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Abstract

Let C be an integral projective curve in any characteristic. Given an invertible sheaf L on C
of degree 1, form the corresponding Abel map AL: C → J̄ , which maps C into its compactified
Jacobian, and form its pullback map A∗

L: Pic0
J̄

→ J , which carries the connected component

of 0 in the Picard scheme back to the Jacobian. If C has, at worst, double points, then A∗
L is

known to be an isomorphism. We prove that A∗
L always extends to a map between the natural

compactifications, Pic÷
J̄

→ J̄ , and that the extended map is an isomorphism if C has, at worst,
ordinary nodes and cusps.
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1. Introduction

Let C be an integral projective curve of arithmetic genus g, defined over an al-
gebraically closed field of any characteristic. Form its (generalized) Jacobian J, the
connected component of the identity of the Picard scheme of C. If C is singular, then
J is not projective. So for about forty years, numerous authors have studied a natural
compactification of J: the (fine) moduli space J̄ of torsion-free sheaves of rank 1 and
degree 0 on C. It is called the compactified Jacobian.

Recently, the compactified Jacobian appeared in Laumon’s paper [10], where he
identified, up to homeomorphism, affine Springer fibers with coverings of compactified
Jacobians. For that identification, he used the autoduality of the compactified Jacobian,
a property established in [6] and explained next.

From now on, assume C has, at worst, points of multiplicity 2 (or double points).
For each invertible sheaf L of degree 1 on C, form the Abel map AL: C → J̄ , given
by P �→ MP ⊗ L where MP is the ideal sheaf of P; it is a closed embedding if C
is not of genus 0. Form the pullback map

A∗
L: Pic0

J̄
→ J,

carrying the connected component of 0 in the Picard scheme back to the Jacobian.
Then A∗

L is an isomorphism and is independent of L; see [6, Theorem 2.1, p. 595].
Since the singularities are locally planar, J̄ is integral by [1, (9), p. 8]. Hence, not

only does Pic0
J̄

exist, but also it admits a natural compactification: its closure Pic÷
J̄

in
the compactified Picard scheme Pic=̄

J
, the (fine) moduli space of torsion-free sheaves

of rank 1 on J̄ ; see [3, Theorem 3.1, p. 28]. Does A∗
L extend to a map between the

compactifications? If so, then is the extension an isomorphism?
These questions were posed to the authors by Sawon. As mentioned in his intro-

duction to [11], his results on dual fibrations to fibrations by Abelian varieties, in the
“nicest” cases, depend on “extending autoduality to the compactifications.”

It is not true, for every map, that the pullback of a torsion-free sheaf is still torsion
free. But, for AL, it is true! There are two basic reasons why: first, A∗

L is independent
of L; second, the maps AL can be bundled up into a smooth map C × J → J̄ . Thus
there exists an extended pullback map

A∗
L: Pic÷

J̄
→ J̄ ;

this existence statement is the content of Theorem 2.6 below. (The statement and its
proof already appear on the web in the preliminary version of [6].)

Is the extended map A∗
L also an isomorphism? This question seems much harder.

From now on, assume that C has, at worst, ordinary nodes and cusps. Then the
extended map A∗

L is, indeed, an isomorphism, according to Theorem 4.1, our main
result. Here is a sketch of the proof.

First, recall the definition of the inverse �: J → Pic0
J̄

from [6, Proposition 2.2, p.

595], or rather [6, Remark 2.4, p. 597]. Let I be the universal sheaf on C × J̄ , and P
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the determinant of cohomology of I⊗L⊗g−1 with respect to the projection C×J̄ → J̄ .
The sheaf P−1 has a canonical regular section, whose zero scheme we denote by �
and call the theta divisor associated to L. Let p1: J̄ × J → J̄ be the projection, and
�: J̄ × J → J̄ the multiplication map. Form the invertible sheaf

T := OJ̄×J (�∗� − p∗
1�).

Then T defines the map �: J → Pic0
J̄

.

We need only show that � extends to a map �: J̄ → Pic÷
J̄

, or that T extends to a

sheaf on J̄ × J̄ that is flat for p2: J̄ × J̄ → J̄ and whose fibers are torsion-free rank-1.
In fact, as � is unique if it exists, we need only find a flat surjection �: W → J̄ such
that the pullback T� of T to J̄ × (�−1J ) extends to a torsion-free H on J̄ × W/W .

To define �, let C0 be the smooth locus, and P1, . . . , Pm the singular points of C.
Set Ci := C0 ∪ {Pi} for 1� i�m. Set

Hm := Cm × · · · × C1 ⊆ C×m and W := Hm × J.

Define �: W → J̄ as the natural map given on a pair, consisting of an m-tuple of points
(Qm, . . . , Q1) of C and an invertible sheaf N on C of degree 0, by

�(Qm, . . . , Q1, N ) := MQm ⊗ · · · ⊗ MQ1 ⊗ N ⊗ L⊗m,

where MQi
is the ideal of Qi in C for i = 1, . . . , m. Since � is a composition of

base extensions of bigraded Abel maps, � is smooth by [5, Corollary 2.6, p. 5969].
It is also surjective, owing to our assumption on the singularities: since, at each local
ring OC,Pi

, the singularity degree � is 1, any torsion-free rank-1 module is either free
or isomorphic to the maximal ideal.

Next, we resolve the rational map �◦(1×�): J̄ ×W → J̄ by using the n-flag schemes
Fn of I/(C × J̄ )/J̄ . The scheme Fn is the (fine) moduli space parameterizing n-chains
of torsion rank-1 sheaves on C:

In ⊂ In−1 ⊂ · · · ⊂ I1 ⊂ I0,

where I0 is of degree 0 and where each quotient Ii−1/Ii is of length 1.
The scheme Fn comes equipped with two important maps. The first is the multipli-

cation map �n: Fn × J → J̄ , which sends a pair consisting of a chain as above and an
invertible sheaf N on C of degree 0 to the tensor product In ⊗ N ⊗ L⊗n. The second

is the resolution map �̂
(n): Fn → J̄ × C×n, which sends a chain as above to the pair

consisting of the sheaf I0 and the n-tuple (Qn, . . . , Q1) ∈ C×n such that Ii−1/Ii is
supported on Qi for each i.
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Set F̃m := (�̂
(m)

)−1(J̄ × Hm). Then we have the following diagram, in which the
right vertical map � is only rational:

F̃m × J
�m−−−−→ J̄

�̂
(m)×1

⏐⏐� �
�⏐⏐

J̄ × Hm × J
1×�−−−−→ J̄ × J̄ .

