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a b s t r a c t

In this study, we propose a new SVEIR epidemic disease model with time delay, and
analyze the dynamic behavior of the model under pulse vaccination. Pulse vaccination is
an effective strategy for the elimination of infectious disease. Using the discrete dynamical
systemdeterminedby the stroboscopicmap,weobtain an ‘infection-free’ periodic solution.
We also show that the ‘infection-free’ periodic solution is globally attractive when some
parameters of the model under appropriate conditions. The permanence of the model is
investigated analytically. Our results indicate that a large vaccination rate or a short pulse of
vaccination or a long latent period is a sufficient condition for the extinction of the disease.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Infectious diseases have tremendous influence on human life. Controlling infectious disease is a very important issue. The
epidemicmodels based on those assumptions in [1,10,12] are customarily called SIR (susceptible, infectious, recovered) and
SVIR (susceptible, vaccinees, infectious, recovered) models. Li, Smith and Wang [15] assume that a susceptible individual
first goes through a latent period after infection before becoming infectious.
In recent years, pulse vaccination, the repeated application of vaccine over a defined age range is gaining prominence

as a strategy for the elimination of childhood viral infectious such as measles, hepatitis, parotitis, small pox and phthisis.
To finish a vaccination process, usually there are different schedules for different diseases and vaccines. But for each
schedule, some doses should be taken by vaccinees several times and there must be some fixed time interval between
two doses. For example, in their experiment, Gabbuti et al. in [9] used three doses (20 µg/dose) of recombinant hepatitis B
Vaccine (Engwerix B, Smith Klime Beecharm Biological, Rixensart, Belgium) in [2,3,6,7,13,24] given at 0, 1 and 6 months for
vaccination against hepatitis B. Onemonth after the third dose of vaccine, they found that 99.8% of vaccines gained anti-HBS
antibody. Eleven years after vaccination, 91.2% of vaccines examined still had a protective level of anti-HBS. Generally, the
consideration of the latent period and the immune period gives rise to models with the incorporation of delays. Then death
during a latent period and temporary immunity period should be considered, which is called the phenomena of ‘time delay’,
so time delay has important biologic meaning in epidemic models. Therefore, in the present paper, we propose a new delay
SVEIR epidemic model with horizontal transmission, and study their dynamic behavior under pulse vaccination.
The organization of this paper is as follows: In the next section, SVEIR epidemic model and preliminary theory are

introduced. The existence and global behavior of an ‘infection-free’ periodic solution are analyzed in Section 3. The
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permanence of the disease is discussed in Section 4. We show the effect of pulse vaccination rate, period of pulsing, latent
period of the disease on the dynamical behavior of the model by numerical analysis in Section 5. Finally, we will give the
main conclusions in Section 6.

2. SVEIR epidemic model and preliminary information

To eliminate childhood viral infections such as measles and polio, pulse vaccination, the repeated application of vaccine
is usually done for children over a defined age range. Let T > 0 be the time between two consecutive pulse vaccinations and
0 ≤ θ ≤ 1 be the fraction of susceptible subjects to whom the vaccine is inoculated. We can write the following system:

Ṡ(t) = µ− µS(t)− βS(t)I(t),
V̇ (t) = −β1V (t)I(t)− γ1V (t)− µV (t),
Ė(t) = βS(t)I(t)+ β1V (t)I(t)− βe−µτ S(t − τ)I(t − τ)− β1e−µτV (t − τ)I(t − τ)− µE(t),
İ(t) = βe−µτ S(t − τ)I(t − τ)+ β1e−µτV (t − τ)I(t − τ)− γ I(t)− µI(t)− αI(t),
Ṙ(t) = γ1V (t)+ γ I(t)− µR(t)

 , t 6= nT .

