.32)

which gives

:+$�79.4%. (5.33)

Substituting in (5.30), we obtain (5.24). Thus, if *�10.6%, we can combine
(5.23), (5.24), and our assumption to get

h2+ 3
16 cos(*)+(1& f2) sin(*&10.6%)� 1

4 . (5.34)

Using the last summand alone, we get that

*�25%. (5.35)
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Substituting *=14.9% in (5.34) produces a violation and, since the left-
hand side of that inequality is increasing for 0�*�25%, we conclude

*�14.9%. (5.36)

This concludes the proof of the lemma. K

Now let R be the region defined by

R#((S1 & B(z1 , a)) _ (S2 & B(z2 , a))) & S, (5.37)

where, for i=1, 2, Si is a minimal strip such that B(zi , a) & F/Si . We
prove the following intuitively obvious lemma.

Lemma 15. �R/�S1 _ �S2 _ �S

FIGURE 5
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Proof. See Fig. 5. Suppose ` # (�B(z1 , a) & S1)"B(z2 , a). Let � #
(&180%, 180%], be the angle between the directed line segment z1`

�
, and

z2z1

�
, which we define positive when `, w2 , are in different components of

R2"L, where L is the line containing z1 , z2 . We observe first (with an
elementary argument using Lemma 11) that � must satisfy

|�|�2%0 , (5.38)

and thus, if ` is to lie in S, we must have (by a similar argument as leading
to (5.23)),

|`&z1 |�

1
4

&
3

16
cos(*)

cos( |�|+*)
. (5.39)

By (5.22) and (5.41), we get

|`&z1 |� 1.53
16 , (5.40)

which is absurd. Similarly, we cannot have a point ` # (�B(z2 , a) & S2)"
B(z1 , a), which would also lie in S.

We now wish to estimate diam(R) for any choice of S1 , S2 , and *.

Lemma 16. diam(R)� 1.322
4 .

Proof. Let S0 be a strip of width 1
4 a, with centerline making acute angle

%0 , with z1 z2 , so that the acute (positive) angle it makes with the horizon-
tal is (90%&*&%0). Let `$1 , `$2 , be the points of intersection of the upper
component of �S, with �S0 , and `1 , `2 , the corresponding intersections of
�S0 with the lower component of �S. We choose the labeling in such a way
that Re(`1)<Re(`2), and Re(`$1)<Re(`$2). It is an elementary exercise
(using the law of cosines) to see that diam(R)�|`$1&`2 |, for any choice of
0�*�14.9%, S1 , S2 . Now a computation (using the law of cosines) gives

(diam(R))2�|`$1&`2 | 2

�\ 1
4 cos(14.9%+%0)+

2

+\ a
4 cos(14.9%+%0)+

2

+2 \ 1
4 cos(14.9%+%0)+

2

a sin(14.9%+%0)

=\ 1
4 cos(14.9%+%0)+

2

(a2+1+2a sin(14.9%+%0)). (5.41)
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Hence, by (5.12), we get

diam(R)� 1.322
4 . K (5.41)

Now let �̀ i # B(zi , a) & F & R, be such that diam(R & F )=| �̀ 1& �̀ 2 |. By
Lemma 16

| �̀ 1& �̀ 2 |� 1.322
4 . (5.43)

Consider G#F & (B( �̀ 1 , | �̀ 1& �̀ 2 |�2) _ B( �̀ 2 , | �̀ 1& �̀ 2 |�2)). By (4.4) and (4.5),
there must exist �̀ $1 # B( �̀ 1 , | �̀ 1& �̀ 2 |�2) & F, �̀ $2 # B( �̀ 2 , | �̀ 1& �̀ 2 |�2) & F, so
that

| �̀ $1& �̀ $2 |#diam(G)

�(1+=) | �̀ 1& �̀ 2 |. (5.44)

However, by construction, for at least some i, �̀ $i , must be in
(F & B( �̀ i , | �̀ 1& �̀ 2 |�2))"B(zi , a). Assume this happens for i=1. We now
wish to show that this is impossible.

Lemma 17. max[ | �̀ $1&z1 |, | �̀ $2&z2 |]� 1.13
4 .

