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Objective: Investigating the contacts of a newly diagnosed tuberculosis (TB) case to prevent TB transmis-
sion is a core public health activity. In the context of limited resources, it is often necessary to prioritize
investigation when multiple cases are reported. Public health personnel currently prioritize contact
investigation intuitively based on past experience. Decision-support software using patient attributes
to predict the probability of a TB case being involved in recent transmission could aid in this prioritiza-
tion, but a prediction model is needed to drive such software.
Methods: We developed a logistic regression model using the clinical and demographic information of TB
cases reported to Montreal Public Health between 1997 and 2007. The reference standard for transmis-
sion was DNA fingerprint analysis. We measured the predictive performance, in terms of sensitivity, spec-
ificity, negative predictive value, positive predictive value, the Receiver Operating Characteristic (ROC)
curve and the Area Under the ROC (AUC).
Results: Among 1552 TB cases enrolled in the study, 314 (20.2%) were involved in recent transmission.
The AUC of the model was 0.65 (95% confidence interval: 0.61–0.68), which is significantly better than
random prediction. The maximized values of sensitivity and specificity on the ROC were 0.53 and 0.67,
respectively.
Conclusions: The characteristics of a TB patient reported to public health can be used to predict whether
the newly diagnosed case is associated with recent transmission as opposed to reactivation of latent
infection.

� 2014 Elsevier Inc. All rights reserved.
1. Background and significance

Tuberculosis (TB) is a communicable disease caused by
Mycobacterium tuberculosis (MTB). Despite organized control
efforts, TB continues to occur in developed countries. In Canada,
TB is concentrated in immigrants from high TB incidence countries,
inner-city residents, and Aboriginal persons [1]. Upon infection,
approximately 90% of individuals remain asymptomatic and non-
infectious with latent tuberculosis infection (LTBI). After months
or years of latency, approximately 5–10% of persons with LTBI
develop active TB disease due to a complex array of biological,
genetic and environmental factors [2]. Individuals with reactivated
TB can transmit infection to others in the absence of timely detec-
tion and intervention.

Contact investigation is a core public health strategy to prevent
and control TB. It involves identification, medical evaluation, and
treatment of individuals who have had contact with a newly diag-
nosed case, often called an index case. Evidence of recent infection
or active TB disease among contacts suggests ongoing transmis-
sion, and treatment is provided to infected individuals to prevent
subsequent active TB, thereby interrupting transmission.

A more recent approach to identifying TB transmission is DNA
fingerprint analysis. With this approach, DNA is isolated from the
MTB organisms cultured from patient samples. Mycobacterial
DNA is then characterized with respect to the presence and num-
ber of target sequences; transmission is assumed to have occurred
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Table 1
Patient features used to predict transmission of TB.

Name of features Format %Missingness
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between cases with matching ‘‘fingerprints’’. Although this method
is capable of identifying transmission involving persons with lim-
ited contact, results can take weeks [3], and the method can be
applied only to persons with active disease from whom it is possi-
ble to obtain a positive MTB culture. In particular, DNA fingerprint-
ing is not able to establish transmission to individuals with LTBI, or
to those with culture-negative active TB (a frequent manifestation
in children, for example). For these reasons, contact investigation
remains critical to the rapid assessment and interruption of
transmission.

Ideally, contact investigation should be conducted for all infec-
tious cases immediately upon diagnosis. In practice, however, lim-
ited resources in public health may necessitate prioritization of
contact tracing among multiple infectious individuals. In general,
patient features related to infectiousness, such as pulmonary and
laryngeal disease, cavitary lesions on chest radiography, positive
sputum acid fast smears, and younger age are considered when
assessing the urgency of investigation [4].

Previous molecular epidemiological investigations of TB trans-
mission have identified additional clinical and demographic pre-
dictors associated with involvement in transmission chains.
These features include HIV infection, drug-resistant TB, homeless-
ness, and intravenous (IV)-drug use [5]. The degree to which these
features are used to prioritize contact tracing depends on the intu-
ition and experience of public health officials, and the potential use
of these patient features to predict the probability that a case is
involved in recent transmission has not been explored.

Statistical and machine learning algorithms, which estimate the
probability of an event as a function of input variables, can analyze
many patient variables to assist medical decision making. Such pre-
diction models can inform decisions about diagnosis and therapy
when applied to patient data contained in electronic health records
(EHR) [6]. Although the models are most frequently used for clinical
decision support, their application in public health is rare. In TB con-
trol, using known risk factors for transmission associated with a
newly diagnosed active TB case to predict recent transmission
appears feasible and should aid timely and evidence-based decision
making in prioritization of contact investigation.

