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Abstract

The aim of the current study was to evaluate the ex-

pression of ADAM15 disintegrin (ADAM15) in a broad

spectrum of human tumors. The transcript for ADAM15

was found to be highly upregulated in a variety of

tumor cDNA expression arrays. ADAM15 protein ex-

pression was examined in tissue microarrays (TMAs)

consisting of 638 tissue cores. TMA analysis revealed

that ADAM15 protein was significantly increased in

multiple types of adenocarcinoma, specifically in

prostate and breast cancer specimens. Statistical as-

sociation was observed with disease progression

within clinical parameters of predictive outcome for

both prostate and breast cancers, pertaining to

Gleason sum and angioinvasion, respectively. In this

report, we also present data from a cDNA microarray of

prostate cancer (PCa), where we compared transfected

LNCaP cells that overexpress ADAM15 to vector con-

trol cells. In these experiments, we found that ADAM15

expression was associated with the induction of spe-

cific proteases and protease inhibitors, particularly

tissue inhibitor of metalloproteinase 2, as validated

in a separate PCa TMA. These results suggest that

ADAM15 is generally overexpressed in adenocar-

cinoma and is highly associated with metastatic pro-

gression of prostate and breast cancers.
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Introduction

Due to advances in tumor detection, early diagnosis of

human cancer has improved dramatically. Unfortunately,

despite these improvements, some patients who are diag-

nosed early in their disease may still have micrometastasis,

which leads to secondary tumor growth. Thus, the identifi-

cation of early-stage aggressive tumors that are at high risk for

recurrence remains a priority.

The progression of solid tumors to metastatic diseases

includes essential steps that support the detachment of cells

from the surrounding extracellular matrix (ECM), tumor cell sur-

vival, and tissue invasion [1]. One family of proteins supporting

malignant progression is zinc-binding matrix metalloprotein-

ases (MMPs). The role of MMPs in metastatic progression

has been extensively studied in tumor biology. Specific MMPs

have been implicated in the induction of tumor cell migration,

invasion, and angiogenesis. These enzymes contain an active

metalloproteinase domain that catalyzes the degradation of

ECM proteins, such as collagen, laminin, and fibronectin [2].

This activity is believed to mediate the disruption of basement

membrane integrity and to allow cancer cells to invade the

surrounding tissues and vasculature.

Another aspect of proteolytic processing during tumor pro-

gression affects a diverse set of physiologic cell surface proteins,

such asmembrane-anchored growth factors and their receptors,

ectoenzymes, andmany cell adhesionmolecules, including cad-

herins [3]. An intriguing family of membrane metalloproteinases

has been identified in the extracellular processing of these cell

surface molecules. This family of membrane-associated disinte-

grins, referred to as ADAMs (A Disintegrin that contains A

Metalloproteinase), contains modular metalloproteinase motifs,

an integrin-binding domain (disintegrin), and a cysteine-rich

epidermal growth factor–like domain in the extracellular region
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of the molecule. One of the best characterized ADAMs is

tumor necrosis factor convertase (ADAM17), which processes

pro-TNF-a, TNF receptors, interleukin-6 receptor, and amphir-

egulin [4,5]. ADAMs have been implicated in many biologic

processes, including oocyte fertilization, neurogenesis, myo-

genesis, and growth factor shedding [6,7]. Additionally, this

family of disintegrin metalloproteinases has also been shown

to be involved in cancer progression. ADAM10 is over-

expressed in pheochromocytomas and neuroblastomas,

whereas ADAM12 is overexpressed in both breast and

colon cancers [8,9]. ADAM10, ADAM12, and ADAM17

are implicated in gastrointestinal carcinoma [10]. The

multiple domains of these proteinases impart several phys-

iological features, including ECM degradation and shedding of

transmembrane growth factors. ADAM9, ADAM10, ADAM12,

and ADAM17 have been shown to cleave the epidermal

growth factor receptor (EGFR) ligand, heparin-binding (EGF),

leading to transactivation of EGFR. This process has been

implicated in many physiological responses, such as cell

survival, proliferation, and migration, further supporting their

role in neoplastic progression [11].

One understudied member of the ADAM family in human

cancer is ADAM15 disintegrin (ADAM15), which is located

on chromosome 1 at 1q21.3. This region is known to be

amplified in many cancers, including metastatic prostate

cancer (PCa), breast cancer, and melanoma [12,13]. Spe-

cifically, the region of chromosome 1 from 1q21 to 1q23 is

increased in several types of adenocarcinoma and sarco-

mas, and thus appears to be a common aberration in many

human cancers. Reports show that amplification of this

region is higher in advanced metastatic cancers compared

to tissues isolated from primary diseases [14–16].

ADAM15 is thought to serve a dual function in metastasis

by detaching cells from the ECM through its disintegrin domain

and by degrading the ECM through the metalloproteinase

domain. ADAM15 has been shown to degrade collagens I

and IV and to cleave the inflammatory cytokine CD23 [17,18].

ADAM15 has also been shown to influence ECM remodeling

within rheumatoid synovial tissues and in atherosclerosis

[19,20]. Additionally, ADAM15 is believed to interact with

integrins avb3, a5b1, and a9b1 through its disintegrin domain.

Uniquely, ADAM15 is the only family member to encode an

RGD (Arg–Gly–Asp) binding motif, suggesting an important

role in cell attachment and invasion [6,7]. In fact, ADAM15

induces glomerular mesangial cell migration within the kidney

[7] and transactivates EGFR by cleaving the EGFR ligands

amphiregulin and TGF-a in bladder cancer cell lines [21].

