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a b s t r a c t

We have analyzed the substrate kinetics of the GTPase activity of FtsZ and the effects of two different
GTPase inhibitors, GDP and the slowly hydrolyzable GTP analogue GMPCPP. In the absence of inhib-
itors the GTPase activity follows simple Michaelis–Menten kinetics, and both GDP and GMPCPP
inhibited the activity in a competitive manner. These results indicate that the GTPase active sites
in FtsZ filaments are independent of each other, a feature relevant to elucidate the role of GTP
hydrolysis in FtsZ function and cell division.

Structured summary of protein interactions:
FtsZ and FtsZ bind by light scattering (View interaction).
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction otide binding affinities which are on the nanomolar range for both
FtsZ is a GTPase involved in division in bacteria, euryarchaea
and chloroplasts [1,2]. In vitro FtsZ assembles in a GTP-dependent
manner forming polymorphic polymers whose structures depend
on the reaction conditions. In solution the main polymers are
thought to be cyclic single stranded filaments about one hundred
subunits long [3], while when bound to a surface a variety of struc-
tures of different shapes and sizes are seen by electron microscopy
and atomic force microscopy [4,5]. In spite of much work by sev-
eral groups, the dynamics of the filaments and their biological role
remain controversial [1,2,6].

In the presence of Mg++ and GDP purified FtsZ assembles
through an isodesmic mechanism forming short single-stranded
oligomers [7]. In the absence of cations it is monomeric, binds
GTP [8], but does not have enzymatic activity. Addition of Mg++

and K+ ions promotes FtsZ–GTP polymerization, and formation of
a GTP-binding site in the interface between every two subunits
[7–9].

The GTPase activity of FtsZ has been measured previously [10,11].
At neutral pH and in the presence of saturating concentrations of GTP,
Mg++ and K+ the hydrolysis rate is in the order of 5 mol GTP/mol FtsZ/
min [10–12], and the activity follows Michaelis–Menten kinetics with
a Km value of �80 lM [10]. This value is much larger than the nucle-
chemical Societies. Published by E
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GTP and GDP [13,14], consequently the polymers contain a substan-
tial amount of GTP [12,15,16]. These data suggest that some steps
of the GTPase activity, different from nucleotide binding, are rate-
limiting in FtsZ polymer dynamics [15].

There are currently several models on FtsZ filament assembly
and dynamics and their role in cell constriction [1,2], but there
are several details still lacking, such as the location of active sites
within filaments, the number of active sites per filament, or how
nucleotide hydrolysis relates to protein subunit dynamics.

To gain insight into these aspects of the catalytic activity of FtsZ
we have analyzed the enzyme kinetics of Escherichia coli FtsZ with
GTP and with the slowly-hydrolyzable analogue GMPCPP [17,18].
2. Materials and methods

2.1. Reagents

Guanine nucleotides GDP and GTP were from Sigma–Aldrich.
The nucleotide analogue GMPCPP was purchased from Jena Biosci-
ence GmbH (Germany). Other analytical grade chemicals were
from Merck or Sigma–Aldrich.

2.2. Protein purification

E. coli FtsZ was purified by the calcium-induced precipitation
method as described [7]. To measure the GTPase activity at low
lsevier B.V. All rights reserved.
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Fig. 1. GTPase kinetics of FtsZ. Initial rates were obtained from the slopes of
phosphate accumulation curves and fitted to a Michaelis–Menten model with a
Vmax = 6.0 ± 0.4 nmols GTP/nmol FtsZ/min and a Km = 0.3 ± 0.05 mM (Table 1). Data
points are average and standard deviation from three measurements. Inset:
expanded view of the plot at low GTP concentrations.
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GTP concentration (below 0.1 mM), the protein was desalted in a
5 ml Hi-Trap Desalting column equilibrated in 50 mM Tris pH
7.5, 250 mM KCl, without Mg++. Immediately after elution GTP
was added to the fraction containing the protein to a concentration
of 50 lM.

2.3. GTPase activity

The GTPase activity was measured by the malachite green
method [19]. Reactions were done at 22 �C in 100 ll of 50 mM Tris
pH 7.5, 5 mM MgCl2, 250 mM KCl, with 10 lM FtsZ. Ten microliter
fractions were taken at different times and mixed with 40 ll of the
same buffer containing EDTA (65 mM) to stop the reaction. The
green malachite-molybdate reagent was added and absorbance
at 620 nm was measured. A phosphate standard curve was done
with Na2HPO4. Activities were determined from the slope of the
linear part of the phosphate accumulation curve. The standard er-
rors calculated for these measurements were always on the order
of 5% of the measured value. All the experiments were repeated
two to four times. Error bars in the figures represent the standard
deviations of independent replicates performed with the same pro-
tein batch.

The GTPase activity was analyzed by thin-layer chromatogra-
phy and [a-32P]-GTP (3000 Ci/mmol, Perkin-Elmer) as described
[12]. Kinetic parameters were calculated using GraphPad Prism 5.0.