The rapid identification of community transmission allows
timely intervention. Although it is often considered the gold-stan-
dard for detection of transmission, the impact of DNA fingerprint-
ing is hampered by its slow turnaround time. A decision-support
tool that uses readily available clinical and demographic features
of an active TB case would permit more rapid, evidence-based
decision making in prioritizing contact investigation. As an initial
step towards creating such a decision-support tool, we developed
and evaluated a statistical learning model to estimate the proba-
bility of a given case of active TB being involved in recent
transmission.
Site of infection (Pulmonary involvement or
not)

Binary 0.00

Sputum AFB smear positive Binary 7.02
Previous diagnosis of TB (Active or Latent

Tuberculosis)
Binary 8.67

Cavitary lesion on chest X-ray Binary 0.39
Drug-resistant disease Binary 3.54
HIV test result Binary 48.52
Age (year) Continuous 0.26
Country of origin Categorical 0.19
Gender Binary 0.97
Being Canadian born Aboriginal Binary 88.98
Being homeless Binary 85.63
Being alcoholic Binary 24.16
Being intravenous drug user Binary 24.03
Area of residence on the island of Montreal by

health administrative region
Categorical 2.57

Living in apartment Binary 0.00
Coughing Binary 4.38
2. Materials and methods

2.1. Source of data

The data used to develop and evaluate the model were obtained
from 1844 active TB cases reported to the public health depart-
ment between January 1, 1996 and December 31, 2007 in Mon-
treal, Quebec, Canada. In Quebec, as in all provinces in Canada
and states in USA, every diagnosis of active TB must be reported
by name to the local public health department along with stan-
dardized demographic, clinical, and microbiologic information.
Hence, as part of routine public health practice, clinical and epide-
miological data were collected by public health nurses from
patients and treating clinicians and were stored in a database.
We extracted these data in non-nominal form for our study, which
was approved by the McGill Faculty of Medicine Institutional
Review Board.
2.2. Definition of the dependent variable

We used DNA fingerprinting based on the IS6110 target
sequence, by restriction-fragment length polymorphism (RFLP)
analysis, to assess the involvement of each case in recent transmis-
sion. IS6110 is a repetitive DNA sequence in the MTB genome, and
its frequency and insertion location vary from one MTB strain to
another. This sequence is highly preserved, however, as the bacte-
ria propagate from one host to another, thus making it possible to
identify the same MTB strain in cases belonging to a chain of trans-
mission [7]. Based on standardized IS6110 – RFLP methodology [8],
cases with MTB isolates that shared identical numbers and inser-
tion locations of the IS6110 sequence were deemed members of
the same TB ‘‘cluster.’’ Cases with unique IS6110 patterns were
deemed unique. As the discriminative ability of the RFLP method
is compromised for MTB strains with few copies of the IS6110 ele-
ment [9], we used the results of a secondary genotyping method,
spoligotyping, for strains that contain less than six IS6110
elements.
2.3. Selection of predictors

Table 1 lists the independent variables initially included in the
prediction model, which were selected by review of previous epi-
demiological studies exploring transmission of TB. For the countries
of origin variable, we created three categories: Canadian born, Hai-
tian born, and born in other countries. In previous work, Haitian
birth was identified as a risk factor for transmission in Montreal
[10], hence we used a distinct category for these individuals. For
the Area of residence variable, we used health administrative areas
on the island of Montreal (Centres de santé et de services sociaux –
CSSS) as a unit of the analysis. There are 10 CSSS areas in Montreal,
and areas with a similar frequency of genotype-defined clustering
were merged to create four areas of residence. Multi-drug resistant
TB (MDR-TB) disease, which is resistant to at least two of the main
anti-TB drugs, Isoniazid (INH) and rifampicin, has been most
strongly associated with recent transmission [11–13]. However,
MDR-TB disease rarely occurs in Canada [14], so we considered
for inclusion in our model the more frequently observed INH
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resistance. The Previous diagnosis of TB variable included previous
diagnosis of active disease and LTBI.
2.4. Multiple imputation

Because excluding the cases with missing data would reduce the
size of the dataset and possibly introduce bias [15], we filled in the
missing values using multiple imputation, which replaces missing
information with plausible values drawn from a conditional distri-
bution formed by the observed covariates [16]. We used fully condi-
tional specification approach [17], where multivariable imputation
model is specified for each incomplete variables. As an example, a
linear regression model was fit to the observed data in order to pre-
dict the missing values of the continuous age variable. Similarly,
logistic regression and multinomial regression models were speci-
fied to predict the missing values of binary and categorical variables.
We used all the variables in our dataset shown in Table 1 as the pre-
dictor variables for the imputations models.