Knowledge concerning ADAM15 expression in human

cancer is limited. We initiated the current study to compile

the first comprehensive expression profile of ADAM15 by

using multitumor tissue microarray (TMA) technology. Our

preliminary findings demonstrated a significantly increased

expression of ADAM15 in multiple adenocarcinomas. A

thorough analysis of ADAM15 staining in regard to PCa

and breast cancer, using TMA staining, revealed that the

highest levels of expression correlated with advanced meta-

static diseases, and a clear association with clinical param-

eters was determined.

Materials and Methods

Study Population and Tissue Collection

Formalin-fixed paraffin-embedded tissue blocks with

tumor samples were previously set up for multitumor TMA.

PCa and breast cancer TMAs were identified as part of

the Institutional Review Board–approved project from a tis-

sue bank.

Prostate tissue samples were taken from the radical

prostatectomy series and the Rapid Autopsy Program [22]

at the University of Michigan Prostate Cancer Specialized

Program of Research Excellence (SPORE) Tissue Core

(Ann Arbor, MI). Clinically localized PCa cases were taken

from a cohort of men who underwent radical retropubic

prostatectomy as monotherapy for clinically localized PCa

between January 1995 and December 2001. Tumors were

staged using the tumor–node–metastasis system [23] and

were graded according to the system originally described by

Gleason [24,25]. Snap-frozen prostate samples used for

expression analysis were all evaluated histologically by a

study pathologist (M.A.R.). All samples were trimmed to

ensure that >95% of the sample represented the desired

lesion. Breast cancer tissue samples were selected by a

dedicated pathologist (C.G.K.) and categorized according to

histology (i.e., carcinoma in situ, invasive breast cancer, or

metastatic breast cancer).

cDNA Expression Profiles in PCa cDNA

RNA was isolated from 55 prostate tissue samples.

Construction of cDNA microarrays was described in detail

elsewhere [28]. In brief, plasmid templates for a maximum of

20,000 transcripts were isolated from bacterial clones, and

inserts were amplified by polymerase chain reaction (PCR).

Purified PCR fragments were printed on glass slides and

cross-linked with DNA targets. cDNA generated from 55 PCa

samples included 34 localized PCa and 21 metastatic tissue

samples. These cDNA were labeled with distinguishable

fluorescent dye and hybridized to a cDNA microarray. The

cDNA microarray was analyzed using a scanner, and fluo-

rescence ratios were determined for each gene. Color inten-

sities were converted into ratios of gene expression. These

ratios were inputted into a database for analysis.

TMAs

As preparation for the construction of the TMAs, all glass

slides were examined to identify areas of benign or neoplas-

tic lesions. To optimize transfer to the arrays, target areas

were encircled on a glass slide template. TMAs were as-

sembled using manual tissue array (Beecher Instruments,

Silver Spring, MD), as previously described [26,27]. Tissue

cores from circled areas were targeted for transfer to recip-

ient array blocks. Several replicate tissue cores were sam-

pled from each of the selected tissue types. TMA cores 0.6

mm in diameter were each spaced 0.8 mm from core center

to core center. After construction, 4-mm sections were cut,

and hematoxylin and eosin staining was performed on the

initial slide to verify the histologic diagnosis. TMA images

were acquired using the BLISS Imaging System (Bacus
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Laboratories, Lombard, IL). ADAM15 protein expression was

evaluated in a blinded manner. All images were scored for

ADAM15 protein expression intensity by dedicated patholo-

gists (M.A.R. and C.G.K.).

The tissue specimens on this array were derived from 22

different types of neoplastic tissue (i.e., lung, breast, and

colon cancers). Thus, this array represents a unique source

for evaluating and comparing different tumor types, under the

same conditions, in a very efficient manner. The array con-

sisted of tissue samples of 188 patients. The array was

primarily set up with cores taken only from neoplastic areas.

With several sections having been cut for experiments, 40

samples of the stained array were found to be benign. One

hundred forty-eight samples were confirmed as neoplastic.

PCa TMAs. Two TMAs containing tissues from the pros-

tatectomy series (benign versus localized disease) and from

hormone-refractory PCa (benign versus localized versus

metastatic) from the Rapid Autopsy Program (University of

Michigan, SPORE) were constructed for this study. All TMA

samples were assigned a diagnosis: benign, atrophic, and

high-grade prostatic intraepithelial neoplasia, and PCa. One

hundred sixty-four benign tissue cores, 85 localized PCa, and

82 tissue cores of far advanced metastatic diseases were

suitable for analysis. Of the cases with localized PCa, the

average age at surgery was 61.9 years (minimum = 47 years,

maximum = 76 years). Eleven of 29 had a Gleason score of 5

or 6; the other cases had Gleason scores z7. Mean preop-

erative prostate-specific antigen (PSA) was 15 ng/ml (2.6–

85.7 ng/ml). PSA failure as endpoint was defined as two con-

secutive PSA rises after having reached the nadir of <0.01 ng/

ml after surgery. Mean follow-up timewas 1354 days (median =

1669 days, minimum = 66 days, maximum = 2332 days).