S(t+) = (1− θ)S(t),
V (t+) = V (t)+ θS(t),
E(t+) = E(t),
I(t+) = I(t),
R(t+) = R(t)

 , t = nT , n ∈ N,

(2.1)

where S, E, I and R denote the susceptible, exposed, infectious and recovered individuals, respectively. A new group V is
divided from S and denotes the density of vaccines who have begin the vaccination process.
Let C = C([−τ , 0];R+), the space of continuous functions (or integrable functions) from the interval [−τ , 0] to

the non-negative reals. Then the initial condition for system (2.1) is S(0), V (0), I(0) ∈ C and E(0), R(0) ∈ R+, where
S(0) = S(θ), V (0) = V (θ), I(0) = I(θ),−τ ≤ θ ≤ 0.
Motivated by [4,16,20,23,25] and based on (2.1), we assume that:
(i) Death rate for disease, natural death rate and born rate are α,µ and b, respectively, where b = µ.
(ii) The total population size varies, and suppose that the influx or recruitment of the susceptible and the exposed is

constant µ (including newborns and immigration of susceptibles).
(iii) Let β be the transmission rate of disease when susceptible individuals contact with infected individuals.
(iv) The recovery rate of infected individual is γ . The recovered individual are assumed to have immunity (so called

natural immunity) against the disease.
(v) Let γ1 be the average rate (and hence 1γ1 is the average time) for vaccines to obtain immunity andmove into recovered

population.
(vi) The vaccines contact with infected individuals before obtaining immunity has the possibility of infection with a

disease transmission rate β1(β1 < β).
(vii) The time delay is introduced in the system describing the dynamics of the disease. At time t only susceptible

individuals and the vaccines that have contacted with infected individuals τ time units ago, that is at time t − τ , become
infectious, provided that they have survived the incubation period of τ units, given that they were alive at time t − τ when
they contact with infected individuals. Thus the incidence of newly infected individuals is given by the mass action term
βe−µτ S(t − τ)I(t − τ) and β1e−µτV (t − τ)I(t − τ).
Since the equations for E and R are independent of other equations. The dynamics of (2.1) are determined by the following

system:

Ṡ(t) = µ− µS(t)− βS(t)I(t),
V̇ (t) = −β1V (t)I(t)− γ1V (t)− µV (t),
İ(t) = βe−µτ S(t − τ)I(t − τ)+ β1e−µτV (t − τ)I(t − τ)− (γ + µ+ α)I(t)

 , t 6= nT , n ∈ N,

S(t+) = (1− θ)S(t),
V (t+) = V (t)+ θS(t),
I(t+) = I(t)

 , t = nT , n ∈ N.

(2.2)

The initial condition of (2.2) is given as

S(θ) = φ1(θ), I(θ) = φ2(θ), V (θ) = φ3(θ), −τ ≤ θ ≤ 0, (2.3)

where φ = (φ1, φ2, φ3)
T
∈ PC and PC is the space of all piecewise functions φ : [−τ , 0] → R3

+
with points of

discontinuity at−nT (n ∈ N) of the first kind and which are continuous from the left, i.e., φ(−nT−) = φ(−nT ), where

R3
+
= {(x1, x2, x3) ∈ R3

+
: xi ≥ 0, i = 1, 2, 3}.

We designate the norm of an element φ in PC by

‖φ‖ = sup
−τ≤θ≤0

{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|}.
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By biological meaning, we further assume that φi(0) > 0 for i = 1, 2, 3. The meaningful domain of system (2.2) is

Ω =
{
(S, V , I) ∈ R3

+
: S + V + I ≤ 1

}
and it is easy to prove thatΩ is a positive invariant set.
The solution of system (2.2) is a piecewise continuous function Φ : R+ → R3

+
, Φ(t) is continuous on (nT , (n + 1)T ],

n ∈ N , and Φ(nT+) = limt→nT+ Φ(t) exists. In fact, the right hand side of system (2.2) can ensure the existence and
uniqueness of solution of system (2.2).

Lemma 2.1. Suppose X(t) = (S(t), V (t), E(t), I(t), R(t)) is any solution of (2.1) with initial conditions (2.3), then S(t) ≤
1, V (t) ≤ 1, E(t) ≤ 1, I(t) ≤ 1, R(t) ≤ 1 for all t large enough.