Note that �−1(J ) = C×m
0 × J . It is not difficult to see that �̂

(m)
restricts to an iso-

morphism over J̄ × C×m
0 . Also, the composition � ◦ (1 × �) ◦ (�̂

(m) × 1) is defined on

(�̂
(m) × 1)−1(J̄ × C×m

0 ) and agrees with �m. Therefore, T� extends to the sheaf

H := OJ̄×W(−q∗
1 �) ⊗ (�̂

(m) × 1)∗OF̃m×J (�∗
m�),

where q1 : J̄ × W → J̄ is the projection.
The delicate part is now to prove that H is flat over W with torsion-free rank-1 fibers.

It suffices to prove that (� × 1)∗H on W × W is flat over W with torsion-free rank-1
fibers. Now, there are base-change formulas for the determinant of cohomology and for
the direct image. As the corresponding base-change maps, we use the horizontal maps
in the following natural Cartesian square:

F̃2m × J −−−−→ F̃m × J

�

⏐⏐� ⏐⏐��̂
(m)×1

W × W
�×1−−−−→ J̄ × W,

where F̃2m := (�̂
(2m)

)−1(J × Hm × Hm) and � is, up to switching factors, �̂
(2m) × 1.

We now apply the technical, but essential, Lemma 3.3 to complete the proof.
All our results are, in fact, proved not just for an individual curve C, but for a flat

projective family of (geometrically) integral curves over an arbitrary base scheme. All
schemes are implicitly assumed to be locally Noetherian.

In short, in Section 2, we prove that the autoduality map A∗
L extends if the curves

have, at worst, double points. In Section 3, we study flag schemes. Finally, in Section
4, we prove that the extended map A∗

L is an isomorphism if the curves have, at worst,
ordinary nodes and cusps.

2. Extension

2.1. The compactified Jacobian

By a flat projective family of integral curves C/S, let us mean that C is a flat and
projective S-scheme with geometrically integral fibers of dimension 1.
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Given such a family C/S and given an integer n, recall from [2–4] and [5] that there
exists a projective S-scheme J̄ n, or J̄ n

C/S , parameterizing the torsion-free rank-1 sheaves
of degree n on the fibers of C/S. And there exists an open subscheme J n, or J n

C/S ,
parameterizing those sheaves that are invertible. Furthermore, forming these schemes
commutes with changing the base S. For short, set J := J 0 and J̄ := J̄ 0. Customarily, J
is called the (relative generalized) Jacobian of C/S, and J̄ the compactified Jacobian.

More precisely, J̄ n represents the étale sheaf associated to the functor whose T-points
are degree-n torsion-free rank-1 sheaves I on C ×T/T . Such an I is a T-flat coherent
sheaf on C × T such that, for each point t of T, the fiber I(t) is torsion-free and of
generic rank 1 on the fiber C(t) and also

�(I(t)) − �(OC(t)) = n.

2.2. Multiplication and translation

Let C/S be a flat projective family of integral curves. Let m and n be arbitrary
integers. Let Un,m ⊆ J̄ n × J̄ m be the open subscheme that represents the étale sheaf
associated to the subfunctor whose T-points are the pairs of torsion-free rank-1 sheaves
(I, J ) on C ×T/T such that I is invertible where J is not. Define the multiplication
map

� : Un,m → J̄ m+n by �(I, J ) := I ⊗ J .

For each invertible sheaf M of degree m on C/S, define the translation by M

�M : J̄ n → J̄ m+n by �M(I) := I ⊗ M.

In other words, M defines a section 	 : S → Jm, and �M := �◦(1×	); the composition
makes sense because Un,m ⊇ J̄ n × Jm.

2.3. The (bigraded) Abel map

Let C/S be a flat projective family of integral curves. Let � ⊂ C×C be the diagonal.
Then its ideal defines a map 
 : C → J̄−1.

Let m be an arbitrary integer. Let Wm ⊆ C × J̄ m+1 be the inverse image of U−1,m+1

under 
 × 1. Define the bigraded Abel map to be the composition

A := � ◦ (
 × 1) : Wm → J̄ m.

Let L be an invertible sheaf of degree 1 on C/S, and 	 : S → J 1 be the corresponding
section. Define the Abel map associated to L to be the composition

AL := A ◦ (1 × 	) : C → J̄ ;

the composition makes sense because C × J 1 ⊆ W 0.
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2.4. Autoduality

Let C/S be a flat projective family of integral curves. Assume that the curves (the
geometric fibers of C/S) are locally planar. Then the projective S-scheme J̄ n is flat,
and its geometric fibers are integral local complete intersections; see [1, (9), p. 8].
Hence, the Picard scheme PicJ̄ n/S exists, and is a disjoint union of quasi-projective
S-schemes; see [7, Théorème 3.1, p. 232–06], and [4, Corollary 6.7(ii), p. 96]. Also,
by [3, Theorem 3.1, p. 28], there exists an S-scheme Pic=̄

Jn/S
, the compactified Picard

scheme, that parameterizes torsion-free rank-1 sheaves on the fibers of J̄ n/S; moreover,
the connected components of Pic=̄

Jn/S
are proper over S.

As is customary [7, p. 236–03], let Pic0
J̄ /S

denote the set-theoretic union of the

connected components of the identity 0 in the fibers of PicJ̄ /S , and let Pic�
J̄ /S

denote
the set of points of PicJ̄ /S that have a multiple in Pic0

J̄ /S
. The set Pic�

J̄ /S
is open;

give it the induced scheme structure. Then, by general principles, forming PicJ̄ /S and
Pic�

J̄ /S
commutes with changing S.