Proof. It is not difficult (using the law of cosines) to see that

max
�̀ 1

| �̀ 1&z1 | 2�\
1
4

&a cos(*)

cos( |*|+%0)+
2

+\ a
4 cos( |*|+%0)+

2

+\ 2a
4 cos2( |*|+%0)+\

1
4

&a cos(*)+ sin( |*|+%0)

=(4 cos( |*|+%0))&2 (1&8a cos(*)+16a2cos2(*)

+a2+2a sin( |*|+%0)&8a2 cos(*) sin( |*|+%0)). (5.45)

This is decreasing in a, and a computation using the estimates on a, *,
yields

max | �̀ 1&z1 |� 1.9
16 . (5.46)

Similarly,

max | �̀ 2&z2 |� 1.9
16 . (5.47)

Combining (5.46) and (5.47) with (5.43) we conclude the proof of the
lemma.
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Now by Lemma 17, (5.3), and a similar argument as in Lemma 10, we
conclude that the acute angle between the directed line segments z2z1

� ,
z2 �̀ $1

�
, cannot exceed

arc sin( 1.2
4 _16

3 _1
4)�22.2%.

Let Y be the interSection of the half line which starts at z2 , and passes
through �̀ $1 , with the bottom component of �S. We have

|z2&Y |�
1

4 cos(14.9%+22.2%)

�
1.26

4
. (5.48)

It is not difficult to see (using the law of cosines) that

|z1& �̀ $1 |�|z1&Y|. (5.49)

By the law of cosines and (5.47) we get

|z1& �̀ $1 |2�a2+( 1.26
4 )2&2a ( 1.26

4 ) cos(22.2%). (5.50)

This is decreasing in a for 3
16�a� 1.1

4 , and hence

|z1& �̀ $1 |� 2.7
16 (5.51)

which contradicts the assumption that �̀ $1 � B(z1 , a). This concludes the
proof of Proposition 13. K

Using Proposition 13, we can obtain a sharper bound on f1+ f2 .

Proposition 5.11. ( f1+ f2)�(1.12) 3
16 .

Proof. By (5.11), we see that if L�1, then

max
i

[ fi]�(1.07) sin(%) sin(:). (5.52)

Using (5.15), (5.16), with b=b(%, :), we get (recall (5.16))

0�2b+( f1+ f2)2&2( f1+ f2)(1+b)

+2f1 f2 \b&2 sin2 \:
2+&2 sin2 \%

2++
+4 f1 sin2 \:

2++4 f2 sin2 \%
2+ , (5.53)
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which in turn implies

0�2b+( f1+ f2)2&2( f1+ f2)(1+b)

+2f1 f2 \b&4 sin \:
2+ sin \%

2+++4 f1 sin2 \:
2++4 f2 sin2 \%

2+ . (5.54)

Now (5.52), (5.54), give

0�b \2+(1.07) \4 sin2 \:
2++4 sin2 \%

2+++
+8(1.07)2 b sin \:

2+ sin \%
2++( f1+ f2)2&2( f1+ f2)(1+b). (5.55)

Upon substituting for % and : from Proposition 13, we get

0�2.16b+( f1+ f2)2&2( f1+ f2)(1+b), (5.56)

which gives the estimate

f1+ f2�1+b&- (1+b)2&2.16b

�(1.06) b�(1.081) sin(%) sin(:), (5.57)

and also

( f1+ f2)�0.21a�(1.12)( 3
16) a, (5.58)

where we used sin(%)�a. This concludes the proof of Proposition 18. K

The remaining part of the proof is devoted to the construction of a set
like U in Section 5.1, which will produce a contradiction between (4.4) and
(4.5). The reader may find it helpful to reread Section 5.1 at this point. As
we mentioned in Section 5.1, we will have to chase a sequence of quad-
ruplets like [z1 , z2 , w1 , w2], and we will have to show that at some stage
we will find the right one! For i=1, 2, we let

z (1)
i =z i , w (1)

i =wi ,
(5.59)

a(1)=|z (1)
1 &z (1)

2 |,

and

G (1)
i =\B \z (1)

1 ,
a (1)

2 +_ B \z2 ,
a(1)

2 +_ B \w (1)
i , R (1)

i ++& F, (5.60)
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where R (1)
i is the maximum possible radius that keeps the overlap of the

above balls containing, at most, a subset of F having measure zero. See
Fig. 6. Also, let

d(1)
i =diam(G (1)

i ), (5.61)

and X (1)
i , Y (1)

i # F & G (1)
i defined via

|X (1)
i &Y (1)

i |=diam(G (1)
i ), (5.62)

and labeled such that

max[ |X (1)
i &w (1)

i |, |Y (1)
i &z (1)

i |]�max[ |X (1)
i &z (1)

i |, |Y (1)
i &w (1)

i |]. (5.63)

We now prove some estimates on R (1)
i :

Lemma 19. For i=1, 2,

|w (1)
i &z (1)

i |&
a(1)

2
�R (1)

i �1&
a(1)

2
&(1.07) \ 3

16+ a(1). (5.64)

Proof. This is just a consequence of (5.13), Proposition 13, and the
definition of R (1)

i . K

FIGURE 6
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We also need some estimates on diam(G (1)
i ).