Proof. LetN(t) = S(t)+V (t)+E(t)+ I(t)+R(t) be the total size of the population of system (2.1). SinceN(t+) = N(t−) =
N(t) for all t ≥ 0, then N(t) is continuous on t ∈ [0,+∞). Calculating the derivative of N(t) follows from the solution for
system (2.1), we have that

˙N(t) = µ− µN(t)− αI(t) ≤ µ− µN(t)

which implies that limt→∞ supN(t) ≤ 1. So N(t) is uniformly ultimately bounded. Hence, by the definition of N(t), we get
that there exists positive integer n1 such that S(t) ≤ 1, V (t) ≤ 1, E(t) ≤ 1, I(t) ≤ 1, R(t) ≤ 1 for all t ≥ n1T . The proof is
completed. �

Lemma 2.2. Let us consider the following impulsive differential equations{
u̇(t) = a− bu(t), t 6= nT
u(t+) = (1− θ)u(t), t = nT , (2.4)

where a > 0, b > 0, 0 < θ < 1. Then exists a unique positive periodic solution of system (2.4) ũe(t) = a
b + (u

∗
−

a
b )e
−b(t−nT ), nT < t ≤ (n+ 1)T , which is globally asymptotically stable, where u∗ =

a
b (1−θ)(1−e

−bT )

1−(1−θ)e−bT
.

Proof. Integrating and solving the first equation of system (2.4) between pulses

u(t) =
a
b
+

(
u(nT )−

a
b

)
e−b(t−nT ), nT < t ≤ (n+ 1)T ,

where u(nT ) be the initial value at time nT , using the second equation of system (2.4), we deduce the stroboscopic map such
that

u((n+ 1)T ) = (1− θ)
[a
b
+

(
u(nT )−

a
b

)
e−bT

]
= f (u(nT )), (2.5)

where f (u) = (1 − θ)
[ a
b + (u−

a
b )e
−bT
]
. It is easy to know that system (2.5) has unique positive equilibrium u∗ =

a
b (1−θ)(1−e

−bT )

1−(1−θ)e−bT
which satisfies u < f (u) < u∗, if 0 < u < u∗; u∗ < f (u) < u if u > u∗. From [5], we obtain that u∗

is globally asymptotically stable for Eq. (2.5). It implies that the corresponding periodic solution of system (2.4)

ũe(t) =
a
b
+

(
u∗ −

a
b

)
e−b(t−nT ), nT < t ≤ (n+ 1)T

is globally asymptotically stable for system (2.4). Lemma 2.2 is proved. �

Lemma 2.3 ([14,26]). Consider the following equation

ẋ(t) = a1x(t − τ)− a2x(t),

where a1, a2, τ > 0; x(t) > 0, for −τ ≤ t ≤ 0. We have :
(i) If a1 < a2, then limt→∞ x(t) = 0;
(ii) If a1 > a2, then limt→∞ x(t) = ∞.

The proof is given in [14,26].
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3. Global attractivity of ‘infection-free’ periodic solution

In this section, we begin the analysis (2.2) by first demonstrating the existence of an ‘infection-free’ periodic solution, in
which infectious individuals are entirely absent from the population permanently, i.e., I(t) = 0 for all t ≥ −τ . Under this
condition, consider the following system:

Ṡ(t) = µ− µS(t),
V̇ (t) = −γ1V (t)− µV (t)

}
, t 6= nT , n ∈ N

S(t+) = (1− θ)S(t),
V (t+) = V (t)+ θS(t)

}
, t = nT , n ∈ N.

(3.1)

By Lemma 2.2., it is easy to obtain the periodic solution of system (3.1):

S̃(t) = 1+ (S0 − 1)e−µ(t−nT ),
Ṽ (t) = V0e−(µ+γ1)(t−nT )

t ∈ (nT , (n+ 1)T ].

where

S0 =
(1− θ)(1− e−µT )
1− (1− θ)e−µT

,

V0 =
θ [1+ (S0 − 1)e−µT ]
1− e−(µ+γ1)T

=
θ(1− e−µT )

(1− e−(µ+γ1)T )[1− (1− θ)e−µT ]

which is globally asymptotically stable for system (3.1).
In the following theorem, we shall present the sufficient condition for the global attractivity of ‘infection-free’ periodic

solution (S̃(t), Ṽ (t), 0) of system (2.2).

Theorem 3.1. If R1 < 1, then ‘infection-free’ periodic solution (S̃(t), Ṽ (t), 0) of system (2.2) is globally attractive, where
R1 = e−µτ (1−e−µT )

(γ+µ+α)(1−(1−θ)e−µT )

(
β +

β1θe−(µ+γ1)T

1−e−(µ+γ1)T

)
.