Breast cancer TMA. The total number of patients repre-

sented on the TMAwas 119. The following are the categories

according to tissue type: stroma (n = 80), normal (n = 37),

carcinoma in situ (ductal or lobular, n = 17), invasive carci-

noma (ductal or lobular, n = 66), and metastatic carcinoma

(n = 12). The total number of cases for evaluation after cal-

culating the mean staining intensity for each tissue category

was 212. Of the breast cancer cases, the average age at the

time of diagnosis was 53.9 years (minimum = 29.9 years,

maximum = 83.3 years). The mean tumor size was 2.6 cm

(minimum = 1.0 cm, maximum = 8.0 cm). The mean number

of total nodes removed was 15.7 (maximum = 29); of those,

the mean number of positive nodes was 3.5 (minimum = 0,

maximum = 25). Receptor status was available for the

majority of cases. In this TMA, estrogen receptor (ER)–

negative patients numbered 22, and the ER-positive

patients, numbered 43. Additionally, 31 cases were proges-

terone receptor (PR)–negative and 33 cases were PR-

positive. HER-2/neu was not overexpressed in 46 cases

and was overexpressed only in 14 of these cases. Twenty

of 112 cases had angioinvasion. The mean follow-up time

was 1213 days (median = 719 days, minimum = 29 days,

maximum = 7217 days). Of patients with known status on

follow-up (n = 92), 55 had no evidence of disease, 25 were

alive with recurrence, 6 had died due to breast cancer, and 6

died of other causes.

Immunohistochemistry (IHC) of ADAM15 and tissue

inhibitor of metalloproteinase 2 (TIMP2)

Standard biotin–avidin complex IHC was performed to

evaluate ADAM15 protein expression using a polyclonal anti-

ADAM15 antibody (no. AB19035; Chemicon, Temecula, CA).

Appropriate horseradish peroxidase–conjugated secondary

antibody was obtained from BioRad (Hercules, CA). The

antibody received microwave pretreatment (30 minutes at

100jC in 10 mM citrate buffer) for antigen retrieval. The

reaction time for primary antibody incubation was 120minutes

at ambient temperature. This maybe needed for human sam-

ples, as this antibody was raised against the mouse peptide

and was 85% homologous with human antibodies. The chro-

mogen 3,3-diaminobenzidine tetrahydrochloride was used

to visualize ADAM15-positive staining. Based on previous

works, protein expression was scored as 1 = negative, 2 =

weak, 3 = moderate, and 4 = strong [29,30]. Standard IHC

was equally performed for the evaluation of TIMP2 protein

expression using a monoclonal anti-TIMP2 antibody (no.

MAB3310; Chemicon). Visualization of positive staining for

TIMP2 was performed using the chromogen 3,3-diamino-

benzidine tetrahydrochloride, and protein expression was

scored the same as for ADAM15 staining, as described here.

Cloning and Construction of the ADAM15-Tagged Vector

The cDNA for human ADAM15 and the pCDNA3 vector

containing a hemagglutinin (HA) tag were kind gifts of Carl

Blobel and Gabrielle Nunez, respectively. The cDNA plasmid

containing the hADAM15 sequence was used as template

for PCR reactions. DNA primers that contained BamHI and

XhoI sequences were used to create the PCR product

BamHI/ADAM15/XhoI (5V to 3V). This sequence did not

contain a stop codon [forward ‘‘primer A (BamHI)’’ sequence:

AATACGACTCACTATAGGGAGACCC; reverse ‘‘primer B

(XhoI)’’ sequence: CTCGAGGAGGTAGAGCGAGGA-

CACTGTC]. This BamHI/ADAM15/XhoI DNA was then

cloned into a shuttle vector from the TA Cloning Kit system

(Invitrogen, Carlsbad, CA) prior to ligation into the pCDNA3

vector that contained an HA tag (3V). Next, GFP sequence

was generated as a PCR product that contained XbaI sites at

both the 5 prime and 3 prime ends using the pGFPN-1 vector

as template for this reaction (InVitrogen). The GFP DNA

sequence was inserted in frame into the pCDNA vector at the

3 prime end of the hemaglutanin tagged ADAM15 (ending

with a stop codon), as a second step cloning. This plasmid

DNA was transformed and purified from bacteria. Purified

plasmid DNA encoding the ADAM15-HA-GFP (designated

LNCaP M142) was finally sequenced for verification.

Cell Culture and Transfection of ADAM15 (M142 cDNA)

into LNCaP Cells

The PCa cell line LNCaP was obtained from the American

Type Culture Collection (Manassas, VA). Cells were main-

tained in RPMI 1640 with 8% fetal bovine serum (FBS), 0.1%

glutamine, and 0.1% penicillin/streptomycin (BioWhittaker,
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Walkersville, MD). LNCaP cells were grown to 70% conflu-

ence in serum containing a medium for transfection. TFX50

reagent (Promega, Madison, WI) was used for transfection as

described by the manufacturer, with the following modifica-

tions: 15 mg of M142 DNA and 45 ml of TFX50 reagent were

added to 5ml of serum-freemedia for each dish of cells (grown

in 100-mm culture dishes). This mixture was incubated for

4 hours at 37jC in a cell culture incubator. Following this

incubation of TFX50 and DNA under serum-free conditions,

10 ml of 15% FBS medium was then added to the dishes,

and transfection in the cell incubator continued for a total of

72 hours. On completion of this procedure, the cells were

allowed to recover in the normal growth medium prior to se-

lection into media containing 500 mg/ml G418. Stable cell lines

were selected from pools of G418-resistant LNCaP cells.

Additionally, a final round of selection using FACS sorting

was used to select cells with high fluorescence expression of

the GFP tag. Overexpression of ADAM15-tagged protein was

evaluated byWestern blot analysis using a polyclonal antibody

(no. 19036; Chemicon, Temecula, CA). Results showed a high

expression of exogenous ADAM15 protein and no changes in

growth rate, compared to vector controls (data not shown).

cDNA Microarray Analysis of PCa LNCap M142 Cells

RNA was prepared from the vector control LNCap cells

and from the ADAM15 overexpressing cell line, LNCaP

M142. Because ADAM15 is endogenously expressed in

LNCaP cells, the vector control cell line was used as baseline

for expression in comparison to the LNCap M142 cell line.