Denote by Pic÷
J̄ /S

the schematic closure of Pic�
J̄ /S

in Pic=̄
Jn/S

. Note that forming
Pic÷

J̄ /S
commutes with changing S via a flat map: it does so topologically because a

flat map is open; whence, it does so schematically because a flat map carries associated
points to associated points. If the fibers of C/S have, at worst, nodes and cusps, then
forming Pic÷

J̄ /S
commutes with changing S via an arbitrary map, owing to Theorem

4.1, our main result, since forming J̄ does so.
The Abel map AL induces an S-map,

A∗
L : PicJ̄ /S → ∐

n J n.

By [6, Theorem 2.1, p. 595], if the geometric fibers of C/S have, at worst, double
points, then Pic0

J̄ /S
= Pic�

J̄ /S
. Furthermore, the Abel map induces an isomorphism,

A∗
L : Pic0

J̄ /S
∼−→ J,

which is independent of the choice of the invertible sheaf L of degree 1 on C/S; in fact,
the isomorphism exists whether or not any sheaf L does. Let us call this isomorphism
the autoduality isomorphism.

Proposition 2.5. Let C/S be a flat projective family of integral curves, m and n inte-
gers, M an invertible sheaf of degree m on C/S. Suppose the curves have, at worst,
double points. Then the translation map �M induces an isomorphism

�∗
M : Pic0

J̄ m+n/S
∼−→ Pic0

J̄ n/S
,

which is independent of M. If m = 0, then �∗
M is equal to the identity.
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Proof. Note that �OC
= 1J̄ n . And, if M1 is also an invertible sheaf on C, then

�M ◦ �M1
= �M⊗M1

.

So �M is an isomorphism, whose inverse is �M−1 . Hence �∗
M is an isomorphism.

Moreover, if M1 is of degree m too, then M ⊗ M−1
1 is of degree 0, and it suffices

to prove that �∗
M⊗M−1

1
= 1. Thus, we may assume m = 0.

To prove that �∗
M = 1, we may change the base via an étale covering, and so assume

that the smooth locus of C/S admits a section 	. Set L := OC(	(S)). Then L is an
invertible sheaf on C. So,

�M = �L⊗n ◦ �M ◦ �L⊗−n .

Hence, since L is of degree 1 on C/S, we may assume n = 0.
Note that �M ◦ AL = AM⊗L. Now, A∗

M⊗L = A∗
L and A∗

L is an isomorphism; see
(2.4). Thus �∗

M = 1, and the proof is complete. �

Theorem 2.6. Let C/S be a flat projective family of integral curves with, at worst,
double points. Then the autoduality isomorphism Pic0

J̄ /S
∼−→ J extends uniquely to a

map of compactifications Pic÷
J̄ /S

→ J̄ .

Proof. Set U := Pic0
J̄ /S

and U := Pic÷
J̄ /S

. Since J/S is smooth and admits a section

(for example, the 0-section), by [3, Theorem 3.4(iii), p. 40], J̄ × U
/

U carries a
universal sheaf P , which is determined up to tensor product with the pullback of an
invertible sheaf on U .

The extension � : U → J̄ of the autoduality isomorphism is unique if it exists,
because U is schematically dense in U and J̄ is separated. Hence, by descent theory,
it suffices to construct � after changing the base via an étale covering. So we may
assume that the smooth locus of C/S admits a section 	. Set L := OC(	(S)). Then L
is invertible of degree 1 on C/S. So the autoduality isomorphism is simply A∗

L, and
it suffices to prove that (AL × 1)∗P is torsion-free rank-1 on C × U

/
U .

Form the bigraded Abel map A : C × J 1 → J̄ . It is smooth by [5, Corollary 2.6,
p. 5969]. Hence (A × 1)∗P is torsion-free rank-1 on C × J 1 × U

/
U . It suffices

to prove that (A × 1)∗P is torsion-free rank-1 on C × J 1 × U
/
(J 1 × U), since

(AL × 1)∗P is its fiber over the point of J 1 representing L. Now, (A × 1)∗P is
flat over J 1 × U , by the local criterion, if its fiber is flat over the fiber J 1(u) for
each u ∈ U .

Fix a u ∈ U . Making a suitable faithfully flat base change S′/S, we may assume that
the field k(u) is equal to the field of the image of u in S. Set I := P(u). It suffices
to prove that A(u)∗I is a torsion-free rank-1 sheaf on C(u) × J 1(u)

/
J 1(u).
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Let M be an invertible sheaf of degree 0 on C/S. Then the translation map �M
gives rise to the following commutative diagram:

C × J 1 A−−−−→ J̄

1×�M
⏐⏐� �M

⏐⏐�
C × J 1 A−−−−→ J̄ .

By Proposition 2.5, �∗
M is the identity on Pic0

J̄ /S
, so on its closure U too. Thus

�M(u)∗I = I. Now, the diagram is commutative; hence,

(1 × �M(u))∗A(u)∗I = A(u)∗I. (2.6.1)

Since J 1(u) is integral, the lemma of generic flatness applies, and it implies that there
is a dense open subset W of J 1(u) over which A(u)∗I is flat. Now, by Part (ii)(a) of [4,
Lemma (5.12), p. 85], it is an open condition on the base for a flat family of sheaves
to be torsion-free rank-1 provided they are supported on a family whose geometric
fibers are integral of the same dimension. Hence, since A(u)∗I is torsion-free rank-1
on C(u) × J 1(u)

/
k(u), after shrinking W, we may assume the restriction of A(u)∗I

to C × W
/

W is torsion-free rank-1. Fix an arbitrary point j1 of W and one j2 of
J 1(u).

