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SUMMARY

Mammals exhibit marked interindividual variations in
their gut microbiota, but it remains unclear if this is
primarily driven by host genetics or by extrinsic fac-
tors like dietary intake. To address this, we examined
the effect of dietary perturbations on the gut micro-
biota of five inbred mouse strains, mice deficient
for genes relevant to host-microbial interactions
(MyD88�/�, NOD2�/�, ob/ob, and Rag1�/�), and
>200 outbred mice. In each experiment, consump-
tion of a high-fat, high-sugar diet reproducibly
altered the gut microbiota despite differences in
host genotype. The gut microbiota exhibited a linear
dose response to dietary perturbations, taking an
average of 3.5 days for each diet-responsive bacte-
rial group to reach a new steady state. Repeated
dietary shifts demonstrated that most changes to
the gut microbiota are reversible, while also uncover-
ing bacteria whose abundance depends on prior
consumption. These results emphasize the dominant
role that diet plays in shaping interindividual varia-
tions in host-associated microbial communities.

INTRODUCTION

Although humans and other mammals exhibit many shared fea-

tures of their resident gut microbial communities (Muegge et al.,

2011), each individual harbors an idiosyncratic mixture of micro-

bial strains and species (Faith et al., 2013). In healthy adults,

the component members of the gut microbiota can be stable

for years (Faith et al., 2013), whereas the relative abundance

of each member (community structure) is highly dynamic (David

et al., 2014). The underlying causes and consequences of

these interindividual and temporal variations remain poorly

characterized.

Studies in animal models have led to the proposal that the gut

microbiota might be considered a complex polygenic trait

shaped by both environmental and host genetic factors (Benson
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et al., 2010). However, it remains unclear if host genotype or

environment (e.g., diet) plays a more dominant role in shaping

microbial ecology. Associations between genetic loci and the

abundance of bacterial taxa have been described in mice fed a

controlled diet (Benson et al., 2010; McKnite et al., 2012) and

in humans (Li et al., 2012; Smeekens et al., 2014), the genetic dis-

tance between mouse strains was recently linked to the overall

structure of the gut microbiota (Hildebrand et al., 2013), and

numerous differences have been shown between transgenic

animals and matched controls (Couturier-Maillard et al., 2013;

Hashimoto et al., 2012; Spor et al., 2011).

Conversely, time series analyses of inbred mice have shown

that the consumption of a high-fat, high-sugar diet dramatically

alters the gut microbiota in a single day (Turnbaugh et al.,

2009b; Zhang et al., 2012). Endpoint analyses of multiple inbred

mouse strains support the importance of current dietary intake

(Parks et al., 2013), as does a recent study, which demonstrates

that the microbial responses to the fucosylation of host glycans

are diet dependent (Kashyap et al., 2013). Finally, comparisons

of human twins at various ages, from infants to adults, have

failed to detect significantly more similar microbial communities

in monozygotic versus dizygotic pairs, suggesting that envi-

ronmental factors predominate over host genetics in shaping

microbial ecology (Turnbaugh et al., 2009a; Yatsunenko et al.,

2012).

Here, we systematically test the relative impacts of dietary

intake and host genetics on the gutmicrobiota, through the com-

bined analysis of five inbred mouse strains, four transgenic lines,

and a recently developed outbred mouse resource, the Diversity

Outbred (DO) population (Churchill et al., 2012; Svenson et al.,

2012). The DO population was derived from partially inbred lines

of the Collaborative Cross (Threadgill and Churchill, 2012) that

were outbred using a randomized breeding scheme with avoid-

ance of siblingmatings to obtain high genetic diversity, heterozy-

gosity, and fine recombination block structure (Svenson et al.,

2012). These traits make the DO population ideal for investi-

gating the relative contributions of host and environmental fac-

tors in shaping complex traits.

We selected two diets that reflect distinctive macronutrient

profiles, are widely used to study diet-induced obesity, and

represent modern human dietary regimes: a low-fat, high-

plant-polysaccharide diet (LFPP: 22.2% kcal protein, 16.0%
nc.
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fat, 61.7% carbohydrate) and a high-fat, high-sugar diet (HFHS:

14.8% kcal protein, 40.6% carbohydrate, 44.6% fat). Consecu-

tive dietary shifts, longitudinal sampling, dietary mixtures, and

computational modeling of microbial dynamics showed that

interindividual and interstrain differences are rapidly and consis-

tently reset by dietary perturbations. Our results also provide ev-

idence that members of the gut microbiota undergo hysteresis in

response to diet: their abundance is shaped by both current di-

etary intake and past exposures. Together, these findings have

important implications for understanding host-microbial interac-

tions during the consumption of a wide range of dietary regimes

and suggest that attempts to understand the genetic underpin-

nings of the human gut microbiota will require a careful consid-

eration of our past and present dietary habits.