RNA from both cell lines were prepared from log-phase

cultures growing in 8% serum-containing culture medium.

Microarray analysis was performed at the University of Ulm

(Ulm, Germany). This microarray procedure has been pre-

viously reported [30].

Statistical Analyses

Statistical analysis was performed using SPSS (SPSS,

Chicago, IL). Primary analysis of cDNA expression data was

performed with Genepix software and Cluster analysis (Mo-

lecular Devices Corp., Downingtown, PA), was performed

with the program Cluster, as described earlier [28,30]. AD-

AM15 expression was statistically evaluated using mean

score results from each case for each tissue type (i.e., loca-

lized PCa and hormone-refractory PCa). To test for sig-

nificant differences in mean ADAM15 protein expression

between all tissue types, Mann-Whitney U test was per-

formed. Mean expression scores for all examined cases

were presented in a graphic format using error bars with

95% confidence interval (CI). For clinically localized PCa

samples, ADAM15 protein expression was evaluated for

association with pathology parameters (i.e., tumor stage)

using t-test and Mann-Whitney U test. Univariable Cox

regression analysis was used to evaluate the risk of PSA

failure following prostatectomy (postsurgical PSA progres-

sion >0.2 ng/ml) and the risk of local or distant recurrence in

breast cancer patients. Multivariable analysis using Cox

hazards regression, with a stepwise backward selection

(Wald), was used to simultaneously evaluate clinical, path-

ological, and molecular parameters. P < .05 was considered

statistically significant.

Results

ADAM15 Expression on Multitumor TMA

To explore the expression of ADAM15 in cancer, we used

the Oncomine database created at the University of Michigan

in the laboratory of A.M. Chinnaiyan [31]. In this database, we

looked at the cDNAexpression arrays of normal versus tumor

cells. We found that ADAM15 was upregulated in many

cancer arrays (see Figure W1). This was intriguing and led

the authors to look at the protein expression of this ADAM

protease in a broad spectrum of solid tumors. Thus, ADAM15

staining was evaluated on a multitumor TMA. Of 22 different

tumor types represented in this TMA, the strongest staining

was observed in tissue samples derived from ovary, breast,

colon, and lung cancers. The lowest staining was observed in

samples derived from pheochromocytoma, sarcoma, thyroid

cancer, and testicular cancer (data not shown). All tumor

tissues had higher expression levels compared to benign

tissue samples (Figure 1A). The mean expression level for

benign tissue was 1.43 [median = 1.00, standard error (SE) =

0.15, standard deviation (SD) = 0.96] compared to 2.19

(median = 2.00, SE = 0.10, SD = 1.26) for tumor tissue sam-

ples. The difference in expression levels was highly signifi-

cant (Mann-Whitney U test, P < .001). Interestingly, when

performing analysis between adenocarcinomas and non-

adenocarcinomas (Figure 1B), we found that ADAM15 ex-

pression was significantly higher in all adenocarcinomas

(mean = 1.78, median = 3.00, SE = 0.17, SD = 1.23) com-

pared to other types of neoplastic tissue (mean = 1.84,

median = 1.00, SE = 0.12, SD = 1.15) (Mann-Whitney U test,

P < .001). Therefore, these data demonstrate that the highest

staining occurred in cancers derived from epithelial lineages.

ADAM15 was found to be overexpressed in adenocarci-

nomas compared to nonadenocarcinomas. Based on this

observation, we then sought to further investigate ADAM15

expression in two of the most common hormone-regulated

adenocarcinomas: PCa and breast cancer.

Expression in PCa cDNA Array

To explore the expression of ADAM15 in PCa progres-

sion, we first examined a PCa cDNA expression array

derived form 103 benign and PCa specimens [28,30]. When

we examined this array for dysregulated proteases, we found

ADAM15 to be significantly overexpressed in PCa (Figure 2).

Tissues were grouped under the following classifications: be-

nign (normal adjacent prostate tissue), clinically localized PCa,

and metastatic PCa. In relation to benign prostate tissues,

localized PCa was significantly upregulated (Mann-Whitney

U test, P < .005; localized PCa mean = 1.15, median = 1.14,

SE = 0.03, SD = 0.24). In addition, there was significant

upregulation in the expression of ADAM15 in metastatic PCa

compared to that in localized PCa cases (Mann-Whitney

U test, P < .003; metastatic PCa mean = 1.37, median = 1.33,

SE = 0.06, SD = 0.28).
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ADAM15 Protein Expression in TMA of PCa

To validate the protein expression of ADAM15 in situ, an

additional cohort of prostate samples from those used in the

cDNA expression array analysis was used. A remarkable

contrast in the levels of ADAM15 protein expression in

malignant epithelia relative to adjacent benign epithelia

was readily apparent. Many of the metastatic PCa samples

demonstrated very strong ADAM15 expression. To assess

ADAM15 protein expression in hundreds of prostate speci-

mens (n = 313), we quantitated TMA data. From benign PCa

(n = 164), localized PCa (n = 85), and metastatic PCa (n =

82), the mean ADAM15 protein staining intensity was deter-

mined to be 1.15 (median = 1.0, SE = 0.03, SD = 0.39), 2.16

(median = 2.0, SE = 0.11, SD = 1.00), and 2.68 (median =

3.00, SE = 0.1, SD = 0.94), respectively. Pairwise compar-

isons demonstrated dramatic differences in staining intensity

between clinically localized PCa with respect to benign

prostate tissues and metastatic hormone-refractory PCa

samples (Mann-Whitney U test, P < .001). These data are

graphically summarized using error bars representing the

95% CI for each tissue category (Figure 2B).