Making a suitable faithfully flat base change S′/S, we may assume that each of
j1 and j2 lies in the image of a section of J 1/S. These sections represent invertible
sheaves M1 and M2 of degree 1 on C/S; set M := M1 ⊗ M−1

2 . Eq. (2.6.1) implies
that A(u)∗I is torsion-free rank-1 over �M(u)−1W as well. Now, j2 is an arbitrary
point of J 1(u). Hence A(u)∗I is torsion-free rank-1 on C(u) × J 1(u)

/
J 1(u), and the

proof is complete. �

3. Flag schemes

Lemma 3.1. Let X be a scheme, and F a coherent OX-module. Assume F is invertible
at each associated point of X, and is everywhere locally generated by two sections.
Set W := P(F), and let w : W → X be the structure map. Then Serre’s graded
OX-algebra homomorphism  is an isomorphism:

 : Sym(F) ∼−→
⊕
n�0

w∗OW(n).

Proof. The question is local on X, and F is locally generated by two sections. So,
setting E := O⊕2

X , we may assume there is a short exact sequence of the form:

0 → N ε−→ E �−→ F → 0,
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This sequence induces a short exact sequence of graded Sym(E)-modules:

0 → N ⊗ Sym(E)[−1] → Sym(E) → Sym(F) → 0. (3.1.1)

A priori, the sequence is only right exact. However, since ε is injective, every associated
point of N is an associated point P of X; so we need only check for left exactness
at such a P. By hypothesis, F is invertible at P; whence, N is too. Therefore, left
exactness holds at P, so everywhere.

Set V := P(E), and let v : V → X be the structure map. Then � induces a closed
embedding 
 : W ↪→ V such that w = v◦
. Moreover, applying the exact functor “tilde”
to (3.1.1), we obtain the following short exact sequence on V:

0 → v∗N ⊗ OV (−1) → OV → OW → 0,

in which OV → OW is the comorphism of 
.
For convenience, given a coherent OX-module G and integer i, set

R(G, i) := R1v∗(v∗G ⊗ OV (i)),

and let b(G, i) denote the following natural map:

b(G, i) : G ⊗ Symi(E) −→ v∗(v∗G ⊗ OV (i)).

For every i�0, consider the natural commutative diagram:

0 −−−−−→ N ⊗ Symi−1(E) −−−−−→ Symi(E) −−−−−→ Symi(F) −−−−−→ 0

b(N , i−1)

⏐⏐� b(OV ,i)

⏐⏐� ⏐⏐�
0 −−−−−→ v∗(v∗N ⊗ OX(i − 1)) −−−−−→ v∗OV (i) −−−−−→ w∗OW (i) −−−−−→ R(N , i − 1).

Since E is free, b(OV , i) is an isomorphism by Serre’s computation. Therefore, to
prove the lemma, it is enough to prove that R(N , i − 1) = 0 and that b(N , i − 1) is
an isomorphism.

Fix i� − 1. Given a short exact sequence of coherent OX-modules

0 → G′ → G → G′′ → 0 (3.1.2)

consider the following induced diagram:

0 −−−−−→ G′ ⊗ Symi(E) −−−−−→ G ⊗ Symi(E) −−−−−→ G′′ ⊗ Symi(E) −−−−−→ 0

b(G′,i)
⏐⏐� b(G,i)

⏐⏐� b(G′′,i)
⏐⏐�

0 −−−−−→ v∗(v∗G′⊗OV (i)) −−−−−→ v∗(v∗G⊗OV (i)) −−−−−→ v∗(v∗G′′⊗OV (i)) −−−−−→ R(G′, i).
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Since E is free, the upper sequence is exact. Since v is flat, (3.1.2) pulls back to a
short exact sequence on V; whence, the lower sequence is exact.

If R(G′, i) = 0 and if b(G′, i) and b(G′′, i) are isomorphisms, then b(G, i) is one
too. If, in addition, R(G′′, i) = 0, then also R(G, i) = 0.

On the other hand, if b(G, i) and b(G′′, i) are isomorphisms, then b(G′, i) is one
too, and R(G′, i) ⊆ R(G, i). If, in addition, R(G, i) = 0, then also R(G′, i) = 0.

Since N ⊂ O⊕2
X , there is a short exact sequence

0 → I → N → J → 0,

where I ⊆ OX and J ⊆ OX. It is, therefore, enough to prove that R(G, i) = 0 and
that b(G, i) is an isomorphism when G ⊆ OX.

Finally, suppose G ⊆ OX, and let Y ⊆ X be the subscheme defined by G. By Serre’s
computation, b(OX, i) and b(OY , i) are isomorphisms. Also, R(OX, i) = 0. Hence,
R(G, i) = 0, and b(G, i) is an isomorphism. The proof is now complete. �

3.2. Flag schemes

Let f : X → T be a map of (locally Noetherian) schemes, and I a coherent sheaf
on X. For each (locally Noetherian) T-scheme U, set XU := X ×U , and let IU denote
the pullback of I to XU . Fix m�0. By a m-flag of IU/XU/U , let us mean a chain
of coherent sheaves,

Im ⊂ Im−1 ⊂ · · · ⊂ I1 ⊂ I0 := IU ,

such that, for 1� i�m, the ith quotient Ii−1/Ii is U-flat of relative length 1. Denote
the set of all these m-flags by Fm(U).

Since the quotients are flat, for each U-scheme V, the m-flag pulls back to a m-flag
of IV /XV /V . So, as U varies, the Fm(U) form a contravariant functor Fm.

Clearly, F0 is representable by T. Suppose Fm−1 is representable by a T-scheme
Fm−1, and consider the universal (m − 1)-flag:

Km−1 ⊂ Km−2 ⊂ · · · ⊂ K1 ⊂ K0 := IFm−1 .

Then, clearly, Fm is representable by the Quot scheme

Fm := Quot1
(Km−1/X×Fm−1/Fm−1)

;

furthermore, the universal m-flag on X × Fm is the chain

Jm ⊂ Jm−1 ⊂ · · · ⊂ J1 ⊂ J0 := IFm

where Ji is the pullback of Ki for 0� i < m and where Jm is the universal subsheaf
of Jm−1. Call Fm the m-flag scheme of I/X/T .
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According to [9, Proposition (2.2), p. 109], we have Fm = P(Km−1); furthermore,
if (�m, �m) : Fm → X × Fm−1 denotes the structure map, then, on X × Fm, we have

Jm−1/Jm = (�m, 1)∗OFm(1).