Lemma 20. For i=1, 2,

diam(G (1)
i )�1+

a(1)

2
&(1.07) \ 3

16+ a(1). (5.65)

Proof. This follows from Lemma 19, (4.4), and (4.5). K

The next two lemmas give useful information if a certain quadruplet does
not do the job.

Lemma 5.14. If Y (1)
1 # B(w (1)

1 , R (1)
1 ), then

|Y (1)
1 &z (1)

1 |�\
1
2

&(1.07) \ 3
16+

(1.017) \ 3
16+ + a(1)+\

1

(1.017)(1.05) \ 3
16++

a(1)

2

>3.6a(1). (5.66)

Proof. This is just a consequence of (5.11) and Lemma 20, when we
observe that in our case f1 #1&|Y (1)

1 &w (1)
1 |�a(1)�2. K

Similarly, we can prove

Lemma 22. If Y (1)
2 # B(w (1)

2 , R (1)
2 ), then

|Y (1)
2 &z (1)

2 |�\1+(1.017) \ 3
16+

2

+
&1

_\
a(1)

2
&(1.07) \ 3

16+ a(1)

(1.017)
+

a (1)

2(1.05)(1.017) \ 3
16++

>3.5a(1). (5.67)

Proof. Here we observe that f2 #1&|w (1)
2 &Y (1)

2 |�a(1)�2. The only
difference from Lemma 21 is that we had to rescale by dividing by the
crude bound on |w (1)

2 &z (1)
2 | in order for (5.11) to apply. K

The next proposition will guarantee that our chase will end at some
point in the construction
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Proposition 23. There exists k0�1, such that, for i=1, 2,

Y (k0)
i � B(w (k0)

i , R (k0)
i ). (5.68)

Proof. Suppose that for some i0 # [1, 2], we have that

Y (1)
i0 # B(w (1)

i0 , R (1)
i0

). (*)

We let

w (2)
1 =w (1)

i0 , w (2)
2 =X (1)

i0 , z (2)
1 =z1

i0 , z (2)
2 =Y (1)

i0 . (5.69)

We then apply all the above arguments except that now

a(2)=|z (2)
1 &z (2)

2 |�3.5 |z (1)
1 &z (1)

2 |=3.5a(1). (5.70)

We can repeat this process for as long as (V) holds. If (V) always holds,
we can repeat and get a sequence [ |z (k)

1 &z (k)
2 |]k . Since we started with

|z (1)
1 &w (1)

1 |<0.6s (see (5.9)), and by (5.11),

|z (k+1)
1 &w (k+1)

1 |�|z (k)
1 &w (k)

1 |+(1.017)( 3
16) a(k). (5.71)

Thus for some k$, we would have

|z (k$)
1 &w (k$)

1 |<s, (5.72)

whereas

|z(k$)
1 &w (k$)

1 |+(1.017)( 3
16) a (k$)�|z (k$+1)

1 &w (k$+1)
1 |�s. (5.73)

Hence, by (5.70),

a(k$)�
2.5

(1.017) \ 3
16+

\0.4s&(1.017) \ 3
16+ a (k$)+ . (5.74)

Since by Proposition 12, a(k$)�(1.05)( 3
16) s, this is impossible. Thus, for

some k0 , (V) does not hold for any i. K

We now investigate the situation imposed on us by Proposition 23. For
convenience we will drop the superscript k0 . So, we let

zi=z (k0)
i , a=|z (k0)

1 &z (k0)
2 |, Xi=X (k0)

i , Y (k0)
i ,

(5.75)
wi=w(k0)

i , Ri=R (k0)
i ,

and we keep the convention |z1&w1 |#1. Proposition 23 and (5.3) imply
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Lemma 5.24. diam(G1)=diam(G2)#d, and we can take X1=X2 #X,
Y1=Y2 #Y.

In view of (4.4) and (4.5), we can finish the proof of the theorem by
proving the following proposition which guarantees that the contradiction
we described in Section 5.1, with the set U can now be obtained using, at
least, one of the sets G1 and G2 .

Proposition 25. mini[d&Ri]�a.