Staining of ADAM15 was then assessed for localized PCa

and for potential associations with clinical and pathological

parameters. The parameters, including age, predictor of PSA

failure, preoperative PSA (and categorized PSA), gland

weight, pathological tumor stage, Gleason score, extrapro-

static extension, multifocality, tumor size, seminal vesicle in-

volvement, and margin status, were examined for their ability

to predict biochemical failure following surgical treatment.

Using univariable Cox regression analysis of ADAM15 ex-

pression, we did not find a strong association with outcome

[P = .26, relative risk (RR) = 1.43]. But when clinical pa-

rameters, including tumor size (P = .05, RR = 2.2), tumor

stage (P = .05, RR = 1.7), seminal vesicle involvement

(P = .006, RR = 2.6), and extraprostatic extension (P = .013,

RR = 5.4), were evaluated, we saw an association with

PSA failure.

We then looked for potential associations between clinical

parameters and ADAM15 protein expression in advanced

PCa disease. Interestingly, Gleason sum (categorized as <7

and z7) was significantly associated with ADAM15 expres-

sion (Mann-Whitney U test, P = .014). This is graphically

demonstrated in Figure 2C. Extraprostatic extension and

tumor stage also showed an association with ADAM15

expression (P < .001 and P = .004), whereas all other clinical

parameters did not (P > .05).

The highest expression of ADAM15 in prostate tissue

samples was observed in hormone-refractory metastatic

PCa when analyzed at the RNA and protein levels. Our re-

sults also indicate that, in localized PCa cases, there is a

strong association with Gleason sum, which is known to cor-

relate with poor disease outcome.

ADAM15 Expression in TMA of Breast Cancer

To validate the protein expression of ADAM15 in breast

cancer, we analyzed a breast cancer TMA consisting of

stroma (n = 80), normal breast tissue (n = 37), and neoplastic

tissue [carcinoma in situ (n = 17), invasive carcinoma (n =

66), and metastatic deposit (n = 12)]. Staining intensities

were compared between malignant epithelia and benign

epithelia or stroma. Once quantified, the expression levels

demonstrated the mean ADAM15 protein staining intensity

for stroma (1.0; median = 1.0, SE = 0.02, SD = 0.16), normal

tissue (1.34; median = 1.00, SE = 0.07, SD = 0.45), carci-

noma in situ (2.85; median = 3.00, SE = 0.21, SD = 0.9),

invasive breast cancer (3.07; median = 3.15, SE = 0.11, SD =

0.91), and metastatic disease (3.28; median = 3.5, SE =

0.25, SD = 0.87). Here, pairwise comparisons demonstrated

highly significant differences in staining intensity between

malignant and benign breast tissues (Mann-Whitney U test,

P < .001). Although metastatic tissue samples had the

highest mean expression levels, the difference between

carcinoma in situ and invasive carcinoma was not significant

(i.e., comparison of invasive ductal or lobular carcinoma

Figure 1. (A) Comparison of benign tissue samples with neoplastic tissue

samples of a multitumor TMA independent of organ site. There is a highly

significant difference (Mann-Whitney U test, P < .001) in the expression

values of ADAM15 between normal and neoplastic tissue samples, with an

overexpression of ADAM15 in neoplastic tissue. (B) Comparison of non-

adenocarcinomas and adenocarcinomas of different origins. There is a highly

significant difference in the protein expression of ADAM15 within these two

categories. In adenocarcinomas, ADAM15 is significantly higher compared to

other types of neoplastic tissue (P < .001).
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versus metastases; P = .3). When the cutoff for staining

intensity was set at 3.0, 42 of 66 (64%) cases of invasive

carcinomas screened positive compared to 10 of 12 (83%)

positive cases of metastatic samples. These results demon-

strate that, although there is no statistically detectable dif-

ference in staining intensity between invasive samples and

metastatic samples, the highest staining was observed in

metastatic cases. Therefore, the trend demonstrates an

increased expression in ADAM15, as the disease pro-

gresses from low-grade, to advanced, to metastatic disease.

The data are graphically summarized for each tissue cate-

gory in Figure 3A.

To parallel our work with prostate array, we then assessed

ADAM15 protein expression in breast tissues for association

with clinical and pathological parameters and as predictor of

disease recurrence. Using univariable Cox regression anal-

ysis of ADAM15 expression, we did not find a strong asso-

ciation with outcome, defined as local or distant recurrence

(P = .517, RR = 1.075, CI = 0.865–1.335). Clinical param-

eters were as follows: tumor stage (P = .877, RR = 1.034,

CI = 0.680–1.571), number of positive nodes (P = .686, RR =

1.01, CI = 0.963–1.059), ER (P = .416, RR = 0.775, CI =

0.419–1.432) or PR (P = .907, RR = 0.963, CI = 0.51–1.82),

and HER-2/neu status (P = .549, RR = 0.913, CI = 0.679–

1.229). In addition, the increase in ADAM15 staining showed

no association with failure during follow-up. At the univari-

ate level, histologic grade (P = .041, RR = 0.512, CI =

0.27–0.973), age at diagnosis (P < .000, RR = 1.044, CI =

1.021–1.068), and tumor size (P = .032, RR = 0.712,

CI = 0.522–0.972) were associated with outcome. In our

patient group, we found a strong association between angio-

invasion and disease-free survival (P = .001, RR= 2.665, CI =

1.522–4.668), which remained significant in a multivariate

analysis (backward stepwise selection; Wald, P = .002).