Proof. Since R1 < 1, we can choose ε1 > 0 sufficiently small such that

e−µτ (1− e−µT )
1− (1− θ)e−µT

(
β +

β1θe−(µ+γ1)T

1− e−(µ+γ1)T
+ 2ε1

)
< γ + µ+ α. (3.2)

From the first and second equations of system (2.2), we have Ṡ(t) < µ − µS(t) and V̇ (t) < −γ1V (t) − µV (t), then we
consider the following comparison system with pulse

ẋ(t) = µ− µx(t),
ẏ(t) = −γ1y(t)− µy(t)

}
, t 6= nT , n ∈ N

x(t+) = (1− θ)x(t),
y(t+) = y(t)+ θx(t)

}
, t = nT , n ∈ N.

(3.3)

From Lemma 2.2, we obtain the periodic solution of system (3.3) i.e.,

x̃(t) = 1−
θe−µ(t−nT )

1− (1− θ)e−µT
,

ỹ(t) =
θ(1− e−µT )e−(µ+γ1)(t−nT )

(1− e−(µ+γ1)T )[1− (1− θ)e−µT ]

t ∈ (nT , (n+ 1)T ].

By the comparison theorem [17, Theorem 3.1.1], there existsm1 ∈ N such that

S(t) ≤ x(t) < x̃(t)+ ε1,
V (t) ≤ y(t) < ỹ(t)+ ε1,

that is

S(t) < x̃(t)+ ε1 ≤
1− e−µT

1− (1− θ)e−µT
+ ε1 = S4,

V (t) < ỹ(t)+ ε1 ≤
θ(1− e−µT )e−(µ+γ1)T

(1− e−(µ+γ1)T )[1− (1− θ)e−µT ]
+ ε1 = V4

t ∈ (nT , (n+ 1)T ], n > m1, n ∈ N. (3.4)

Further, from the third equation of system (2.2), we have

İ(t) ≤ (βe−µτ S4 + β1e−µτV4)I(t − τ)− (γ + µ+ α)I(t)
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Table 1
Critical values of some parameters of system (2.2) (R1 < 1 must be satisfied).

The conditions for global attractivity of (S̃(t), Ṽ (t), 0)

θ > θ∗ θ∗ =
(1−e−(µ+γ1)T )(1−e−µT )(βe−µτ−(γ+µ+α))

(γ+µ+α)(1−e−(µ+γ1)T )e−µT−β1e−(µ+γ1)T e−µτ (1−e−µT )

τ > τ ∗ τ ∗ = 1
µ
ln 1−e−µT

(γ+µ+α)(1−(1−θ)e−µT )

(
β +

β1θe−(µ+γ1)T

1−e−(µ+γ1)T

)

then we consider the following comparison equation:

ẏ(t) = (βe−µτ S4 + β1e−µτV4)y(t − τ)− (γ + µ+ α)y(t).

From (3.2) and (3.4), by the Lemma 2.3, we have limt→∞ y(t) = 0. Therefore, limt→∞ I(t) = 0, i.e., for any sufficiently small
ε2 > 0, there exists an integerm2 > m1, such that I(t) < ε2 for all t > m2T . From the first and second equations of system
(2.2), we have

Ṡ(t) > µ− µS(t)− βε2S(t),
V̇ (t) > −β1ε2V (t)− γ1V (t)− µV (t),

for t > m2T .

Then we consider the following comparison system with pulse:
ϕ̇(t) = µ− µϕ(t)− βε2ϕ(t),
ġ(t) = −β1ε2g(t)− γ1g(t)− µg(t)

}
, t 6= nT , n ∈ N.

ϕ(t+) = (1− θ)ϕ(t),
g(t+) = g(t)+ θϕ(t)

}
, t = nT , n ∈ N.

(3.5)

From Lemma 2.2, we obtain the periodic solution of system (3.5) i.e.,

ϕ̃(t) =
µ

βε2 + µ
−

θµ

βε2+µ
e−(βε2+µ)(t−nT )

1− (1− θ)e−(βε2+µ)t
,

g̃(t) =
θ

1− e−(βε2+γ1+µ)t

[
µ

βε2 + µ
−

θµ

βε2+µ
e−(βε2+µ)(t−nT )

1− (1− θ)e−(βε2+µ)t

]
,

t ∈ (nT , (n+ 1)T ].