Imputation was repeated multiple times to generate m different
complete datasets, each of which was used to train and test the
model [16]. The resulting m measured performances of prediction
and their corresponding variances were pooled into a single final
estimate using Rubin’s rule [16]. In this study, 15 imputed datasets
were created, which should be sufficient given the proportion of
missingness [16]. We used the MICE (Multivariate Imputation by
Chained Equation) package [18] in the R programming environ-
ment [19] to generate imputed datasets. Homelessness and Aborig-
inal status were not useful predictors and were not explored
further, since both variables had a very large proportion of missing
values. Missing values in all other predictors, including HIV infec-
tion, were imputed.
2.5. Prediction model

A logistic regression model was used to predict whether a given
case was involved in recent transmission or was reactivation of
LTBI. We selected logistic regression due to its wide recognition
in the medical community [20], and its comparable classification
performance to other methods such as artificial neural networks
and support vector machines [21–24]. In addition, it provides a
straightforward interpretation of the predictive power of indepen-
dent variables in the form of an odds ratio [23].

Interaction of predictor variables may occur, so the plausibility
of adding interaction terms was assessed by the following selection
approach; the Bayesian Information Criterion (BIC) of a model con-
taining all the predictors (i.e. main model) was compared to the
BIC derived from the same model plus the interaction term. Lower
BIC indicates better model fit, and BIC tends to penalize the larger
model (i.e. the model with additional parameter) [25]. Therefore,
the interaction term was considered a strong predictor if the model
containing the term showed a lower BIC than the main model.
Because BIC-based model selection is substantially more conserva-
tive than other statistical criteria such as Akaike’s Information Cri-
terion and the likelihood ratio test due to its stronger penalization
mechanism, we were less likely to select interaction terms result-
ing from noise of the development data. All possible combinations
of two variables were tested in this fashion. We performed the
screening of interaction terms before the model selection process
described below, since testing all possible combinations of interac-
tion terms by the model selection method (Bayesian Model Aver-
aging) can result in a very large model space. As well, we
assessed the linearity of the continuous age variable in relation
to the logit of the dependent variable. To do this analysis, we used
a fractional polynomial, which tests the feasibility of linear and
various non-linear functions of continuous variables [26].
2.6. Model selection

We identified the optimal model using Bayesian Model Averag-
ing (BMA). BMA estimates the posterior probabilities of all possible
models given the training data, chooses a set of candidate models
according to their posterior probability distributions, and averages
the coefficients of the selected models using the posterior proba-
bilities as weights [27]. Posterior model probability for each of can-
didate models can be analytically approximated by BIC, as
described by Hoeting et al. [27].

BMA assumes that no single model will correctly explain the
observed data and creates a synthetic model as an approximation
to a true unobserved model. Unlike conventional model selection
approach for generalized linear model, such as stepwise selection
which bases inference and prediction on a single best model,
BMA offers a solution to account for model uncertainly by averag-
ing the coefficient of multiple models [27]. Compared to stepwise
model selection, BMA was shown to perform superior in selecting
collect model [28] and often estimate smaller standard deviations
for the parameters of interest [29].

Instead of determining the effect of a predictor by its p-value
from statistical significant test, BMA reports the posterior probabil-
ity of each predictor. This value is simply the sum of the posterior
probabilities of the models that contain a given variable, and rep-
resents the normalized probability of a coefficient having a non-
zero value given the training data, P(b – 0|D). A posterior effect
probability of more than 0.5 indicates evidence for the effect of a
variable. For prediction, we included in the final model variables
whose posterior effect probability were not zero. We implemented
our model in the R programming environment using the BMA
package [30].
2.7. Assessment of predictive performance