Proof. See Fig. 7. In order to treat R1 , R2 on a similar footing, we let,
for i=1, 2, :i=wi+1ziwi@ , $i=wizizi+1@ , %i=ziwizi+1 (notice that :1 ,
$1 , and %1 , were previously referred to as :, $, %). We also identify the
index i, with i+2, so that w3=w1 etc. Let Si be the strip of width a�4, such
that F & B(zi , a)/Si . Let z$i # B(zi , a�2), be the point on the boundary of
Si , that is closest to wi+1. Let |*i | be the acute angle between the centerline
of Si , and z1z2 . We choose for *i a sign in such a way that, when it is
positive, then $i&*i is the acute angle that the center line of Si makes with
wi zi . Finally, let %i=:i=arc sin( 3

16). We now have

FIGURE 7
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Lemma 26. Either |z$i&zi |=a�2, or

|cos($i+:i&*i)|�
3a
4 \ 1

|wi+1&zi |+ . (5.76)

Proof. Let Yi the point of intersection of �Si with wi+1zi closest to
wi+1 , and ri=|z$i&zi |. Then the law of cosines gives

|zi&wi+1 |2=r2
i +|wi+1&Yi |

2&2ri |wi+1&Yi | |cos($i+:i&*i)|, (5.77)

which is decreasing in ri , for 0�ri�a�2, unless

|cos($i+:i&*i)|�
a

2 |wi+1&Yi |
. (5.78)

This implies that, either |z$i&zi |=a�2, or (5.78) holds. The latter (with an
elementary argument) implies

|cos($i+:i&*i)|�
a

2 \ |wi+1&zi |&
a

4 |cos($i+:i&*i)|+
, (5.79)

which in turn yields the conclusion of the lemma. K

We now choose orthogonal coordinates !i , 'i , such that, in these coor-
dinates, zi=(0, 0), the !i -axis contains the segment ziwi+1, and that the !i

coordinate of wi is positive. We define the positive direction of 'i in such
a way that zi+1 has negative 'i coordinate. See Fig. 8.

FIGURE 8
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Lemma 27. For i=1, 2,

'$i cos($i+:i&*i)�0. (5.80)

Proof. Our convention on the sign of '$i , the definition of z$i , and the
law of cosines, imply that '$i , is negative if and only if ($i+:i&*i)>90%,
which implies the lemma. K

Now let

=i={1,
0,

*i�0
*i<0,

(5.81)

and let z$i =(!$i , '$i), in the !i , 'i coordinates. Then, we have

Lemma 28. For i=1, 2,

!$i sin($i+:i&*i)+'$i cos($i+: i&*i)+=ia sin(*i)�
a
4

. (5.82)

Proof. See Fig. 9. The lemma just follows by projecting zizi+1 orthogonal
to the center line of the strip Si . K

Lemma 29. Either (!$i)
2+('$i)

2# |z$i&zi |
2=(a�2)2, or

!$i�\3
8+

a2

\1&(1.07) \ 3
16++

. (5.83)

Proof. As in the proof of Lemma 26, we find from (5.77) that either
|z$i&zi |=a�2, or

|z$i&zi |=|wi+1&Yi | |cos($i+: i&*i)|, (5.84)

and then

!$i=|wi+1&Yi | |cos($i+:i&*i)|
2. (5.85)

Using (5.76), (5.78), and (5.52) we get (5.83). K

The following lemma establishes an upper bound on !$i , whenever the
first alternative of Lemma 29 holds.
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FIGURE 9

Lemma 30. If |z$i&zi |=a�2, then

!$i�
a
2

sin($i+:i&*i+=$i+:i&*i mi), (5.86)

where

mi =arc tan \\
1&\1

2
&2=i sin(*i)+

2

+
1�2

\1
2

&2=i sin(*i)+ +
�60%, (5.87)

and

=$i+:i&*i={1,
&1,

$i+:i&*i�90%
$i+:i&*i�90%

(5.88)

115FLAT UNRECTIFIABLE 1-SETS



FIGURE 10

Proof. See Fig. 10. Let {i # [0%, 180%], be the angle such that

!$i=
a
2

sin({i),

(5.89)

'$i=
a
2

cos({i)

By Lemma 28, we get

cos({i&($i+:i&*i))� 1
2&2=i sin(*i). (5.90)

The lemma is then concluded when we observe, by (5.7), (5.12), (5.13), that

660&%0�arc sin \1&(1.07) \ 3
16+

2

(1.05) +&%0�$i+:i&*i�90%+%0+%� ,

(5.91)

and that, by Lemma 28, {i�90%, if and only if, $i+:i&*i�90%. K

116 HANY M. FARAG



The next lemma establishes a lower bound on !$1+!$2 .