Additionally, we looked for potential associations between

clinical parameters and ADAM15 protein expression in the

cohort of neoplastic cases. There was no association be-

tween ADAM15 expression levels and parameters such as

tumor stage, size of tumor, grade, number of positive lymph

nodes, ER, PR, and HER-2/neu status (P > .05) compared

within samples of advanced-stage cases. Interestingly, we

found that angioinvasion was associated with high expres-

sion of ADAM15 protein (Mann-Whitney U test, P = .006).

Therefore, patients with angioinvasive breast cancer had a

significantly higher expression of ADAM15. This is graph-

ically demonstrated in Figure 3B. The mean staining inten-

sity of cases with angioinvasion was 3.37 (median = 3.5,

SE = 0.16, SD = 0.72) compared to those without angio-

invasion (mean = 2.72, median = 3.0, SE = 0.11, SD = 0.99).

Figure 2. (A) ADAM15 is significantly overexpressed at the RNA level in

neoplastic prostate tissue. Its expression is significantly higher in localized

PCa than in benign prostatic tissue, and expression is highest in patients in

the hormone-refractory metastatic group. (B) Three hundred twenty-one

tissue samples were evaluated in this TMA. Staining intensity was

significantly stronger in metastatic tissue samples than in localized PCa.

Normal prostate tissue showed very low levels of ADAM15 expression (P <

.001). (C) There is a strong association between ADAM15 expression in the

TMA and Gleason sum categorized as <7 and z7 (P = .014).
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ADAM15 is not expressed in stromal cells and is ex-

pressed at low levels in breast epithelial tissues. In normal

glandular breast tissues, ADAM15 is expressed at the sur-

face of the lumen in a highly polarized fashion. As the dis-

ease progresses to a more advanced stage, this polarized

staining pattern is lost and ADAM15 expression becomes

upregulated and diffused throughout the cytoplasm. Quanti-

fication of breast cancer TMA staining shows that ADAM15

protein expression is highest in cases of invasive breast

cancer and metastatic breast cancer.

Evaluating the Expression of Proteases and Protease

Inhibitors in the Overexpression of ADAM15 by

cDNA Microarray

To determine the gene expression profile of ADAM15

overexpression in a PCa system, we created a stable LNCaP

PCa cell line expressing a tagged ADAM15 protein (M142,

described here). Figure 4, Panel B shows the protein ex-

pression of the ADAM15/GFP fusion protein in the LNCaP

M142 cells under fluorescencemicroscopy. Figure 4 Panel A,

shows the morphology of these same cells under bright

field. By western analysis, we detected the exogenous

ADAM15 protein in less than 2ug of total cell lysate per lane,

(data not shown). This analysis proved that the ADAM15

fusion protein was very highly expressed in these cells in

culture. Once a stable, highly expressing cell line of LNCaP

M142 was established, RNA was isolated, and gene expres-

sion profile was generated on the same cDNA chip as the

PCa profiles, as described in Materials and Methods section.

In this experiment, we compared vector control to M142 cells

in the presence of growth factors. Results showed that

ADAM15 was 1.5-fold overexpressed in stable transfectants

compared to vector control. Another 376 genes or expressed

sequence tags were at least 1.5-fold overexpressed com-

pared to vector control. Two hundred ninety-six genes were

at least 0.5-fold downregulated. It has been previously

published and is an accepted theme in the protease field

that a change in the expression level of a single protease will

then alter the expression of its inhibitor(s), and this change

can additionally influence the expression of other proteases

expressed by that cell [32,33]. Therefore, we focus on and

report here the results of our array data, which show signifi-

cant changes in the expression levels of protease inhibitors

and other proteases affected specifically by the overexpres-

sion of ADAM15 in our LNCaP PCa model. A selection of

these upregulated and dysregulated protease and protease

inhibitor genes is given in Table 1. Interestingly, TIMP2 was

overexpressed in M142 (ADAM15) LNCaP cells (1.7-fold

compared to vector control). To validate this finding, we

stained our tissue samples in the PCa TMA described here

with an antibody against TIMP2.

TIMP2 Staining of PCa TMA

Acknowledging the fact that there are tremendous inter-

actions between ADAMs and metalloproteinases and their

inhibitors, we wanted to evaluate further the overexpression

of TIMP2 in LNCaP M142 cells from a microarray cDNA

experiment. To begin to validate this finding, we analyzed the

protein expression of TIMP2 in a separate PCa TMA. The

expression levels in normal prostatic tissue were compared

to those of localized PCa cases. The result is graphically

given in Figure 5, demonstrating a significant overexpression

(Mann-Whitney U test, P < .001) of TIMP2 in PCa (mean =

Figure 3. (A) Protein expression of ADAM15 in different subtypes of breast

cancer from breast TMA. A significantly higher expression of ADAM15 was

seen in neoplastic samples (P < .001). Within different categories of

malignant subtypes, the differences are not significant. The highest levels of

ADAM15 were present in metastatic breast cancer tissue samples. Examples

of two tissue cores (one from a normal tissue and the other from an invasive

breast carcinoma) are depicted. (B) Breast cancer with angioinvasion has a

significantly higher expression of ADAM15 protein than tissues without

angioinvasion (P = .006).
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3.51, median = 4.0, SD = 0.68) compared to normal tissue

(mean = 2.32, median = 2.0, SD = 1.09), is graphically given

in Figure 4. Based on the results shown in Table 1 and

Figure 5, we hypothesize that there might be an important

interaction between ADAM15 expression and TIMP2 expres-

sion levels in PCa. This interaction may affect a common

protease pathway involved in the progression of advanced

metastatic disease.