The discriminative performance of the model was assessed by
plotting the Receiver Operating Characteristic (ROC) curve and
calculating the Area Under the ROC Curve (AUC). In addition, we
calculated negative predictive value (NPV) and positive predictive
value (PPV) of the model over a range of classification thresholds.
All estimates were obtained through 10 repeats of 10-fold cross-
validation. Since we generated 15 imputed datasets, we applied
the ten repeats of 10-fold cross-validation to each of these imputed
data sets, producing 15 sets of estimates (i.e. AUC, ROC, PPV, NPV,
sensitivity, and specificity), which we pooled using Rubin’s rule
[16].
3. Results

Of the 1829 active TB cases reported to the public health
department during the study period, we excluded cases with neg-
ative or missing culture results (199 cases, 10.9%), and culture
positive cases with missing DNA fingerprinting results (78 cases,
4.3%), leaving 1552 cases (84.9%) to train and test the model. Of
these 1552 cases, 314 (20.2% of the enrolled cases) were clustered
according to IS6110 RFLP and spoligotyping. 107 distinct matching
patterns were observed, representing 107 TB clusters. The vast
majority of TB clusters (67%, or 72 clusters) consisted of 2 cases;
in other words, most clusters contained only one putative second-
ary case. The small proportion of clustered cases suggests a low
level of ongoing transmission in Montreal.

Table 2 shows the distributions of potential predictors among
clustered and unique cases. An interaction term for Living in
apartment and Cavitary lesion on chest X-ray was included in the
prediction model, since the model containing the product of the
two variables had a lower BIC than the model without it. No



Table 2
Distribution of patient characteristics associated with recent transmission of TB.

Predictor Unique cases (N = 1238, 79.8%) Clustered cases (N = 314, 20.2%)

Missing data Missing data

Ne %d N % N %d N %

Median age 39.7 28.9–61.9 4 40.1 27.3–54.5 0
Living in apartment 606 49.0 0 0.0 146 46.5 0 0.0
Female 550 44.4 10 0.8 143 45.5 5 1.6
Previous diagnosis of TB 134 10.8 115 9.3 25 8.0 20 6.4
Cavitary lesion on chest X-rayb 213 24.6 4 0.5 70 29.4 2 0.8
HIV positive 82 6.6 630 50.9 46 14.6 123 39.2
Intravenous drug use 12 1.0 300 24.2 8 2.5 73 23.2
Alcoholic 163 13.2 302 24.4 47 15 73 23.2
Coughing 667 53.9 52 4.2 173 55.1 16 5.1
Infection with INH resistant strainc 100 8.1 48 3.9 25 8.0 7 2.2
Residential location on the island of Montreal (CSSS Area)
Area A 434 35.1 2 0.2 65 20.7 1 0.3
Area B 489 39.5 164 52.2
Area C 243 19.6 53 16.9
Area D 70 5.7 31 9.9
Country of origin
Canada 185 14.9 30 2.4 77 24.5 10 3.2
Haiti 151 12.2 75 23.9
Other countries 872 70.4 152 48.4
Pulmonary TB 865 69.9 0 0.0 238 75.8 0 0.0
Sputum AFB smear positivea 422 48.8 86 9.9 120 50.4 23 9.7
Being aboriginal 1 0.1 1118 90.3 6 1.9 263 83.8
Being homeless 4 0.3 1046 84.5 5 1.6 283 90.1

a Among pulmonary TB cases.
b Among pulmonary TB cases.
c Among cases with resistant TB strain.
d Interquartile range was used instead of proportion for age.
e Median age was used instead of count for age variable.

Table 3
Regression coefficients and posterior effect probabilities of the predictor variables.

Predictors OR 95% CIa P(b – 0|D)

Age (10 years) 0.93 (0.84–1.04) 0.71
Living in apartment 0.98 (0.81–1.17) 0.09
Female 1.00 0.00
Previous diagnosis of TB 0.99 (0.88–1.12) 0.02
Cavitary lesion on chest X-raye 1.00 0.00
HIV positive 2.00 (1.22–3.27) 0.96
Intravenous drug Use 1.00 0.00
Alcoholic 1.00 (0.95–1.05) 0.01
Coughing 1.00 0.00
Infection with INH Resistance strain 1.00 (0.95–1.05) 0.01
Apartment X Cavitaryb 2.22 (1.44–3.42) 0.99

CSSS Areac

CSSS Area A 0.79 (0.47–1.31) 0.51
CSSS Area B 1.03 (0.84–1.26) 0.01
CSSS Area C 1.47 (0.66–3.26) 0.53