RESULTS

Consistent Microbial Responses to a High-Fat,
High-Sugar Diet in Inbred Mice
16S rRNA gene sequencing was used to profile the fecal micro-

biota of 73 mice representing 5 distinct inbred founder strains

used in the Collaborative Cross: 129S1/SvImJ, A/J, C57BL/6J,

NOD/LtJ, and NZO/HlLtJ (n = 7–20 mice/genotype; 3–9 cages/

genotype). For each genotype, we fed mice either a low-fat,

high-plant-polysaccharide diet (LFPP) or a high-fat, high-sugar

diet (HFHS) forR15 weeks (Figure S1A and Table S1A available

online). 16S rRNA gene sequences were clustered into opera-

tional taxonomic units (OTUs) using a reference tree guided

approach, prior to unsupervised ordination using Bray-Curtis

dissimilarity-based principal coordinates analysis (PCoA).

Consumption of theHFHSdiet consistentlymodified the gutmi-

crobiota of all five strains such that all strains formed two distinct

clusters defined by each diet (Figure 1A; p value < 0.001, per-

mutational multivariate analysis of variance [PERMANOVA] of

Bray-Curtis distances). This shift was evident at the phylum level:

the HFHS diet significantly increased the relative abundance of

the Firmicutes (21.39% ± 1.29% LFPP versus 52.92% ± 4.45%

HFHS), increased the Verrucomicrobia (5.90% ± 1.20% LFPP

versus 26.15% ± 3.98% HFHS; see Supplemental Results), and

decreased the Bacteroidetes (71.02% ± 1.84% LFPP versus

16.35% ± 1.48% HFHS) (all comparisons p value < 0.0001, Wil-

coxon rank-sum test; Figure 1B). These trends were also de-

tectable at finer taxonomic levels, ranging from class to genus

(Table S2A).

When considering each diet independently, we detected sig-

nificant clustering by host genotype (p value < 0.001, PERM-

ANOVA of Bray-Curtis distances). We also detected multiple

taxa with significantly altered relative abundance between

inbred strains; however, only three bacterial genera were signif-

icantly enriched in onemouse line relative to the other four (Table

S3A). De novo clustering of our 16S rRNA gene sequences into

OTUs confirmed these trends, while also identifying a member

of the Erysipelotrichaceae family (OTU13400) that was consis-

tently enriched in C57BL/6J mice regardless of diet (Table

S3B). Interestingly, both the magnitude and direction of change

for multiple bacterial genera were different between genotypes

(Figure 1C; Table S2A), suggesting that the impact of the

HFHSdiet may depend on the broader host ormicrobial commu-

nity context.
Cell H
To test if these correlations were driven by host genotype or

reflected a recent shared history of microbial exposures, we

sampledmultiple cages from each inbred line, each representing

a unique set of littermates cohoused since birth and split accord-

ing to sex at 3 weeks of age. Principal coordinates analysis

confirmed that many of the differences between genotypes

were consistently found in all cages (Figure 2A). Correspond-

ingly, we identified bacterial genera that were significantly en-

riched in 129S1/SvlmJ, C57BL/6J, and NZO/HILtJ mice from

multiple cages (Figures 2B–2D). However, we also detected

one genus that was only significantly altered in one cage (Fig-

ure 2C), and we did not detect any genera (or higher-level taxa)

that were consistently enriched in the same host genotype on

both diets (Table S3). Thus, our results imply that the effects of

dietary intake overshadow any preexisting differences between

strains due to host genotype. Furthermore, we cannot fully

exclude the possibility that some of the observed associations

with host genotype may actually be the result of a longer-term

shared history of environmental exposures.

Next, we sought to test if diet is capable of reproducibly

shaping the gut microbiota in the context of more dramatic per-

turbations to host genotype and phenotype. Male C57BL/6J

wild-type mice were fed a LFPP diet until they reached 7 weeks

of age, at which point they were switched to the HFHS diet

for 1 week. Fecal samples from multiple days prior to and after

the diet shift were used for 16S rRNA gene sequencing (Fig-

ure S1B; Table S1B). The same procedure was performed for an-

imals homozygous for mutations in four genes that have been

previously shown to impact the gut microbiota (n = 5 mice/geno-

type):MyD88�/� (Wen et al., 2008); NOD2�/� (Couturier-Maillard

et al., 2013); ob/ob (Ley et al., 2005); and Rag1�/� (Scholz et al.,

2014).