Discussion

The ADAM family of proteases was first reported in 1995 [34].

Over the past 10 years, these proteins have been associated

with distinct biologic processes, including reproduction

(sperm/egg fusion), wound healing (migration and adhesion),

inflammation (release of TGF-a), and tissue organogenesis

[34]. More recently, members of the ADAM family have been

implicated in tumorigenesis. This does not seem unreason-

able, as this family of molecules has been associated with

proteolytic activation, adhesion, and release of cytokines,

which promote growth through signal transduction pathways.

Specifically, reports of ADAM15 have implied an associa-

tion with tumorigenesis, but the functional role that ADAM15

plays in this process is not known. Recent reports, primarily

utilizing DNA and RNA platforms, demonstrate increased

expression of ADAM15 in ovary, gastric, lung, and breast

cancer tissues [35–40]. Samples of these same tumors are

represented in TMAs reported in this study and confirm

increased ADAM15 protein expression in patients with ovary,

gastric, lung, and breast cancers.

One of these reports analyzed the expression of ADAM15

in lung cancer cell lines and tissues and found that normal

epithelial cells were negative for ADAM15 expression and

that a higher expression was always found in tumor cells

within the same tissue sections [39]. As observed in our

study, adenocarcinoma of the lung showed the strongest

staining. In comparison, small cell lung cancer showed only

weak ADAM15 expression in our hands.

This report examined the expression of ADAM15 in mul-

tiple types of solid tumors, thus expanding the information

base on ADAM15 expression in cancer. By using TMAs that

included 22 different types of tumors, we can now report that

the ADAM15 protein is upregulated in a variety of tumors but

is most highly expressed in adenocarcinoma. From our TMA

data, we observed that the highest levels of staining in tissue

samples derived from ovary, breast, ileum, colon, and lung

cancers. Lower values for protein expression were found in

pheochromocytoma, sarcoma, carcinoma of the thyroid, and

testicular cancer. In this study, all neoplastic tissue samples,

compared to benign tissue samples, had higher expression

levels, with adenocarcinomas exhibiting the highest level of

ADAM15 staining.

Our previous work demonstrates that proteases play an

important role in changing the homeostatic balance of both

the prostate and breast epithelia [41–44]. In this study, we

continued to focus on these two hormonally sensitive tissues

and explored the expression of the ADAM15 protease in

metastatic disease progression. We first found that ADAM15

was upregulated in many cancer cDNA arrays (see Table W1

generated on the Oncomine website Oncomine.org, includ-

Figure 4. (A) Over-expression of ADAM15 protein in LNCaP cells in culture

where, LNCaP M142 cells are shown under bright field microscopy and (B)

the same field of cells under fluorescence, (magnification for both is 20X).

Note that ADAM15/GFP fusion protein is localized to the cell membranes and

the cell/cell junctions.

Figure 5. Protein expression of TIMP2 in prostate tissues. TIMP2 expression

is significantly higher in PCa compared to normal or benign prostate tissue

(Mann-Whitney U test, P < .001).

Table 1. cDNA Microarray Experiment Showing Genes That Were Upregu-

lated or Downregulated on the cDNA Chip (Comparing cDNA from LNCaP

M142 ADAM15-Overexpressing Cells with cDNA from Control Cells).

GENE ADAM15 Ratio

NOMANCLATURE (Control

LNCaP)

Upregulated Proteases and Inhibitors:

membrane metallo-endopeptidase MME 2.47

enolase 2 (gamma, neuronal) ENO2 2.42

matrix metalloproteinase 24 MMP24 1.79

tissue inhibitor of metalloproteinase 2 TIMP2 1.69

aconitase 1, soluble ACO1 1.68

a disintegrin and metalloproteinase

domain15

ADAM15 1.52

Downregulated Proteases:

caspase 3, apoptosis-related

cysteine protease

CASP3 0.462

disintegrin-like (reprolysin type)

thrombospondin type 1, motif 3

ADAMTS3 0.417

Given is the ratio of ADAM15 transcripts overexpressed in LNCaP M142 cells

to ADAM15 transcripts overexpressed in vector control LNCaP cells.
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ing arrays of prostate and breast cancer). Now we have

determined that the ADAM15 protein is upregulated in ag-

gressive adenocarcinoma, and we suggest that it may play

an essential regulatory role in the metastatic progression of

both prostate and breast cancers.

For PCa, there is only very limited information available in

the literature with respect to ADAM15. Of the metalloprotein-

ases represented in our PCa cDNA expression array [28,30],

only five metalloproteinases were significantly upregulated;

this included three ADAM family proteases. The overexpres-

sion of ADAM15 mRNA in neoplastic prostate tissue was

validated in two other independent cDNA array studies, thus

providing strong evidence that ADAM15 levels are increased

in cancer tissues compared to normal prostatic tissues

[31,45,46]. In the present study, the highest expression of

ADAM15 was observed in hormone-refractory and advanced

metastatic PCa. In cell culture experiments using LNCaP

cells, ADAM15 expression seemed to be independent of

hormonal stimulus (data not shown). Related family mem-

bers (ADAM9 and ADAM10) are thought to be sensitive to

dihydrotestosterone levels, whereas ADAM17 seems to be

repressed by androgens [7]. These results are based on

studies in cell culture with the LNCaP cell line, which may

represent an early stage of PCa disease. It cannot be

excluded that, in the clinical setting and in advanced tumor

stages, hormonal influences may still affect and influence the

expression levels and activities of these disintegrins.