Country of origind

Canada 2.27 (1.58–3.26) 1.00
Haiti 2.34 (1.60–3.44) 1.00

Pulmonary TB and smear resultse

Pulmonary & smear negative 1.01 (0.90–1.13) 0.04
Pulmonary & smear positive 1.00

P(b – 0|D) = Posterior effect probability.
OR = Odds Ratio.

a 95% CI was calculated only for the predictors that had non-zero posterior effect
probabilities.

b Indicates interaction term between the Living in apartment and Cavitary lesion in
chest X-ray variable.

c Indicator variables were created for categorical variable. Its reference category
is Area D.

d Indicator variables were created for categorical variable. Its reference category
is Other countries.

e These are also indicator variables, and their reference category is a case having
extra-pulmonary TB.
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transformation of the continuous variable (Age) was needed, as
the analysis of its functional relationship with the logit of the
dependent variable by fractional polynomial suggested a linear
relationship (data not shown).

Table 3 shows the regression coefficients and posterior effect
probabilities of the predictors estimated by BMA. In general, most
variables that we considered had strong evidence against their
effects, as represented by the small values of their posterior effect
probabilities. Age of the patients and residential location on the
island of Montreal appeared to have modest positive evidence for
an effect. Being Canadian or Haitian born appeared to be the stron-
gest predictors of involvement in recent transmission. In addition,
HIV infection and the interaction of living in an apartment and
having cavitary TB disease showed strong positive evidence.

Fig. 1 presents the classification performance of the model as
summarized by the ROC curve. The AUC of 0.65 (95% CI: 0.61–
0.68) indicates that the performance is significantly superior to
random prediction. The maximized accuracy of the model (the
point of the curve closest to the top-left corner of the graph) is at
a sensitivity of 0.53 and a specificity of 0.67.

As seen in Table 4, the values of NPV remained substantially
higher than the prevalence of unique cases in the original dataset
throughout the range of the sensitivity (i.e. 0.8). On the other hand,
PPV was lower than the prior probability of clustering (i.e. 0.2)
except at very low sensitivity.
4. Discussion

We assessed the feasibility of predicting whether a newly
diagnosed TB case reported to the public health department was
involved in a chain of recent transmission. The discriminative
performance of the model we developed was superior to random
prediction, suggesting that the model has some potential to aid
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Fig. 1. ROC curve showing the classification performance of the model. Dashed line
indicates random prediction. AUC of the ROC was 0.65(95% CI: 0.61–0.68).

Table 4
Specificities, PPVs, and NPVs of the model at various sensitivities.

Sensitivity Specificity PPV NPV

0.95 0.04 0.07 0.92
0.75 0.37 0.08 0.96
0.53 0.67 0.11 0.95
0.5 0.70 0.11 0.95
0.25 0.88 0.14 0.94
0.05 0.99 0.28 0.93

H. Mamiya et al. / Journal of Biomedical Informatics 53 (2015) 237–242 241
decision-support in a public health practice setting. The probabilis-
tic interpretation of the AUC of our model in the context of TB con-
trol is as follows: given two reported TB cases to public health
authority, one being involved in recent transmission and the other
being an isolated case, there is a 0.65 probability that the model
will suggest the prioritization of the case involved in recent trans-
mission. Even though an AUC of 0.65 may represent only a modest
improvement over chance discrimination, the classification accu-
racy of our model is likely to be optimal for the available set of pre-
dictor variables at the time of diagnosis. Such a model has the
potential to promote accurate and reproducible decision-making
in situations where public health practitioners may have not
received adequate training and may be forced to prioritize investi-
gation of TB cases due to resource constraint in local health author-
ities. The strongest predictor of recent transmission is the
interaction of cavitary lesion and living in apartment, followed
by HIV infection. Age and the area of residence are found to have
modestly predictive powers.

Across the range of the classification thresholds considered, the
NPV was high, while the PPV was low. A decision-support algo-
rithm based on this model is therefore likely to be most useful in
identifying unique cases or excluding recent transmission. The
low PPV may be due to a small number of strong predictors, which
occur with a low frequency among cases involved in recent
transmission.

A challenge associated with predicting recent TB transmission is
the influence of many clinical and non-clinical variables on the
process of transmission. Prediction of individual clinical outcomes
usually considers individual characteristics, such as demographic
variables, medical history, clinical observations, and laboratory
data. Predicting disease transmission, however, is likely to be
improved by the addition of features, such as susceptibility of
contacts, dwelling characteristics that facilitate transmission, and
the nature of interactions between a person with TB disease and
his/her contacts. Although these data would likely improve trans-
mission in our model, they are not captured routinely. Our research
focused on attributes of cases that are readily available at the time
the case is reported to public health authorities, thus allowing
timely decision-making.