The HFHS diet consistently modified the gut microbiota of

wild-type animals and all four transgenic lines (Figure 3A), with

significant clustering by diet across the entire data set (p value <

0.001, PERMANOVA of Bray-Curtis distances). Within each diet,

there was significant clustering according to host genotype (p

value < 0.001, PERMANOVA on the final time point for each

diet). Analysis of microbial community structure over time re-

vealed that all genotypes responded within 2 days (Figure 3B);

however, MyD88�/� animals exhibited a blunted response to

the HFHS diet (p value < 0.05, Kruskal-Wallis test with Dunn’s

correction for multiple comparisons using data from the final

time point). In order to account for differences in sample number

between groups, we reanalyzed the data for each transgenic

mouse strain and the wild-type control (n = 15 samples/group;

the final time point on the HFHS diet was excluded to allow for

matched comparisons on both diets). These analyses again

identified diet as the primary factor driving the observed varia-

tions in microbial community structure, with genotype providing

secondary clustering (Figures 3C–3F). Pairwise statistical ana-

lyses of the final time point on each diet confirmed these trends,

with diet explaining more of the observed variation than host ge-

notype (R2 ranges: 0.08–0.23 [genotype] and 0.35–0.48 [diet];

ADONIS test). Diet also consistently altered community mem-

bership as indicated by the unweighted UniFrac metric (data

not shown).

The HFHS diet significantly altered bacteria at taxonomic

levels ranging from phylum to genus (Table S2A), confirming
ost & Microbe 17, 72–84, January 14, 2015 ª2015 Elsevier Inc. 73
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Figure 1. Microbial Responses to the High-Fat, High-Sugar Diet in Inbred Mice

(A) Microbial community structure is primarily determined by diet (see PC1; F = 38.0, p value < 0.001, PERMANOVA on Bray-Curtis distances). Secondary

clustering is by host genotype (see PC2; F = 9.8, p value < 0.001 [LFPP] and F = 2.9, p value < 0.001 [HFHS], PERMANOVA after splitting the data sets by diet).

Bray-Curtis dissimilarity-based principal coordinates analysis (PCoA) was performed on 16S rRNA gene sequencing data; the first two coordinates are shown

(representing 48% of the total variance). Values are mean ± SEM (n = 2–13 animals/group).

(B) Relative abundance of major taxonomic orders in five strains fed a LFPP or HFHS diet. Groups within the same bacterial phylum are indicated by different

shades of the same color. Taxa with a mean relative abundance >1% are shown.

(C) Diet-dependent bacterial genera with distinctive changes between genotypes.

See Table S2A for the full set of taxa. Different genotypes are indicated by the shade of each line. Values in (B) and (C) are means (n = 2–13 animals/group). See

also Figure S1 and Tables S1 and S2.
the overall trend of increased Firmicutes and decreased Bacter-

oidetes. Although not all diet-associated groups reached signif-

icance in both the transgenic and inbred strain experiments, the

direction of change was consistent in all cases where a signifi-

cant association was found in both data sets. The identified

diet-dependent bacterial taxa were also generally consistent in

their direction of change in each mouse strain following con-

sumption of the HFHS diet; in all cases where there was a

disagreement, it was due to a single genotype (Table S2A).

One explanation for the marked impact of the HFHS diet

across multiple inbred strains, including transgenic animals, is

that this represents a relatively strong dietary shift: 16.0% to

40.6% fat accompanied by a shift from plant polysaccharides

to more readily digestible carbohydrates. Ecological theory pre-
74 Cell Host & Microbe 17, 72–84, January 14, 2015 ª2015 Elsevier I
dicts that the gut microbiota may be able to tolerate more subtle

dietary interventions (Costello et al., 2012). To test if the magni-

tude of microbial response is directly proportional to the degree

of dietary perturbation, we fed adult male C57BL/6J wild-type

mice repelleted mixtures of the LFPP and HFHS diet (0, 1, 10,

25, 50, 75, and 100% HFHS by weight; n = 4–5 mice/diet). Fecal

samples were collected prior to and 7 days after each dietary

intervention and analyzed by 16S rRNA gene sequencing (Fig-

ure S1C; Table S1C). Dietary HFHS content influenced host

adiposity over the 7 days of gradient feeding. Despite reducing

food intake as the proportion of the HFHS diet increased (Fig-

ure 4A), mice consumed more calories overall on HFHS-rich

diets (Figure 4B). Correspondingly, we observed HFHS-depen-

dent increases in epididymal fat pad mass, whether measured
nc.
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Figure 2. Genotype-Associated Shifts in the