For cases specific to PCa, we demonstrate that, overall,

increased expression of ADAM15 is associated with a more

aggressive phenotype. This hypothesis is supported by the

finding that, in localized PCa cases, there is a strong

association with Gleason sum. Cases with a Gleason sum

higher than 7 showed stronger ADAM15 expression com-

pared to those with a Gleason sum lower than 7. The

Gleason scoring system provides a well-described patholog-

ical parameter [24,25] in PCa disease and has proven to be a

predictive value, and thus is considered as one of the

strongest parameters for the prediction of outcome after

specific therapy in clinical settings [37,38]. The results of

this study suggest that the overexpression of ADAM15 may

represent a more aggressive PCa phenotype.

In breast cancer, we found ADAM15 to be expressed at

lower levels in the stroma and normal tissues, and at the

highest levels in invasive and metastatic samples. This is in

accordance with observations of an increased copy number

of the ADAM15 gene in human breast cancer cell lines [38].

We also observed overexpression in the tumor aspect of

breast tissues, where we found a very striking association

with angioinvasion. This is interesting for three reasons. First,

angioinvasion has been reported as a predictor of disease

progression [49], local recurrence [50], and overall survival

(RR = 4.26) [51]. Second, ADAM15 was recently described

as a potential target for inhibitors of pathological neovascula-

rization in ADAM15-null mice. In this model, neovasculariza-

tion and melanoma tumor cell growth could be suppressed

on this ADAM15 knockout background [52]. Third, human

ADAM15 contains an RGD sequence and has been shown

to interact with avb3 and avb1 integrins, which can drive an

angiogenic response [53]. There are now several reports

linking integrins to angiogenesis [54–56]. These data sug-

gest that ADAM15 could be directly involved in the process

of tumor cell growth through enhancement of angiogenesis.

Taken together, these results suggest that ADAM15 could be

a target for the development of inhibitors of angiogenesis, as

mice carrying a null mutation in ADAM15 are viable and fertile

without any severe pathological phenotypes [52].

In a separate set of experiments, we analyzed ADAM15

overexpression in the PCa cell line LNCaP using cDNA

microarray technology. To uncover coregulators of disease

progression, we examined gene expression profiles follow-

ing the overexpression of ADAM15 in LNCaP M142 cells

compared to vector control. We focused on proteases and

protease inhibitors, which were associated with ADAM15

overexpression. This analysis revealed that the protease in-

hibitor TIMP2 was upregulated in LNCaP M142 cells. Our

observation was verified in our study on protein level using

a TMA of PCa. For technical reasons, TIMP2 staining was

carried out on a separate TMA. Due to the result of the

expression profile and the high number of cases stained for

ADAM15 and TIMP2, we believe that the results are valid and

representative of PCa. The observed overexpression of

TIMP2 has to be interpreted with caution because it is known

that TIMPs are not totally selective for MMPs [57]. So far, of

these endogenous regulators of MMPs, four TIMPs are

known. For example, TIMP3 is believed to inhibit ADAM17

andADAM12. ADAM10 is also inhibited by TIMP3, in addition

to TIMP1 [58,59]. However, not all MMPs seem to be sensi-

tive to TIMPs. For example, ADAM8 and ADAM9 activity is

not blocked by TIMPs [58]. Our data now suggest that TIMP2

may be an inhibitor of ADAM15; this observation warrants

further study in the context of cancer progression. Addition-

ally, we also report that ADAMTS3 and MMP24 cDNA ex-

pression is directly influenced by the overexpression of

ADAM15, and we plan to verify these results on protein levels

in future experiments.

Alternative splicing of primary RNA transcripts contributes

to the functional regulation of many genes that impact normal

and aberrant cellular functions. Spliced variants of ADAM

gene family members have previously been found in several

cancers, including grossly altered ADAM mRNA variants in

breast cancer cells [38]. Although ADAM15 antibody recog-

nition might be affected by some splicing events, ADAM15

splicing has not been investigated in PCa cells or tissues.

To summarize the present study, we can state that

ADAM15 is overexpressed in a series of solid malignant

tumors where the highest levels of expression are observed

in adenocarcinomas of multiple tumor types. Specifically, we

demonstrate that ADAM15 is highly upregulated in prostate

and breast cancers, where the most significant staining was

detected in advanced metastatic disease. For PCa, there is a

strong association between ADAM15 expression and Glea-

son sum. In breast cancer, ADAM15 is significantly overex-

pressed in angioinvasive carcinoma; this observation may

give us the best insight as to how the overexpression of

ADAM15 directly impacts the growth and spread of more

aggressive cancer cells. It is important to note here that
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Gleason sum and angioinvasion are two parameters asso-

ciated with the worst outcome in a clinical course. In experi-

ments wherein we analyze ADAM15 by cDNA expression in

PCa cells that overexpress this disintegrin, we can report that

ADAM15 directly influences the expression levels of specific

protease inhibitors and proteases.

The results shown here demonstrate upregulation and

change in the protein distribution of ADAM15 inmany types of

adenocarcinoma. This suggests that ADAM15 may play an

essential role in the progression to metastatic disease, es-

pecially in cases of prostate and breast cancers. If this proves

to be the case, then ADAM15may serve as a drug target [13]

for the treatment of patients who present with advanced

stages of cancer and more aggressive types of cancer.
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