And there are natural maps,

�(m,n) : Fm −−−−→ X×Fm−1 −−−−→ X×(X×Fm−2) −−−−→ · · · −−−−→ X×n × Fm−n.

Set �j,i := �i+1, . . . , �j ; whence, �j,i : Fj → Fi . Set �(m) := �(m,m); whence,
�(m) : Fm → X×m. Set �i := �i ◦ �m,i ; whence, �i : Fm → X. Then �m = �m and
�(m) = (�m, . . . , �1). Let qi : X × Fi → Fi denote the projection.

Lemma 3.3. Under the conditions of Section 3.2, assume that f : X → T is a flat
projective family of integral curves that are locally planar, and assume that I is
invertible. Let pi and pi,j be the projections of X×m onto the indicated factors, and
let p be its structure map. Let X be the ideal of the diagonal � of X × X. Set

H := �(m)∗
(
Dqm(Jm)−1) and F := Df (I)−1,

where Dqm and Df mean determinant of cohomology. Let X1, . . . , Xm ⊂ X be open
subschemes such that the intersection Xi ∩ Xj ∩ Xk is T-smooth for all distinct i, j, k.
Set H := Xm × · · · × X1. Then

H | H =
((⊗

i<j

p∗
i,jX

)
⊗

(⊗
i

p∗
i I

)
⊗ p∗F

) ∣∣∣∣ H.

Proof. The additivity of the determinant of cohomology yields

Dqm(Jm)−1 =
( m⊗

i=1

Dqm(Ji−1/Ji )

)
⊗ Dqm(IFm)−1.

Set Mi := �∗
m,iOFi

(1). Then Ji−1/Ji = (�i , 1)∗Mi . So Dqm(Ji−1/Ji ) = Mi . Now,
forming the determinant commutes with changing the base; so

Dqm(IFm)−1 = (
p �(m)

)∗Df (I)−1 = (
�(m)

)∗
p∗F .
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Since F is invertible, we may apply the projection formula to p∗F and �(m)∗ . We
therefore have to prove that

�(m)∗
( m⊗

i=1

Mi

) ∣∣∣∣ H =
((⊗

i<j

p∗
i,jX

)
⊗

(⊗
i

p∗
i I

)) ∣∣∣∣ H. (3.3.1)

Since F1 = P(I) and I is invertible, F1 = X and M1 = I and �(m) = 1. So (3.3.1)
holds when m = 1. We proceed by induction on m.

Suppose m�2. Set Ni := �∗
m−1, iOFi

(1) for i = 1, . . . , m − 1. Let ui and ui,j be

the projections of X×(m−1) onto the indicated factors. Set

G :=
(⊗

i<j

u∗
i,jX

)
⊗

(⊗
i

u∗
i I

)
and G := Xm−1 × · · · × X1.

Then the induction hypothesis yields

�(m−1)∗
(m−1⊗

i=1

Ni

) ∣∣∣∣ G = G
∣∣G. (3.3.2)

Since Mi = �∗
mNi for i = 1, . . . , m − 1, the projection formula yields

(�m, �m)∗
( m⊗

i=1

Mi

)
= q∗

m−1

(m−1⊗
i=1

Ni

)
⊗ (�m, �m)∗OFm(1). (3.3.3)

For i = 0, . . . , m − 1, set

Gi :=
( i⊗

j=1

p∗
1,m−j+1X

)
⊗ p∗

1I.

For i > 0, set G̃i−1 := (um−i , 1)∗Gi−1 and Hi := (um−i , 1)−1H . Now, I is invertible.
Since um−i (Hi) ⊆ Xm ∩ Xi and since Xm ∩ Xi ∩ Xj is T-smooth for each j < i, the
pullback G̃i−1 is invertible.

Set G̃ := (
�(m−1)

)−1
G ⊂ Fm−1 and G1 := Xm × G̃. For i = 1, . . . , m − 1, set

�i := 1 × �m−1,i ; so �i : X × Fm−1 → X × X. Let us prove that

Ki

∣∣G1 =
(( i⊗

j=1

�∗
jX

)
⊗ IFm−1

) ∣∣∣∣ G1 (3.3.4)
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by induction on i�0. First off, K0 = IFm−1 . So suppose (3.3.4) holds for i − 1. Let
�i ⊂ X × Fm−1 be the image of Fm−1 under (�m−1,i , 1). Then �i = �−1

i �, where
� ⊂ X × X is the diagonal. Since �/X is flat, forming its ideal X commutes with
changing the base. Hence �∗

i X is the ideal of �i .
Set O�i

(1) := (�m−1,i , 1)∗Ni . Then Ki is the kernel of the composition

Ki−1 →→ O�i
⊗ Ki−1 →→ O�i

(1). (3.3.5)

The kernel of the first surjection is the ideal-module product (�∗
i X ) · Ki−1. Hence

(�∗
i X ) · Ki−1 ⊂ Ki . Now, �i ∩ G1 ⊆ (Xm ∩ Xi) × G̃. Also, Ki−1

∣∣(X × G̃) is the
structure sheaf, whence invertible, off the union of the Xj × G̃ for j = 1, . . . , i − 1.

Since, by hypothesis, Xm ∩Xi ∩Xj is T-smooth for j = 1, . . . , i − 1, the restriction
Ki−1

∣∣(�i ∩ G1) is invertible. Thus the second surjection in (3.3.5) is an isomorphism
on G1, and hence (�∗

i X · Ki−1)|G1 = Ki |G1. In addition,

(�∗
i X ⊗ Ki−1)|G1

∼−→ (�∗
i X · Ki−1)|G1,

and therefore

Ki

∣∣G1 = (
�∗
i X ⊗ Ki−1

)∣∣G1.