2.4. FtsZ polymerization

Polymerization was analyzed by 90� light scattering in a Hitachi
F-2500 fluorescence spectrophotometer as described [12]. Reac-
tions were done at 25 �C in 50 mM Tris pH 7.5, 5 mM MgCl2,

250 mM KCl with 0.5 mM GTP and/or 0.5 mM GMPCPP.

3. Results

3.1. Kinetics of the GTPase activity of FtsZ

The GTPase activity of FtsZ has been found to follow Michaelis–
Menten kinetics [10]. However, measurements done at low GTP
concentrations might have been flawed by the GDP contents of
the purified protein. To circumvent this problem we exchanged
the nucleotide in purified protein preparations by passage through
a desalting column equilibrated in buffer without Mg++ and addi-
tion of GTP to a concentration of 50 lM after elution. Under these
conditions the protein binds GTP, but cannot hydrolyze it [8]. The
GTP concentration was then adjusted to the desired value upon
dilution of the protein into the reaction mix, and the reaction
was triggered by adding Mg++ to a concentration of 5 mM. Our pro-
tein preparations did not show time lags in catalytic activity, so ini-
tial GTPase rates could be calculated from phosphate production
curves. The activity approached hyperbolic kinetics that could be
fitted to a Michaelis–Menten curve with Vmax = 6.0 ± 0.4 mols
GTP/mol FtsZ/min and Km = 0.3 ± 0.05 mM (Fig. 1), with a slight
deviation at the lower GTP concentrations (Fig. 1, inset).

3.2. Competitive inhibition of the FtsZ GTPase activity by GDP

GDP competes with GTP for binding to the active sites [20], and
an excess of GDP inhibits polymerization and induces depolymer-
ization [8,20]. To study the mechanism of inhibition, the GTPase
activity was measured over a range of GTP concentrations in the
presence of 0.1 mM GDP, 0.5 mM GDP and 1 mM GDP. The Linewe-
aver–Burk plot indicated a competitive inhibition mechanism
(Fig. 2A), and non-linear fitting of the whole dataset to a competi-
tive inhibition model yielded a Ki of 0.47 ± 0.09 mM GDP (Table 1).
3.3. Hydrolysis of GMPCPP

The nucleotide analogue guanosine 50-a-b-methylene triphos-
phate (GMPCPP) is known to be slowly hydrolyzed [17,18]. To
measure GMPCPP hydrolysis the reaction was followed for
60 min, a period much longer than that used for GTP. At 0.5 mM
GMPCPP the hydrolysis rate was 0.18 mols GMPCPP/mol FtsZ/
min, 20-fold lower than the GTPase rate measured at the same
nucleotide concentration (3.9 ± 0.91 mols GTP/mol FtsZ/min). No
accumulation of phosphate could be detected during the first
two minutes of the reaction, which is the period used to measure
the GTPase activity. Hence, hydrolysis of GMPCPP will not interfere
with the measurement of GTP hydrolysis in assays with the two
substrates, and thus the effect of GMPCPP on the GTPase activity
might be measured.

3.4. Competitive inhibition of the FtsZ GTPase activity by GMPCPP

Addition of GMPCPP to the reaction mixtures decreased the rate
of GTP hydrolysis. To make certain that the Pi detected proceeded
only from GTP, and not from an increase in the hydrolysis of
GMPCPP, the experiment was repeated in the same conditions
but using [a-32P]-GTP to detect the radiolabeled phosphate by
thin-layer chromatography. The GTPase activities measured in
the presence and absence of GMPCPP were the same with the
radioisotopic and the colorimetric assays, confirming that the Pi
detected with the colorimetric assay proceeded from the hydroly-
sis of GTP, and not from GMPCPP.

We next studied the effects of the two nucleotides in polymer-
ization by light scattering and electron microscopy. Upon addition
of GTP, light scattering shows a rapid increase due to polymer for-
mation, followed by a slow decrease parallel to GTP depletion and
GDP buildup. Addition of GMPCPP triggers the same initial in-
crease, but this is followed by a second phase of slow increase,
likely due to filament aggregation (Fig. 3). Mixtures of the two
nucleotides show the same behavior as GTP alone (Fig. 3). Electron
microscopy showed networks of single and multiple strand fila-
ments and bundles, with some single strand circular filaments
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Fig. 2. GTPase kinetics of FtsZ measured in the presence of (A) 0 mM (�), 0.1 mM
(j), 0.5 mM (N) and 1 mM GDP (s), and (B) 0 mM (�), 0.1 mM (j), 0.2 mM (N),
0.4 mM (s) and 0.5 mM GMPCPP (h). Data points are average and standard
deviation from two (GMPCPP) or three (GTP) measurements. Inset: Lineweaver–
Burk plots.