Lemma 31. At least one of the following statements holds:

max
i

[ |wi+1&z$i |]�L&
a
2

, (5.92)

!$1+!$2�0.79a, (5.93)

or

min
i

[ |wi+1&z$i |]�1&
a
2

. (5.94)

Proof. Suppose that the first and last statements do not hold. By
definition we have

|wi+1&z$i |=((1& f i&!$i)
2+('$2)2)1�2. (5.95)

Hence,

!$1+!$2�a&(L&1)&( f1+ f2). (5.96)

Noting that the left-hand side of (5.56) represents L2&1, we get

!$1+!$2�a&( 1
2)(2.16b+( f1+ f2)2&2( f1+ f2)(1+b))&( f1+ f2). (5.97)

On the other hand, we also have

b�(1.02) sin(%) sin(:). (5.98)

Combining, we get

!$1+!$2�a&(1.065)(1.02) \ 3
16+ a+\( f1+ f2) b&

( f1+ f2)2

2 +
�0.79a, (5.99)

which is (5.93). K

We will now dispose of the three cases in Lemma 31.

Case 1. For some i0 , |wi+1&z$i |�L&a�2:

This implies

Ri0�|wi0
&zi0 |&

a
2

. (5.100)
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If i0=2, then R2�L&a�2, whereas by the triangle inequality,

d�L+
a
2

. (5.101)

Therefore,

d&R2�a, (5.102)

and we are done. If, on the other hand, i0=1, then R1�1&a�2, and this
will be covered by Case 3 below.

Case 2. !$1+!$2�0.79a:

Using Lemmas 29 and 30, we conclude that for i=1, 2,

|zi&z$i |=
a
2

, (5.103)

and thus, by Lemma 28 and our assumption, we must have

:
2

i=1

sin($i+:i&*i+=$i+:i&*i mi)�1.58. (5.104)

Since

max
i

(sin(*i))� 1
4 , (5.105)

max
i

(sin(%i))� 3
16 , (5.106)

and

max
i

(sin(:i))� 3
16 , (5.107)

then a computation shows that this can only hold if, for i=1, 2,

max
i

(sin(*i))<0, (5.108)

and

min
i

($i&*i)>90%. (5.109)

We now use this information to estimate d and Ri . We divide this case
further into two subcases

1. For i=1, 2, Ri�|z$i&wi+1 |.

In this case we have

Ri�1& fi&`$i . (5.110)
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Hence by Lemma 28, we have

Ri�1& fi&
a
2

sin($i+:i&*i&60%). (5.111)

Therefore it suffices to show

d 2&R2
i+1�a[2&2f i+1+a(1&sin($i+: i&*i&60%))], (5.112)

whenever Y # B(zi , a�2).
Let w0 be the point in �B(z1 , 1) & �B(z2 , L), that is closest to w1 .

Suppose first that Y # B(z1 , a�2). Let the component of the boundary of S1 ,
closest to w2 , intersect the line segment w2z1 , at Y1 , a distance k1 from z1 ,
and let its intersection with the circle �B(z1 , a�2), closest to w2 , be a dis-
tance h1 , from Y1 . See Fig. 10. Let the intersection of the same component
with w0z1 be at a distance k$1 from z1 , and the intersection of the other
component, with the half line that starts at w0 , and passes through z1 , be
Y$1 , and its point of intersection with �B(z1 , a�2), furthest from w0 , be Y1

t
,

at distance h$1 from Y$1 . Let #1 be the acute angle w0z1w1@, and #2 the acute
angle w0 z2w2@.

We observe by projecting orthogonally to the center line of S1 that

k$1 sin($1+#1&*1)=k1 sin($1+:1&*1). (5.113)

We now observe

Lemma 32. d�|w0&Y1

t
|.

Proof. This follows from the law of cosines when we maximize |X&Y |,
noting that X&Y=X&z1+z1&Y=X&z2+z2&Y, and that X # B(z1 , 1)
& B(z2 , L), whereas Y is assumed in B(z1 , a�2). K

Using the law of cosines, we get

d 2&R2
2�\1+

a
4 sin($1+#1&*1)

&k$1+
2

+(h$1)2

&2h$1 \1+
a

4 sin($1+#1&*1)
&k$1+ cos($1+#1&*1)

&(1&k1& f1)2&(h1)2&2h1(1&k1& f1) cos($1+:1&*1).