Combining the expression above with (3.3.4) for i − 1, we get (3.3.4) for i.
Since �(m−1) = (�m−1,m−1, . . . , �m−1,1), Formula (3.3.4) is equivalent to

Ki

∣∣G1 = ((1 × �(m−1))∗Gi )|G1. (3.3.6)

For i = 1, . . . , m − 1, set H̃i := (�m−1,i , 1)−1(G1). As the second map in (3.3.5) is
an isomorphism on G1, we have (�m−1,i , 1)∗Ki−1|H̃i = Ni |H̃i . Now, note that

(1 × �(m−1)) ◦ (�m−1,i , 1) = (um−i , 1) ◦ �(m−1); (3.3.7)

whence (�(m−1))−1Hi = H̃i . Therefore, (3.3.6) yields

Ni |H̃i = (�(m−1))∗G̃i−1|H̃i . (3.3.8)

Consider a geometric point x of a fiber of H/G, and view x as well as a point of
Xm. Suppose, at x, the ideal p∗

1,m−j+1X is not invertible. Then x ∈ Xm ∩ Xj . And
p∗

1,m−j+1X is generated by two elements owing to Nakayama’s Lemma, since the
fibers of X/T are locally planar. Furthermore, x /∈ Xm ∩ Xk for any k �= j, m since
Xm ∩ Xj ∩ Xk is T-smooth by hypothesis; whence p∗

1,m−k+1X is invertible at x. Now,
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I is invertible. Therefore, it follows from (3.3.6) that Ki |G1 is everywhere locally
generated by two sections.

Since Fm = P(Km−1), Lemma 3.1 yields

(�m, �m)∗OFm(1)
∣∣G1 = Km−1

∣∣G1.

Therefore, it follows from (3.3.3) that

(�m, �m)∗
( m⊗

i=1

Mi

) ∣∣∣∣ G1 =
(

q∗
m−1

(m−1⊗
i=1

Ni

)
⊗ Km−1

) ∣∣∣∣ G1.

Let r : X×m → X×m−1 be the projection onto the product of the last factors. To
complete the proof, it is now enough to prove that

(1 × �(m−1))∗
(

q∗
m−1

(m−1⊗
i=1

Ni

)
⊗ Kk

) ∣∣∣∣ H = (r∗G ⊗ Gk)
∣∣ H (3.3.9)

for k = 0, . . . , m − 1. Again, we proceed by induction.
First off, K0 = IFm−1 , and I is invertible. So the projection formula yields

(1 × �(m−1))∗
(

q∗
m−1

(m−1⊗
i=1

Ni

)
⊗ K0

) ∣∣∣∣ H =
(

p∗
1I ⊗ r∗�(m−1)∗

(m−1⊗
i=1

Ni

)) ∣∣∣∣ H.

But G0 := p∗
1I. Thus (3.3.2) yields (3.3.9) when k = 0.

Suppose (3.3.9) holds for k−1 with k < m. Now, owing to the discussion surrounding
(3.3.5), the exact sequence

0 → Gk

∣∣H → Gk−1
∣∣H → (Gk−1 ⊗ p∗

1,m−k+1O�)
∣∣H → 0

pulls back under 1 × �(m−1) to the exact sequence

0 → Kk

∣∣G1 → Kk−1
∣∣G1 → O�k

(1)
∣∣G1 → 0.

Hence (3.3.9) for k follows from (3.3.9) for k − 1 provided

(1 × �(m−1))∗
(

q∗
m−1

(m−1⊗
i=1

Ni

)
⊗ O�k

(1)

) ∣∣∣∣ H = (r∗G ⊗ Gk−1 ⊗ p∗
1,m−k+1O�)

∣∣ H.
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Here, the right-hand side is equal to (um−k, 1)∗(G ⊗ G̃k−1)
∣∣H . On the other hand, since

O�k
(1) := (�m−1,k, 1)∗Nk , the left-hand side is equal to

(1 × �(m−1))∗(�m−1,k, 1)∗
((m−1⊗

i=1

Ni

)
⊗ Nk

) ∣∣∣∣ H,

or because of (3.3.7), to

(um−k, 1)∗�(m−1)∗
((m−1⊗

i=1

Ni

)
⊗ Nk

) ∣∣∣∣ H.

Finally, observe that

�(m−1)∗
((m−1⊗

i=1

Ni

)
⊗ Nk

) ∣∣∣∣ Hk = (G ⊗ G̃k−1)
∣∣Hk.

Indeed, this formula results from (3.3.8) and from the projection formula, since, as
noted above, G̃k−1

∣∣Hk is invertible. The proof is now complete. �

4. Isomorphism

Theorem 4.1. Let C/S be a flat projective family of integral curves with, at worst,
ordinary nodes and cusps. Then the autoduality map Pic0

J̄ /S
∼−→ J extends uniquely to

an isomorphism of compactifications Pic÷
J̄ /S

∼−→ J̄ .

Proof. Set U := Pic0
J̄ /S

and U := Pic÷
J̄ /S

. By Theorem 2.6, the autoduality isomorphism

extends uniquely to a map, say � : U → J̄ . By descent theory, it suffices to prove �
is an isomorphism after a faithfully flat base change. So we may assume the smooth
locus of C/S admits a section 	. Set L := OC(	(S)). Then the autoduality isomorphism
is simply A∗

L. Also, C × J̄ /J̄ carries a universal sheaf I, which is of degree 0 and
rigidified along 	. Finally, we may assume as well that S is the spectrum of a Henselian
local ring with algebraically closed residue field.

Let � : J → U be the inverse of A∗
L, and set U= := Pic=̄

J/S
. It suffices to extend �

to a map � : J̄ → U=. Indeed, J̄ is the schematic closure of J; so � factors through
U ⊆ U=. Also, ��

∣∣J = 1, so �� = 1. And ��
∣∣U = 1; so �� = 1. Hence � is an

isomorphism. Thus, it suffices to construct � : J̄ → U=.
First, recall from [6, Proposition 2.2, p. 595], or rather from [6, Remark 2.4, p.