By the comparison theorem [17, Theorem 3.1.1], there exists an integerm3 > m2 such that

S(t) ≥ ϕ(t) > ϕ̃(t)− ε2,
V (t) ≥ g(t) > g̃(t)− ε2.

t ∈ (nT , (n+ 1)T ], n > m3, n ∈ N. (3.6)

Since ε1 and ε2 are sufficiently small, from (3.4) and (3.6), we know that

S̃(t) =
1− e−µT

1− (1− θ)e−µT
,

Ṽ (t) =
θ(1− e−µT )e−(µ+γ1)t

(1− e−(µ+γ1)T )[1− (1− θ)e−µT ]
,

t ∈ (nT , (n+ 1)T ]

is globally attractive. Hence, ‘infection-free’ periodic solution (S̃(t), Ṽ (t), 0) of system (2.2) is globally attractive. The proof
is completed. �

Corollary 3.1. If R1 < 1, then ‘infection-free’ periodic solution (S̃(t), Ṽ (t), 0) is globally attractive, where R1 = βe−µτ

γ+µ+α
as θ = 0

or T →∞.

Corollary 3.2. (i) If β + β1θe−(µ+γ1)T

1−e−(µ+γ1)T
≤ γ + µ+ α, then ‘infection-free’ periodic solution (S̃(t), Ṽ (t), 0) is globally attractive.

(ii) If β + β1θe−(µ+γ1)T

1−e−(µ+γ1)T
> γ +µ+ α and θ > θ∗ or τ > τ ∗, then ‘infection-free’ periodic solution (S̃(t), Ṽ (t), 0) is globally

attractive, where the critical values θ∗ and τ ∗ are listed in Table 1 for system (2.2).

4. Permanence

In this section, we say the disease is endemic if the infectious population persists above a certain threshold level
for sufficiently large time. The endemic of the disease can be well captured and studied through the notion of uniform
persistence and permanence.
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Definition 4.1. System (2.2) is said to be uniformly persistent if there is an η > 0 (independent of the initial data) such that
every solution (S(t), V (t), I(t))with initial conditions (2.3) of system (2.2) satisfies

lim
t→∞

inf S(t) ≥ η, lim
t→∞

inf V (t) ≥ η, lim
t→∞

inf I(t) ≥ η.

Definition 4.2. System (2.2) is said to be permanent if there exists a compact regionΩ0 ∈ intΩ such that every solution of
system (2.2) with initial data (2.3) will eventually enter and remain in regionΩ0.

Denote

R2 =
βe−µτ

(γ + µ+ α)

(
1+

β1

β

θe−(β1+µ+γ1)T

1− e−(β1+µ+γ1)T

)
(1− θ)(1− e−µT )
1− (1− θ)e−µT

,

I∗ =
µ

β
(R2 − 1).

Theorem 4.1. Suppose R2 > 1. Then there is a positive constant q such that each positive solution (S(t), V (t), I(t)) of system
(2.2) satisfies I(t) ≥ q, if t is large.

Proof. Note that the third equation of (2.2) can be rewritten as

İ(t) = βe−µτ S(t)I(t)+ β1e−µτV (t)I(t)− (γ + µ+ α)I(t)
−βe−µτ (S(t)I(t)− S(t − τ)I(t − τ))− β1e−µτ (V (t)I(t)− V (t − τ)I(t − τ))

= βe−µτ S(t)I(t)+ β1e−µτV (t)I(t)− (γ + µ+ α)I(t)

−βe−µτ
d
dt

∫ t

t−τ
S(σ )I(σ )dσ − β1e−µτ

d
dt

∫ t

t−τ
V (σ )I(σ )dσ . (4.1)

Let us consider any positive solution (S(t), V (t), I(t)) of system (2.2). According to this solution, we define

F(t) = I(t)+ βe−µτ
∫ t

t−τ
S(σ )I(σ )dσ + β1e−µτ

∫ t

t−τ
V (σ )I(σ )dσ .