(5.114)
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Since Y1

t
, z$1 # �B(z1 , a�2), we have

(h1)2=\a
2+

2

&(k1)2+2h1k1 cos($1+:1&*1), (5.115)

and

(h$1)2=\a
2+

2

&\ a
4 sin($1+#1&*1)

&k$1+
2

+2 \ a
4 sin($1+#1&*1)

&k$1+ h$1 cos($1+#1&*1). (5.116)

Hence

d 2&R2
2�\1+

a
4 sin($1+#1&*1)

&k$1+
2

&(1&k1& f2)2

&\ a
4 sin($1+#1&*1)

&k$1+
2

+k2
1&2(h$1 cos($1+#1&*1)

+h1 cos($1+:1&*1)&h1 f2 cos($1+#1&*1)), (5.117)

so that

d 2&R2
2�

a
2 sin($1+#1&*1)

+2(k1&k$1)+ f2(2&f2&2h1 |cos($1+#1&*1)| )

+2(h$1+h1) |cos($1+:1&*1)|. (5.118)

Using (5.113), (5.13), and maximizing the right-hand side, we get

d 2&R2
2�

a
2 sin($1+#1&*1)

+
2k1 |cos($1+:1&*1)| |:1&#1 |

sin($1+:1&*1)
&2k1 f2

+f2(2& f2&2h1 |cos($1+#1&*1)| )+2(h$1+h1) cos($1+:1&*1).

(5.119)

Now, maximizing with respect to f2 using (5.13), we get

d 2&R2
2�

a
2 sin($1+#1&*1)

+
2k1 |cos($1+#1&*1)|

sin($1+#1&*1)
|:1&#1 |

&2(0.21) ak1+0.21a(2&0.21a&2h1 |cos($1+#1&*1)| )

+2(h$1+h1) |cos($1+#1&*1)|. (5.120)
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Maximizing the right-hand side with respect to h1 , k1 , |cos($1+#1&*1)|,
|cos($1+:1&*1)|, we get

d 2&R2
2�

a
2 sin(25.3%)

+
a

2 sin(25.3%) \
3

16
tan(25.3%)&0.21 \ 3

16++
+0.21a(2&0.21a&2h1 |cos($1+#1&*1)| )

+2a |cos($1+#1&*1)|�1.85a. (5.121)

Hence, by a computation using (5.91) and (5.15), we get

d 2&R2
2+2af2&a2(1&sin($1+#1&*1&60%))�1.9a. (5.122)

Suppose now that Y # B(z2 , a�2). Let the component of the boundary of
S2 closest to w2 , intersect the line segment w1z2 at Y2 , a distance k2 from
z2 , and let its intersection with the circle �B(z2 , a�2), closest to w1 , be at
distance h2 , from Y2 (see Fig. 10). Let the intersection of the same compo-
nent with w0z1 be a distance k$2 from z2 , and the intersection of the other
component with the half line starting at w0 , and passing through z2, be Y$2 ,
and its point of intersection with �B(z2 , a�2), furthest from w0 , be at
distance h$2 from Y$2 .

Similar to (5.113), we here have

k$2 sin($2+#2&*2)=k2 sin($2+:2&*2), (5.123)

and as in Lemma 32, we have

Lemma 33. d�|w0&Y2

t
|.

Now similar to (5.114), we have (recall L# |w2&z2 | )

d 2&R2
1�\L+

a
4 sin($2+#2&*2)

&k$2+
2

+(h$2)2

&2h$2 \L+
a

4 sin($2+#2&*2)
&k$2+ cos($2+#2&*2)

&(1&k2& f1)2&(h2)2&2h2(1&k2& f1) cos($2+:2&*2).

(5.124)

Also,

(h2)2=\a
2+

2

&(k2)2+2h2k2 cos($2+:2&*2), (5.125)
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and

(h$2)2=\a
2+

2

&\ a
4 sin($2+#2&*2)

&k$2+
2

+2 \ a
4 sin($2+#2&*2)

&k$2+ h$2 cos($2+#2&*2). (5.126)

Hence

d 2&R2
1�L2&1+2L \ a

4 sin($2+#2&*2)
&k$2+

+2f1+2k2& f 2
1&2k2 f1

&2(Lh$2 cos($2+#2&*2)+(1& f1) h2cos($2+:2&*2)).

(5.127)

Using (5.11) and (5.123), we get

d 2&R2
1�2(1.017) \ 3

16+ a+f1 \2&
2

(1.05)
&2k2& f1&h2 |cos($2+:2&*2)|+

+2k2

|cos($2+:2&*2)|
sin($2+:2&*2)

|:2&#2 |+
a

2 sin($2+:2&*2)

+2(h2 |cos($2+:2&*2)|+h$2 |cos($2+#2&*2)| )

+2(L&1) \ a
4 sin($2+#2&*2)

&k$2+h$2 |cos($2+#2&*2)|+ .