Gut Microbiota Are Robust to Cage Effects

(A) Microbial community structure is consistent

between cages. Bray-Curtis dissimilarity-based

principal coordinates analysis (PCoA) was per-

formed on 16S rRNA gene sequencing data

collected during consumption of the LFPP diet.

Each point represents a different cage; colored

lines connect cages housing mice from the same

genotype.

(B–D) Relative abundance of bacterial genera that

are associated with host genotype on the LFPP

diet: (B) 129S1/SvlmJ (red), (C) C57BL/6J (green),

and (D) NZO/HILtJ (blue) (also see Table S3A).

Values are mean ± SEM (n = 2–5 mice/cage; 2–4

cages/genotype). Asterisks represent significant

differences (p value < 0.05, Kruskal-Wallis test with

Dunn’s correction for multiple comparisons).

See also Figure S1 and Tables S1 and S3.
on an absolute basis (R2 = 0.272; F = 11.93; p value = 0.002) or as

a fraction of body mass (Figure 4C).

HFHS content was also a significant predictor of gut microbial

community structure. Bray-Curtis dissimilarity-based PCoA re-

vealed significant clustering of the gut microbiota by diet group

(p value < 0.01; PERMANOVA of Bray-Curtis distances), with

diet separating microbial communities along the first principal

coordinate (PC1, 37% of variance). PC1 values decreased line-

arly as HFHS content increased (Figure 4D). We also observed

correlations between HFHS content and the relative abundance

of microbial taxa previously associated with the HFHS diet,

including an increased proportion of Firmicutes (Figure 4E) and

a decreased proportion of Bacteroidetes (Figure 4F). Verrucomi-

crobia, a phylum associated with the HFHS diet in the earlier ex-

periments, was either below the limit of detection or present at

low abundance in all samples from this experiment, regardless

of diet (mean % of 16S sequences: 0.0013 ± 0.0001). These

linear associations were also detectable at the genus level (Table

S2B), confirming many of the previously observed differences

between the LFPP and HFHS diets (Table S2A). Together, these

data suggest that the gut microbiota responds to diet in a

dose-dependent manner with even subtle perturbations detect-

ably changing microbial community structure.

A Rapid and Sustained Microbial Response to the
High-Fat, High-Sugar Diet in Outbred Mice
To more systematically vary host genetics in mice with a com-

mon history of environmental exposures, we obtained 60 Diver-
Cell Host & Microbe 17, 72–8
sity Outbred (DO) mice (30 females,

30 males). All mice were from generation

6 of outbreeding, each representing a

unique combination of eight founder al-

leles from the five strains surveyed previ-

ously, in addition to CAST/EiJ, PWK/PhJ,

andWSB/EiJ (Churchill et al., 2012; Sven-

son et al., 2012). Genome-wide analyses

of our animals confirmed that we suc-

cessfully recaptured nearly all of the

genetic diversity in the DO population
(FST = 0.05 for the 60 animals in the DO time series experiment;

FST = 0.03 for the expanded set of 203 animals). Consecutive di-

etary shifts were employed to assess the speed, reproducibility,

and reversibility of the microbial responses to dietary perturba-

tions. Individually housed mice were fed a LFPP diet from wean-

ing until 7 weeks of age, at which time they were fed a HFHS diet

for 1 week, returned to the LFPP diet for 1 week, and then main-

tained on the HFHS diet for 2 months. Fecal pellets were

analyzed from the 60 mice at 18 time points, spanning 14 weeks

(n = 977 samples; Figure S1D; Table S1D).

Consistent with our analysis of inbred strains and transgenic

mice, the HFHS diet rapidly altered microbial community mem-

bership (Figure S2A) and structure (Figures 5A and 5B) despite

substantial variations in host genotype (Svenson et al., 2012).