In view of (4.1), we calculate the derivative of F along the solution of (2.2)

Ḟ(t) = (βe−µτ S(t)+ β1e−µτV (t))I(t)− (γ + µ+ α)I(t)

= (γ + µ+ α)I(t)
(

βe−µτ

γ + µ+ α
S(t)+

β1e−µτ

γ + µ+ α
V (t)− 1

)
. (4.2)

Since R2 > 1, we easily see that 0 < I∗ ≤ 1, and there exists sufficiently small ε3 > 0 such that

βe−µτ

γ + µ+ α

(
µ

µ+ βI∗
(1− θ)(1− e−(µ+βI

∗)T )

1− (1− θ)e−(µ+βI∗)T
− ε3

)

+
β1e−µτ

γ + µ+ α

(
θe−(β1I

∗
+γ1+µ)T

1− e−(β1I∗+γ1+µ)T
µ

µ+ βI∗
(1− θ)(1− e−(µ+βI

∗)T )

1− (1− θ)e−(µ+βI∗)T
− ε3

)
> 1. (4.3)

Suppose that there is a t0 > 0 such that I(t) < I∗ for all t ≥ t0. It follows from the first and second equations of system
(2.2), that for t ≥ t0,

Ṡ(t) > −βI∗S(t)+ µ− µS(t)
= µ− (µ+ βI∗)S(t)

V̇ (t) > −(β1I∗ + γ1 + µ)V (t).

Consider the following comparison impulsive system for t ≥ t0,
u̇(t) = µ− (µ+ βI∗)u(t),
ẇ(t) = −(β1I∗ + γ1 + µ)w(t)

}
, t 6= nT , n ∈ N

u(t+) = (1− θ)u(t),
w(t+) = w(t)+ θu(t)

}
, t = nT , n ∈ N.

(4.4)
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According to Lemma 2.2, we obtain that
ũe(t) =

µ

µ+ βI∗
+

(
u∗ −

µ

µ+ βI∗

)
e−(µ+βI

∗)(t−nT ),

w̃e(t) =
θ

1− e−(β1I∗+γ1+µ)T
µ

µ+ βI∗
(1− θ)(1− e−(µ+βI

∗)T )

1− (1− θ)e−(µ+βI∗)T
e−(β1I

∗
+γ1+µ)(t−nT )

t ∈ (nT , (n+ 1)T ]

is the unique positive periodic solutions of (4.4), which is globally asymptotically stable, where

u∗ =
µ

µ+ βI∗
(1− θ)(1− e−(µ+βI

∗)T )

1− (1− θ)e−(µ+βI∗)T
.

Denote

w∗ = w̃e(t)min =
θe−(β1I

∗
+γ1+µ)T

1− e−(β1I∗+γ1+µ)T
µ

µ+ βI∗
(1− θ)(1− e−(µ+βI

∗)T )

1− (1− θ)e−(µ+βI∗)T
.

Let (S(t), V (t), I(t)) be the solution of system (2.2) with initial values (2.3) and S(0+) = S0, S0 > 0, and V (0+) = V0, V0 >
0, u(t) and w(t) be the solution of system (4.4) with initial value u(0+) = S0, w(0+) = V0. By comparison theorem in
impulsive differential equation, we know that, there exists t1(> t0 + τ) and sufficiently small ξ such that the following
inequality holds true for t ≥ t1,{

S(t) > ũe(t)− ξ,
V (t) > w̃e(t)− ξ .

Thus,

S(t) > u∗ − ξ = δ,
V (t) > w∗ − ξ = Λ,

for t ≥ t1. (4.5)

From (4.3), we have βe−µτ

γ+µ+α
δ +

β1e−µτ

γ+µ+α
Λ > 1. By (4.2) and (4.5), we have

Ḟ(t) > (γ + µ+ α)I(t)
(

βe−µτ

γ + µ+ α
δ +

β1e−µτ

γ + µ+ α
Λ− 1

)
for t ≥ t1. (4.6)

Set

IL = min
t∈[t1,t1+τ ]

I(t)

we will show that I(t) ≥ IL for all t ≥ t1. Suppose the contrary. Then there is a T0 ≥ 0 such that I(t) ≥ IL for
t1 ≤ t ≤ t1 + τ + T0, I(t1 + τ + T0) = IL and İ(t1 + τ + T0) ≤ 0. However, the third equation of system (2.2) and
(4.5) imply that

İ(t1 + τ + T0) ≥ (βe−µτ S(t1 + T0)+ β1e−µτV (t1 + T0))− (γ + µ+ α)IL

> (γ + µ+ α)
e−µτ

γ + µ+ α
(βδ + β1Λ− 1)IL

> 0.