(5.128)

Let 4=d 2&R2
1+2af1&a2(1&sin($2+:2&*2)), then

4�2(1.017) \ 3
16+ a+a \(1.07) 3

16 +
_\0.1+2a&

2a
4 cos(25.3%)

&
a
2

|sin(25.3%)|++a
sin(25.3%)

2 cos2(25.3%)

_arc sin \ 3
16++

a
2 cos(25.3%)

+2a sin(25.3%)&a2(1&sin(55.3%))

�1.91a. (5.129)

2. |z$1&w2 |>R2 .
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This case is trivial since it implies R2�L&a�2, which can be eliminated
as in Case 1.

3. |z$2&w1 |>R1 .

This implies, in particular, that

R1�1&
a
2

, (5.130)

and will be covered in Case 3.

Case 3. R1�1&a�2:

Note that (5.94) implies this case, as explained in Case 1. Suppose first
that Y # B(z1 , a�2). Then, by the triangle inequality, we have

d�1+
a
2

, (5.131)

and we are done. Suppose however that Y # B(z2 , a�2), and observe that
now it suffices to show that

d 2&R2
1�2a. (5.132)

See Fig. 11. We divide this case into three subcases:

1. cos($2&*2+:2)> 3
16 :

In particular this implies that $2&*2+:2<90%&%� . In this case we
observe, by the law of cosines, that we must have w1 , and X, lie on
opposite sides of the line segment w2 z2 . Let \=Xz2 w2@. Then it is not
difficult to see (using the law of cosines), that the worst-case estimate on
d is when

*2=%0 , (5.133)

\+:2=%0 , (5.134)

|X&z2 |=L, (5.135)

and Y lies on the intersection of �B(z2 , a�2) and the component of �S2 that
is furthest from w2 . For the worst-case estimate on R1 , we have the same
condition on \, :2 , X, as above, but that z$1 lies on the component of �S1

that is closest to w1 , and

*1=&%0 . (5.136)
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FIGURE 11

Applying (5.3), to B(z1 , a�2), and B(z2 , a�2), we get

d 2&R2
1�L2+\a

2+
2

&aL cos(180%&($2&*2)+30%+\)

&1&\a
2+

2

+a cos(180%&($1&*1)&30%). (5.137)

From the geometry, we have, for i=1, 2,

$i+1+:i+1+%i+$i=180%, (5.138)
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and

$i+1+:i+1�90%&
%i

2
. (5.139)

Hence, using (5.25), and maximizing with respect to %1 , we get

d 2&R2
1�a2(1.017)( 3

16)2+a(1+(1.017)( 3
16)2)

_sin(2%0+30%)+a sin(%0+30%)�1.98a. (5.140)

2. cos($2&*2+:2)<& 3
16 :

This implies in particular that $2&*2>90%. In this case the worst
estimate on d 2&R2

1 is when X coincides with w0 , as in Case 2, and the
estimate is given by

d 2&R2
1�L2+\a

2+
2

&aL cos($2&*2+\+30%)

&1&\a
2+

2

+a cos(180%&($1&*1)&30%), (5.141)

with $2 , \, *2 , satisfying

\�:2 ,

$2�90%, (5.142)

*2�%0 .

Hence the estimate on d 2&R2
1 is less than that in (5.140).

3. |cos($2&*2+:2)|� 3
16 :

This implies that |$2&*2+:2&90%|�%� . If R1�|w1&z$1 |, then, by the
law of cosines, (5.3), (5.107), and noting that Xz2 w2@ �%0 , we get

d 2&R2
1�L2+\a

2+
2

&aL cos(90%+%� +%0+30%)

&(1& f1)2&\a
2+

2

+a(1& f1) cos(90%&30%&%� )

�2(1.017) \ 3
16+ a&

2f1

(1.05)
+2f1& f 2

1

+a {\1+(1.017) \ 3
16+

2

+ sin(%0+%� +30%)+(1& f1) sin(30%+%� )=
�1.5a. (5.143)
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If R1<|w1&z$2 |, then d is the same as in (5.141), whereas R1 has two
possibilities. Let z$ be the point in S1 & B(z1 , a�2), closest to w1 . We have,
either

(a) z$ # S2 & B(z1 , a�2):

then, by the law of cosines, we have

R2
1�1+\a

2+
2

&a cos(90%&%� &30%). (5.144)

Or,

(b) z$ # S1 & (B(z1 , a�2)"B(z2 , a�2)):

then

R2
1�1+\a

2+
2

&a cos(90%&30%&%0). (5.145)

Thus, the estimate on d 2&R2
1 is in fact smaller than that in (5.140), and

we are done.
We have thus covered all the possibilities for the positions and orienta-

tions of the strips S1 , S2 . This concludes the proof of the proposition. K

The proof of Theorem 2 is now complete.