Utilization of prediction models to aid public health interven-
tion is uncommon, and its application is largely limited to selective
screening of case-finding activities for sexually transmitted infec-
tions [31]. A simple analogue of a decision support algorithm for
the prioritization of contact investigation is the Syphilis Reactor
Grid, a table algorithm to rank the investigation based on the
age, sex, and laboratory result of a notified case [32]. Although sim-
ple to use, the amount of information incorporated into the deci-
sion algorithm is limited. In part, the difficulty of implementing
prediction algorithm in daily public health practice is due to the
unavailability of relevant patient attributes to public health
department at the time of diagnosis. Increasing adoption of EHRs
and the progress of health information exchange is opening new
opportunities for local health departments to utilize the data in
clinical information systems, from automated notification of
reportable diseases and syndromic surveillance to beyond [33].
The interoperability between clinical and public health informa-
tion systems would enable querying relevant clinical and demo-
graphic characteristics of reported case of notifiable disease for
investigational purposes upon notification of reportable disease
to local health department [34]. Such data can be immediately syn-
thesized to generate the probability of recent transmission within
the information system in local health departments, thereby pro-
moting timely resource allocation for response, particularly in
resource-limited settings.

Strengths of this study include the use of multiple imputation to
simulate missing values. Without this method, we would have dis-
carded more than 50% of observations due to the high proportion
of missing status for HIV infection, leading to decreased precision
and a potentially biased estimate of prediction if the distribution
of input and dependent variables are associated with the missing-
ness of the HIV status. In addition, recent transmission in our ref-
erence data was objectively determined by DNA fingerprint
analysis.

Although specific in identifying clusters, DNA fingerprint-based
investigation has its own limitations. Because the method is appli-
cable only to culture-positive active TB cases, individuals who con-
tracted latent infection only, and culture negative cases could not
be included. For example, children are less likely to develop culture
positive disease, and persons with LTBI who are uninfected by HIV
are much less likely to develop active disease than those who are
HIV-coinfected. Even though the proportion of active TB cases with
missing or negative culture results was relatively small, we did not
have systematic data on LTBI in contacts, so we could not use this
as a complementary index of transmission for purposes of the pres-
ent analysis.

Similarly, clusters defined by DNA fingerprinting do not neces-
sarily capture transmission events that are already appropriately
managed by successful identification, evaluation and treatment
of latently infected contacts, since such contacts do not develop
active disease. Therefore, in a setting where contact investigation
is generally successful, as in Montréal, transmission events identi-
fied by genotyping tend to involve casual contacts, where links to a
given index case may not be captured by interview, no matter how
thorough. In addition, because active TB cases with well-known
risk factors of transmission receive intense intervention (including
treatment of infected contacts), further transmission and develop-
ment of active disease among contacts are more likely to be pre-
vented. Thus, the relationship of the risk factors and transmission
is obscured in the presence of active intervention in the training
data. Despite the little predictive power of clustering observed in
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our model, however, positive sputum smear plays a primary role in
assessing the urgency of contact investigation in current public
health practice [4]. In practice, the prioritization of investigation
should be initially determined based on the established factors of
infectiousness, and the probabilistic assessment of transmission
by the model will subsequently aid ranking investigation based
on other attributes, thus combining existing knowledge and pre-
dictive analysis.

Further research is required to measure the added value of the
predictive model to a TB control program. The classification perfor-
mance of the model was better than random prediction, but its
performance relative to current practice (i.e. judgment as to the
likelihood of transmission by public health practitioners) should
be ascertained, preferably in prospective evaluation. How to trans-
late the probabilistic output to the decision making in public
health setting would depend on the balance of available public
health resource, incidence of active tuberculosis and recent trans-
mission, and the goal of local TB control program.
5. Conclusions

We have demonstrated that patient attributes available at the
time of disease reporting can be used to predict whether a TB case
reported to public health is involved in recent transmission.
Models such as the one we developed have the potential to be
embedded in a decision support tool and guide evidence-based
public health practice. The use of such models and decision-
support tools are likely to become increasingly feasible in the
future as clinical and demographic data become rapidly available
in an electronic format to public health authorities.
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