597], the definition of � : J → U . Let q1 and q2 be the projections of C × J̄ onto the
indicated factors. Form the product K := I ⊗ q∗

1 L⊗(g−1) on C × J̄ and its determinant
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of cohomology P := Dq2(K) on J̄ . Let r1 : J̄ ×J → J̄ be the projection, � : J̄ ×J → J̄

the multiplication map. Set

T := r∗
1 P ⊗ �∗P−1.

Then T is invertible and defines �.
(Note that there are two canceling sign errors in [6, Remark 2.4, p. 597]: first, the

theta divisor is the zero scheme of the canonical regular section of P−1, not P; second,
there T is the inverse of what it should be. With these corrections, the discussion in
[6, Remark 2.4] goes through.)

Let C0 ⊆ C be the smooth locus of C/S. Set Z := C − C0 and equip Z with its
induced reduced subscheme structure. Let s ∈ S be the closed point, P1, . . . , Pm ∈
C(s) the singularities. For i = 1, . . . , m, there exists, by [8, IV4 18.5.11, p. 130], a
decomposition Z = Zi ∪ Z̃i in which Zi and Z̃i are disjoint closed subschemes such
that one of them, say Zi , meets C(s) only in Pi .

Set Ci := C−Z̃i for i = 1, . . . , m. Then Ci is open, and Ci ⊃ C0. Also Pi ∈ Ci . So
the closed fiber C(s) is covered by the Ci ; whence, C = C1 ∪ · · · ∪ Cm. If i �= j , then
Ci ∩Cj does not contain any point of Z in the closed fiber C(s); whence, Ci ∩Cj ⊆ C0.
Therefore, Ci ∩ Cj = C0.

Regard the bigraded Abel map as a rational map A : C × J̄ → J̄−1. Set � := �L ◦A.
Viewing C×(i+1) as Ci × C, form (1 × �) : C×(i+1) × J̄ → Ci × J̄ and

C×m × J̄ → C×m−1 × J̄ → · · · → C × J̄ → J̄ .

By [5, Corollary (2.6), p. 5969], the rational map A is smooth where A is defined;
whence, the composition is smooth where it is defined. Set

Hm := Cm × · · · × C2 × C1 ⊂ C×m and W := Hm × J.

Then the composition is defined on W because Ci ∩ Cj = C0 if i �= j . Thus, there is
a well-defined smooth map � : W → J̄ . Again since Ci ∩ Cj = C0 if i �= j , it follows
that �−1J = C×m

0 × J .
Not only is � : W → J̄ smooth, but also surjective. Indeed, since P1, . . . , Pm are

ordinary nodes or cusps, every torsion-free rank-1 sheaf on C(s) is of the form J ⊗L,
where L is invertible and J is the ideal of a reduced subscheme of

⋃
Pi ; hence,

�(W) ⊃ J̄ (s). But � is smooth, so open. Therefore, �(W) = J̄ .
Below, we construct a torsion-free rank-1 sheaf Q on J̄×W

/
W such that Q coincides

with (1 × �)∗�∗P−1 on J̄ ×C×m
0 ×J . Using Q, we can complete the proof as follows.

First, let r1 : J̄ × W → J̄ denote the projection, and set T� := r∗
1P ⊗ Q. Then T�

is also a torsion-free rank-1 sheaf on J̄ × W
/
W . So T� induces a map �

′ : W →
U=. But T� and (1 × �)∗T coincide on J̄ × C×m

0 × J . Hence �
′

and � ◦ � coincide
on C×m

0 × J .
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Set V := W ×J̄ W , and let �1 and �2 be the projections. Set V0 := �−1
1 �−1(J ).

Then V0 = �−1
2 �−1(J ). So �

′ ◦ �1
∣∣V0 = �

′ ◦ �2
∣∣V0. Now, � is flat, and J ⊃ Ass(J̄ ); so

V0 ⊃ Ass(V ). Hence �
′ ◦ �1 = �

′ ◦ �2. Therefore, descent theory yields a unique map
� : J̄ → U= such that �

′ = � ◦ �. Since

� ◦ �
∣∣ C×m

0 × J = �
′ ∣∣ C×m

0 × J = � ◦ �
∣∣ C×m

0 × J,

and � is faithfully flat, �|J = �. Thus, � is the desired extension of �.
It remains to construct Q. To lighten the notation, given S-schemes U and V and

coherent sheaves G1 and G2 on C×U and C×V , denote by G1� G2 the tensor product
on C × U × V of the pulled-back sheaves. Let X denote the ideal of the diagonal of
C × C, and for each n > 0 and i = 1, . . . , n, set

E (n)
i := p∗

1,n−i+2,... ,n+1

(
X� · · · �X

)
,

where p1,n−i+2,... ,n+1 : Cn+1 → Ci+1 is the projection onto the indicated factors.
Given any n�0, let Fn be the n-flag scheme of I/(C × J̄ )/J̄ , and let

I(n)
n ⊂ I(n)

n−1 ⊂ · · · ⊂ I(n)
1 ⊂ I(n)

0 := IFn

be the universal flag. Form the natural map �(n) : Fn → C×n × J̄ , and set

F ′
n := (�(n))−1(C×n

0 × J̄ ).

Also, let 
 : C×n × J̄ → J̄ × C×n be the switch map, and set �̂
(n) := 
 ◦ �(n).

Note that �(n)
∣∣F ′

n is an isomorphism, whose inverse is defined by the n-flag

(E (n)
n |(C × C×n

0 )) � I ⊂ · · · ⊂ (E (n)
1 |(C × C×n

0 )) � I ⊂ IC×n
0 ×J̄ ;

this flag is well defined since X is invertible on C0 × C0.
Set N := I|(C × J ). Then I(n)

n � N � L⊗n is a torsion-free rank-1 sheaf on
C × Fn × J

/
Fn × J ; so it defines a map �n : Fn × J → J̄ .