6. REMARKS AND EXTENSIONS

6.1. Sharpness of the Method

As mentioned in Remark 3, Theorem 2 can be slightly sharpened. In
particular, Proposition 13 can be improved upon, and that would allow
further improvement. It is interesting to note however that, although (5.1)
facilitated our method, it introduced unavoidable difficulties in combining
the geometry of circles and strips. On the other hand, the results are rather
reassuring that the conjecture should be true, and they shed some light on
the underlying issues. Furthermore, as we will explain in Section 6.4,
modifications of this method may open the way to further progress.

6.2. Higher Dimensional Settings

Although we chose to work exclusively in the plane, due to the involved
nature of the geometry, the method is in fact dimension independent since
it is built upon the Pythagorean Theorem (or the law of cosines). Further-
more, the only tools we really needed were the estimates on the diameters
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of sets like Gi and radii such as Ri (see (5.60)). These estimates are worst
when the 4 points z1 , z2 , w1 , w2 (see Lemma 9) lie in a 2-plane. However,
the details of the geometry become more cumbersome when we must study
balls and tubes together in higher dimensions. Although we claim that the
results are dimension free, we will state a weaker theorem in the case of a
Hilbert space which can be verified using similar, but less delicate,
estimates, as in the proof above, while we hope to introduce more natural
methods based on [Far1] in future papers.

Suppose H is a Hilbert space, and E/H. We start with

Definition 4. For =>0, r>0, and x # H, let #1
E(x, r, =) be the smallest

number such that there is a tube T of diameter D, so that D�r�#1
E(x, r, =),

and H1((E & B(x, r))"T)�=r.

We also define #E*
1(x, =), #E*

1(x) according to (2.2) and (2.3). We now
have

Theorem 34. Suppose E/H is a totally unrectifiable 1-set, and that
#E*

1(x)� 1
8 , for almost every x # E. Then 31

*
(E, x)� 1

2 , for almost every
x # E.

It was pointed out to the author by David Preiss that even in some
Banach spaces, our results still hold; namely they hold for those with a
sufficiently smooth norm we can run a very similar argument.

6.3. An Opposite Extreme Case

We now would like to briefly comment on the naturality of the condition
of our theorems. It is interesting to observe that if we can find a single
point x # R2, such that for some r>0, we have

;F (x, r)�2&$, (6.1)

where 0�$� 1
8 (say), then we can find finite sequences of points [zi] i , and

radii[ri] i , satisfying the same conditions as x, r, and so that

B(zi , ri) & B(zj , rj)=,, (6.2)

whenever i{ j, and,

:
i

2ri�2 diam \\.
i

B(zi , ri)+& F+ , (6.3)

which, when combined with (4.4), contradicts (4.5). We leave the details as
an exercise to the reader (the points zi lie close to the boundary of B(x, r)
and form a ``loop''). It is interesting to note that the argument is even easier
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the higher the dimension. Thus the condition imposed in Theorem 1 (or 2)
is in fact a natural opposite of this theme and it seems that understanding
what happens as we relax the condition of the theorem (i.e., push the
bound on #E*

1(x) allowed by our theorem), gives nontrivial insight into the
problem.

6.4. The Motivation behind the Method

As mentioned in Section 6.1, our hypothesis, which led to (5.1), allowed
us to get some positive results but introduced some complications. Further-
more, the method resists significant extensions (e.g. pushing the bound on
#E*

1(x) beyond 1
2 for instance). In particular, we used (5.1) at many levels.

First, we used it to obtain the big strip S which contains B(w, s) & F, we
then used it at many other points, like w1 , w2 , z1 , z2 , and at many scales,
which range between =s, and s. It would be much better to obtain a method
which only uses the strip S, for instance, and no other conditions, other
than the general setup of the problem as in Section 4. Although this would
not be a complete solution of the problem, it would however allow us to
remove the flatness requirement on the rest of the set, since, outside of
B(w, s), the set is allowed to be anything. Better yet, we would only be
imposing a condition on that scale only (for a given pair w1 , w2). Further-
more, this would start to impose strong geometric requirements on the set
F, and we can eliminate certain geometric configurations. A method with
this approach was obtained in [Far1] but not fully utilized. In a forthcom-
ing paper we hope to develop such a method.
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