This is a contradiction. Thus, I(t) ≥ IL for all t ≥ t1. As a consequence, (4.6) leads to

Ḟ(t) > (γ + µ+ α)

(
βe−µτ

γ + µ+ α
δ +

β1e−µτ

γ + µ+ α
Λ− 1

)
IL for t ≥ t1.

Which implies that as t →∞, F(t)→∞. But by Lemma 2.1, we can obtain

F(t) = I(t)+ βe−µτ
∫ t

t−τ
S(σ )I(σ )dσ + β1e−µτ

∫ t

t−τ
V (σ )I(σ )dσ

≤ 1+ βe−µτ
∫ t

t−τ
dσ + β1e−µτ

∫ t

t−τ
dσ

= 1+ τβe−µτ + τβ1e−µτ .

This is a contradiction. Hence, for any t0 > 0, it is impossible that I(t) < I∗ for all t ≥ t0.
Following, we are left to consider two cases. First, I(t) ≥ I∗ for all large t . Second, I(t) oscillates about I∗ for all large t .
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Define

L = min
{
I∗

2
, L1

}
and L1 = I∗e−(γ+µ+α)τ .

We hope to show that I(t) ≥ L for all large t . The conclusion is evident in the first case. For the second case, Let t∗ > 0 and
γ > 0 satisfy

I(t∗) = I(t∗ + γ ) = I∗,

and

I(t) < I∗ for t∗ < t < t∗ + γ ,

where t∗ is sufficiently large such that{
S(t) > δ,
V (t) > Λ

for t∗ < t < t∗ + γ .

I(t) is uniformly continuous since the positive solutions of (2.2) are ultimately bounded and I(t) is not effected by impulses.
Hence, there is a T (0 < T < τ , and T is independent of the choice of t∗) such that I(t) > I∗

2 for t
∗
≤ t < t∗ + T . If γ ≤ T ,

there is nothing to prove. Let us consider the case where T < γ ≤ τ , since ˙I(t) > −(γ + µ + α)I(t), and I(t∗) = I∗, it is
obvious that I(t) ≥ L1 for t∗ < t < t∗ + γ . If γ > τ , by the second equation of (2.2), we obtain I(t) ≥ L for t ∈ [t∗, t∗ + τ ].
Then, proceeding exactly as the proof for above claim, we see that I(t) ≥ L for t ∈ [t∗+τ , t∗+γ ]. Since this kind of interval
[t∗, t∗+γ ] is chosen in an arbitrary way (we only need t∗ to be large), we conclude that I(t) ≥ L for all large t in the second
case. In view of our above discussions, the choice of L is independent of the positive solution, and we have proved that any
positive solution of (2.2) satisfies I(t) ≥ L for all large t . The proof of Theorem 4.1 is completed. �

Theorem 4.2. System (2.2) is permanent provided R2 > 1.

Proof. Denote (S(t), V (t), I(t)) be any solution of system (2.2). From the first and second equations of system (2.2). We
have {

Ṡ(t) ≥ µ− (β + µ)S(t),
V̇ (t) ≥ −β1V (t)− γ1V (t)− µV (t).

By the similar arguments as those in the proof of Theorem 3.1, we have that

lim
t→∞

S(t) ≥ M1, lim
t→∞

V (t) ≥ M2 (4.7)

where

M1 =
µ

β + µ

(1− θ)(1− e−(β+µ)T )
1− (1− θ)e−(β+µ)T

− ε4,

M2 =
θ

1− e−(β1+µ+γ1)T
µ

β + µ

(1− θ)(1− e−(β+µ)T )
1− (1− θ)e−(β+µ)T

− ε4

for (ε4 is sufficiently small).