Take n := m. Set F̃m := (�(m))−1(Hm × J̄ ) and F̃ ′
m := (�(m))−1(W). Note that

�(m)
∣∣F̃ ′

m is an isomorphism, whose inverse is defined by the m-flag

(E (m)
m |(C × Hm)) � N ⊂ · · · ⊂ (E (m)

1 |(C × Hm)) � N ⊂ IW ;

this flag is well defined since N is invertible and Ci ∩ Cj = C0 if i �= j .
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Next, let us see that the following square is commutative:

F ′
m × J

�m−−−−→ J̄

�̂
(m)×1

⏐⏐� �
�⏐⏐

J̄ × C×m
0 × J

1×�−−−−→ J̄ × J.

Indeed, here �̂
(m) × 1 is an isomorphism; in addition, �m ◦ (�̂

(m) × 1)−1 and � ◦ (1 × �)
coincide, because they are defined by the same sheaf, namely,

I � (E (m)
m |(C × C×m

0 )) � N � L⊗m on C × J̄ × C×m
0 × J.

Since the square is commutative and �̂
(m) × 1 is an isomorphism, (1 × �)∗�∗P−1 and

(�̂
(m) × 1)∗�∗

mP−1 coincide on J̄ × C×m
0 × J ⊂ J̄ × W . So set

Q := (�̂
(m) × 1)∗�∗

mP−1
∣∣ J̄ × W. (4.1.1)

It remains to show that Q is torsion-free rank-1 on J̄ × W
/
W . Since � is faithfully

flat, it suffices to form the map � × 1 : W × W → J̄ × W and show that (� × 1)∗Q is
torsion-free rank-1 on W × W

/
W .

Given any p, q �0, take n := p + q, and let us construct the following square:

Fn
�−−−−→ Fp

�n,q

⏐⏐� ⏐⏐��p,0

Fq
�−−−−→ J̄ .

(4.1.2)

Here �n,q and �p,0 are the maps defined in (3.2). Let � be defined by the p-flag

I(n)
n � L⊗q ⊂ · · · ⊂ I(n)

q �L⊗q

on C × Fn × J̄
/
Fn × J̄ ; here I(n)

q �L⊗q is torsion-free, rank-1, and of degree 0 since

I(n)
0 is so, since each quotient I(n)

i−1/I
(n)
i is flat of relative length 1, and since L is

invertible of degree 1. Let � be defined by the torsion-free, rank-1, and degree-0 sheaf
I(q)

q �L⊗q . Clearly, the square is Cartesian.
Note that the following square is commutative:

Fn
�−−−−→ Fp

�(n,p)

⏐⏐� ⏐⏐��(p)

C×p × Fq
1×�−−−−→ C×p × J̄ .

It follows formally that this square is Cartesian since (4.1.2) is so.
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Take p = q := m. Recall that �(m) restricts to the isomorphism F̃ ′
m

∼−→ W . Set
F̃2m := (�(2m))−1(Hm × W). Then the preceding square yields this one:

F̃2m
�−−−−→ F̃m

�(2m)

⏐⏐� ⏐⏐��(m)

Hm × W
1×�−−−−→ Hm × J̄ .

Interchange the two factors in the lower left and right corners of this square, and
multiply on the right by J. The result is the following Cartesian square:

F̃2m × J
�×1−−−−→ F̃m × J

�

⏐⏐� ⏐⏐��̂
(m)×1

W × W
�×1−−−−→ J̄ × W,

which introduces �. In fact, F2m × J can be viewed as the 2m-flag scheme of

(I �N )/C × J̄ × J/J̄ × J,

and � is, up to interchanging factors, the restriction of the natural map F2m × J →
C×2m × J̄ × J over Hm × Hm × J × J .

Since the lower map � × 1 in the preceding square is flat, Eq. (4.1.1) yields

(� × 1)∗Q = �∗(� × 1)∗�∗
mP−1.

So it remains to show �∗(� × 1)∗�∗
mP−1 is torsion-free rank-1 on W × W

/
W .

Recall P := Dq2(K) where K := I �L⊗(g−1). Now, on C × F2m × J , we have

(1 × � × 1)∗(1 × �m)∗K = I(2m)
2m � N � L⊗2m.

Let q2,3 : C × F2m × J → F2m × J be the projection. Since forming the determinant
of cohomology commutes with changing the base, it remains to see that

�∗Dq2,3

(
I(2m)

2m � N � L⊗2m
) ∣∣ (

F̃2m × J
)

is torsion-free rank-1 on W × W
/
W .

But apply Lemma 3.3 with C×J ×J/J ×J for X/T , with N �N �L⊗2m for I, and
with Xi := Ci ×J ×J for i = 1, . . . , m and Xi := Ci−m×J ×J for i = m+1, . . . , 2m.
Then the sheaf in question is the tensor product of invertible sheaves with the pullback
to Hm × J × Hm × J of

H :=
⊗
i<j

p∗
i,jX

∣∣ (
Hm × Hm

)
,
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where the maps pi,j are the projections of C×2m onto the indicated factors. Since
Ci ∩ Cj = C0 for i �= j , each pullback p∗

i,jX restricts to an invertible sheaf on
Hm × Hm, unless j = i + m. So H is the tensor product of an invertible sheaf with

H′ :=
m⊗

i=1

p∗
i,i+mX

∣∣ (
Hm × Hm

)
.

It remains to prove that H′ is torsion-free rank-1 on Hm × Hm

/
Hm.

Given a map � : B → Hm, for each i = 1, . . . , m denote by �i : B → C the
composition of � with the inclusion Hm → C×m and the projection onto the ith factor
of C×m. Also, let �i ⊂ C × B denote the graph of �i , and Ii the ideal of �i . Then

(1, �)∗H′ = I1 � I2 � · · · � Im

∣∣ (
Hm × B

)
.

Since �i (B) ⊆ Cm+1−i for each i, and since Ci ∩ Cj = C0 for i �= j , at each point
of Hm × B, at most one of the factors yielding (1, �)∗H′ in the above expression
is not invertible. Thus, (1, �)∗H′ is an ideal of Hm × B. Since this holds for any
map � : B → Hm, the sheaf H′ is itself an ideal of Hm × Hm, and defines a closed
subscheme that is flat under the projection to the second factor. So H′ is torsion-free
rank-1 on Hm × Hm

/
Hm, as was to be proved. �
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