Table 1
Kinetic parameters of FtsZ GTPase activity. The table shows the values estimated by
non-linear fitting of the data to Michaelis–Menten and competitive inhibition models.
In parenthesis: 95% confidence intervals.

Inhibitor Km (mM) Ki (mM) Vmax

(mol GTP/mol FtsZ/min)

None 0.30 (0.17–0.42) – 6.0 (5.1–6.9)
GDP 0.33 (0.22–0.45) 0.47 (0.27–0.66) 5.9 (5.3–6.7)
GMPCPP 0.33 (0.24–0.41) 0.11 (0.08–0.14) 6.5 (6.0–6.9)

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200
time, s

Li
gt

h 
sc

at
te

rin
g

Fig. 3. Polymerization of FtsZ in the presence of 0.5 mM GTP (black line), 0.5 mM
GMPCPP (dotted line) and a mixture of GTP and GMPCPP, 0.5 mM each (gray line).
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scattered throughout the preparations, but there were not signifi-
cant differences among GTP, GMPCPP or mixtures of GTP and
GMPCPP.

Next, the GTPase activity was measured over a range of GTP
concentrations in the presence of increasing amounts of GMPCPP.
Similarly to GDP inhibition, the Lineweaver–Burk plot indicated a
competitive inhibition mechanism (Fig. 2B), and non-linear fitting
to a competitive inhibition model yielded a Ki of 0.11 ± 0.01 mM
GMPCPP (Table 1).

4. Discussion

In spite of the heterogeneity in polymer size and shape seen
under the electron microscope [4], in solution FtsZ–GTP polymers
have a monodisperse size distribution [3]. This indicates that the
polymers have a well-defined and homogeneous size, enabling
the interpretation of biochemical data. A polymeric structure sug-
gests that the activity of one binding site might be affected by that
of nearby sites giving rise to complex enzyme kinetics. Quite the
opposite, we have found that the GTPase activity follows Michae-
lis–Menten kinetics, confirming previous results [10]. The slight
deviation seen at the lower GTP concentrations is likely methodo-
logical because hydrolysis at low GTP concentrations has been
detected previously with other methods [15]. The kinetic behavior
of FtsZ suggests that the active sites within filaments are indepen-
dent. Furthermore, we have studied the kinetics of two different
inhibitors of the GTPase activity. GDP was already known to com-
petitively inhibit the activity, probably by sequestering monomers
from the pool available for polymerization [20]. GMPCPP on the
contrary is a substrate of FtsZ that is able to induce polymerization
but is slowly hydrolyzed. This suggested that GMPCPP might inhi-
bit the GTPase activity in FtsZ filaments by occupying active sites
within polymers, not by sequestering monomers away from the
polymeric fraction. The fact that it does inhibit competitively rein-
forces the idea that GTPase active sites of FtsZ are independent of
each other. If there were some kind of interaction between active
sites in FtsZ polymers it would be expected that inhibition by
GMPCPP should be non-competitive because every site occupied
by GMPCPP would affect the activity of more than one active site.

So, the GTPase activity of FtsZ behaves much like it would be
expected for a monomeric enzyme.

If all the GTP-bound sites within FtsZ filaments are non-
interacting, catalytically active sites (Fig. 4A), then the different
subunits within a filament should hydrolyze GTP in a random man-
ner, and then either GDP might be exchanged within the filaments
[12] or the filaments might be fragmented at the interfaces that
contain GDP. Alternatively, it might be thought that every filament
has a single GTPase active site and the whole filament behaves as a
monomer. The active sites might be one or the two extremes of the
filaments (Fig. 4B), or it might be an internal site separating the fil-
ament into a GTP-bound part and a GDP-bound part (Fig. 4C). In
this case, the filament dynamics might be driven by treadmilling
or dynamic instability mechanisms, there would be an interaction
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Fig. 4. Schematic view of three models of FtsZ filaments with independent GTPase
active sites. (A) All the GTP bound subunits are active (dark gray circles), hydrolysis
occurs randomly and is followed by nucleotide exchange in the filament or by
filament fragmentation. (B) All the subunits are bound to GTP, only the terminal
sites are active (dark gray circles), the central subunits (light gray circles) are not
active. This model was suggested by Martín-García, Gómez-Puertas et al. based on
molecular dynamics simulation of FtsZ filaments. (C) Only one subunit per filament
is active (dark gray circle); upstream subunits are bound to GTP (light gray circles)
and downstream subunits are bound to GDP (white circles).
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between the active site and the next site, but each filament would
have a single active site that would not interact with the active
sites of other filaments.

These different models are related to different roles of the
GTPase activity in FtsZ function. In the all-sites active model the
function of the GTPase might be related to force generation by
nucleotide-dependent filament bending [1], while in the models
of single or few active sites it might more related to the regulation
of filament length and dynamics, in which case cell constriction
should be driven by lateral interactions between filaments
[21,22], or by nucleotide-independent filament bending mecha-
nisms [23,24].
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