We let Ω0 = {(S(t), V (t), I(t)) : M1 ≤ S(t),M2 ≤ V (t), L ≤ I(t), S(t)+ V (t)+ I(t) ≤ 1}. From Theorem 4.1 and
inequality (4.7), we know that the set Ω0 is global attractor in Ω , and of course, every solution of system (2.2) with
initial conditions (2.3) will eventually enter and remain in region Ω0. Therefore, system (2.2) is permanent. The proof of
Theorem 4.2 is completed. �

5. Numerical analysis

In this section, we test the correctness of our conclusions by numerical analysis.We can clearly see they are in agreement
with our conclusions. Let µ = 0.1, β = 0.5, β1 = 0.05, γ1 = 0.06, γ = 0.06, α = 0.05, θ = 0.8, τ = 1, T = 4, then
R1 = 0.8934 < 1. According to Theorem 3.1, we know the ‘infection-free’ periodic solution of system (2.2) is globally
attractive for this case. Its epidemiological implication is that the infectious population vanishes, i.e., the disease dies out
(see Fig. 1). If we let µ = 0.1, β = 0.7, β1 = 0.5, γ1 = 0.06, γ = 0.06, α = 0.05, θ = 0.4, τ = 1, T = 4, then
R2 = 1.0199 > 1. According to Theorem 4.1, the disease will be permanent and there is a positive constant q such that
each positive solution (S(t), V (t), I(t)) of system (2.2) satisfies I(t) ≥ q, if t is large (see Fig. 2). If we let µ = 0.1, β = 0.6,
β1 = 0.5, γ1 = 0.06, γ = 0.06, α = 0.05, θ = 0.6, τ = 1, T = 4, then R1 = 1.8141 > 1, R2 = 0.4837 < 1. Computer
observation shows that the disease is still permanent (see Fig. 3).
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Fig. 1. This figure shows that movement paths of S and I as functions of time t . R1 = 0.8934 < 1. The disease dies out.

Fig. 2. This figure shows that movement paths of S and I as functions of time t . R2 = 1.1697 > 1. The disease is permanent.

6. Conclusion

The strategy of pulse vaccination (PVS) consists of periodical repetitions of impulsive vaccinations in a population. Some
theoretical considerations, practical advantages, and examples of the PVS are presented in [8,18,21,22]. For example, some
successes against poliomyelitis and measles have been attributed to repeated PVS [19]. As indicated in [11], models have
clearly shown the advantages of a mass campaign approach in rapidly achieving high measles population immunity and
interrupting measles virus circulation.
In this study, we have studied the dynamical behavior of a delayed SVEIR epidemic model with pulse vaccination and

time delay. We introduced two threshold values R1 and R2 (see Theorems 3.1 and 4.1) and further obtain: if R1 < 1 then the
disease will be extinct, if R2 > 1 then the disease will be permanent whichmeans that after some period of time the disease
will become endemic. Corollary 3.2 show that θ > θ∗ or τ > τ ∗ implies the disease will fade out. Our results indicate that
a long latent period of the disease or a large pulse vaccination rate will lead to eradication of the disease. So PVS is effective.
In this work, we have discussed two cases: (1) R1 < 1, (2) R2 > 1. Obviously, R1 > R2. When R1 > 1 and R2 < 1, the

dynamical behavior of model (2.2) has not been clear. The extinction of the disease and uniformly persistence has not been
obtained. By numerical simulation, we see that the disease is uniformly persistent between R1 and R2 (see Fig. 3). Hence,
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Fig. 3. This figure shows that movement paths of S and I as functions of time t . R1 = 1.479 > 1 and R2 = 0.5419 < 1. The disease is still permanent.

we conjecture that the system (2.2) is permanent when R1 > 1, i.e., R1 is the threshold value whether the disease will go to
extinction or not. These works will be left as our future consideration.
In this article, we have proposed a SVEIR epidemic model with time delay and pulse vaccination. Using the stroboscopic

maps and comparison theorem for impulsive ODE, we have also established the sufficient conditions for the global
attractivity of the disease-free periodic solution and the permanence of the epidemic model. Our results indicate: (I) If
R1 < 1, then ‘infection-free’ periodic solution of system (2.2) is globally attractive. (II) System (2.2) is permanent provided
R2 > 1. We can see that a smaller pulse vaccination rate or a shorter latent period of the disease or a shorter immunity
period of the recovered could cause global attractive ‘infection-free’ periodic solution to lose and cause epidemic disease to
be permanent. We can also see that when the latent period of disease and the temporary immunity period of the recovered
are very small, the very larger pulse vaccination rate is need in order to eradicate the epidemic disease.
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