The diet shifts also reset interindividual variability in community

structure (i.e., b-diversity patterns). Mantel tests were performed

for all pairwise comparisons of Bray-Curtis distance matrices

representing differences in gut community structure between

animals at each time point. Although within each diet b-diversity

was stable over time (median p value < 0.001), microbial commu-

nity structure was rapidly altered by the HFHS diet such that the

differences between mice could not be accurately predicted us-

ing samples collected on different diets (median p value > 0.1;

Figure S2B).

As with the inbred mice, consumption of the HFHS diet by

outbred mice led to a significant increase in the Firmicutes

phylum (39.10% ± 1.17% LFPP versus 64.65% ± 0.73%

HFHS) and a decrease in the Bacteroidetes (57.81% ± 1.25%
4, January 14, 2015 ª2015 Elsevier Inc. 75
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LFPP versus 32.58% ± 0.73% HFHS; both comparisons p

value < 0.0001, Wilcoxon rank-sum test; Figure S2C). The Verru-

comicrobia were consistently found at low abundance in the

outbred mice (<1% maximum abundance across the entire

time series), but were still significantly increased on the HFHS

diet (2.4 3 10�4 ± 9.3 3 10�5% LFPP versus 5.1 3 10�3 ±

1.8 3 10�3% HFHS; p value < 0.0001, Wilcoxon rank-sum test;

see Supplemental Results). We also detected Lactococcus lactis

on the HFHS diet, likely due to the presence of free nucleic acids

in fermented casein (see Supplemental Results). These trends

were detectable at multiple taxonomic levels and were

confirmed on an independent set of 143 outbred mice sampled

after 21 weeks on either the LFPP or HFHS diet (Figure S3 and

Tables S1E and S2A).

To assess the time-dependent responses of individual spe-

cies-level bacterial operational taxonomic units (OTUs), we im-

plemented the Microbial Counts Trajectories Infinite Mixture

Model Engine (MC-TIMME) (Gerber et al., 2012) (Figure S4A).

MC-TIMME uses nonparametric Bayesian methods to infer

patterns of change in OTU relative abundances over time,

referred to as signatures (see Supplemental Experimental Proce-

dures for model validation). We focused on the 81 OTUs that

were present and responsive to dietary changes in >50% of

mice. An additional 389 OTUs were responsive to diet in <50%

of the animals, due to genotypic, environmental, or stochastic

effects. We also found 38 OTUs that were present in >50% of

the mice but nonresponsive to diet (Table S2C). Nonresponsive

OTUs were significantly enriched for members of the Rumino-

coccaceae family (55% relative to 17% of the diet-responsive

OTUs; p value < 10�4, Fisher’s exact test), and found at a signif-

icantly higher median relative abundance as compared to the

diet-responsive OTUs (2.5 3 10�2 ± 4.7 3 10�3 versus 8.3 3

10�3 ± 3.8 3 10�3; p value < 10�10, Wilcoxon rank-sum test).

Our model found that 62% of the 81 diet-responsive OTUs ex-

hibited consistent patterns of temporal change across R50%

of the mice (Figure 5C; Table S4A). Almost all (98%) of the

analyzed OTUs that increased on the HFHS diet were assigned

to the Firmicutes phylum, whereas all of the OTUs that increased

on the LFPP diet were Bacteroidetes.

We next used our model to calculate relaxation times, repre-

senting the time constant (half-life) for each OTU to reach a

new steady state after a dietary switch. OTUs with consistent

patterns of change in response to the dietary shift generally ex-

hibited short relaxation times (3.57 ± 0.33 days; Table S4A).

Overall, members of the Bacteroidales order had significantly

longer relaxation times than the Clostridiales (Figure 5D; median

of 8.6 versus 3.4 days, respectively; p value < 10�16, Wilcoxon
Figure 3. Microbial Responses to the High-Fat, High-Sugar Diet in Tra

(A) Microbial community structure is primarily determined by diet (see PC1; F =

clustering is by host genotype (see PC2; F = 17.9, p value < 0.001). Bray-Curtis di

rRNA gene sequencing data; the first two coordinates are shown (representing 3

(B) Analysis of the microbial response to the HFHS diet over time, using the firs

labeled based on host genotype. Values are mean ± SEM (n = 5 mice/group). The

type controls (p value < 0.05, Kruskal-Wallis test with Dunn’s correction for mult

(C–F) Bray-Curtis-based PCoA of the fecal microbiota of animals on a LFPP (white

type controls are included in all panels, indicated by white triangles (LFPP diet) an

LFPP (white diamonds) and HFHS (black leftward triangles); (D) NOD2�/� LFPP (

HFHS (black squares); and (F) Rag1�/� LFPP (white squares) and HFHS (black r

See also Figure S1 and Tables S1 and S2.
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rank-sum test). These results are consistent with recent evi-

dence that Clostridiales may be more active than the Bacteroi-

dales (Maurice et al., 2013), allowing them to respond more

rapidly to a dietary perturbation. Thus, despite marked host

genetic diversity, the gut microbiota exhibits a rapid and stereo-

typical microbial response to consumption of the HFHS diet.

Microbial Responses to Sequential Diet Shifts
Given the rapid and reproducible microbial response to HFHS

intake, we next sought to test whether this phenomenon could

be attributed fully to current dietary intake or whether there

were lingering effects of past dietary history. Analysis of the

consecutive dietary shifts in outbred mice suggested that both

community membership and structure were markedly altered af-

ter 3–7 days of HFHS diet consumption in naive mice, whereas

the gut microbiota of mice previously exposed to the HFHS

diet took 1–2 weeks to respond (Figure 5B). To more rigorously

address this question, we collected daily fecal samples from

inbred C57BL/6J mice (n = 15) oscillating between LFPP and

HFHS diets every 3 days. All animals were maintained on a

LFPP diet in individual cages prior to the beginning of the exper-

iment at 7 weeks of age. In total, we analyzed four groups, rep-

resenting two sets of oscillating mice staggered by 3 days, and

two control groups maintained on either a continuous LFPP or

a continuous HFHS diet. All animals were switched to the

HFHS diet for the final week. Daily fecal samples were subjected

to 16S rRNA gene sequencing, representing 536 total samples

across the 38 day experiment (Figure S1E; Table S1F).

Mouse physiology and chowconsumptionwere rapidly altered

by diet. Body weight consistently increased during consumption

of the HFHS diet, while decreasing on the LFPP diet (Figure S5A).

Similarly, control mice continuously fed a HFHS diet had an

elevated weight relative to LFPP controls (Figure S5B). On

average, each 3 day diet period resulted in 3.40% ± 0.54%

weight loss on the LFPP diet and 5.95% ± 0.56% weight gain

on the HFHS diet (Figure S5C). Weight gain during the 5 week

experiment was significantly higher in control mice continuously

fed theHFHSdiet, as compared to themice on oscillating diets or

LFPP-fed controls (Figure S5D). The mice on oscillating dietary

regimens displayed excess caloric intake on the HFHS diet and

diminished intake on the LFPP diet during the first day following

each shift (Figures S5E and S5F).

Analysis of microbial community membership (Figure S6A)

and structure (Figures 6A and S6B) over time revealed that the

gutmicrobiota was rapidly and consistently reshaped by both di-

ets. Control mice continuously fed the LFPP or HFHS diets were

clearly distinguishable (Figure 6B). The observed changes to
nsgenic Mice

60.8, p value < 0.001, PERMANOVA on Bray-Curtis distances). Secondary

ssimilarity-based principal coordinates analysis (PCoA) was performed on 16S

7% of the total variance). Values are mean ± SEM (n = 15–20 samples/group).

t principal coordinate from the Bray-Curtis-based PCoA. Points and lines are

asterisk represents significant differences at the final time point relative to wild-

iple comparisons).

filled symbols) or HFHS (black filled symbols) diet (n = 15 samples/group).Wild-

d inverted black triangles (HFHS diet). Transgenic mice include: (C)MyD88�/�

white circles) and HFHS (black circles); (E) ob/ob LFPP (white pentagons) and

ightward triangles).
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Figure 4. Microbial Responses Are Proportional to the Degree of Dietary Perturbation

(A–C) Physiological responses of mice to diets with differing HFHS contents: (A) food intake decreases as dietary HFHS content increases; nevertheless both (B)

caloric intake and (C) body fat increase on HFHS-rich diets.

(D) Dose-dependent relationship between dietary HFHS content and the first principal coordinate from a Bray-Curtis dissimilarity-based PCoA of microbial

community composition.

(E and F) Dose-dependent relationships between dietary HFHS content and the two most abundant diet-associated bacterial phyla: (E) Firmicutes increase with

HFHS content and (F) Bacteroidetes decrease with HFHS content.

Within each panel, the upper graph (colored circles) represents data collected during gradient feeding, whereas the lower graph (gray squares) represents data

collected during the baseline week, when mice had been assigned to a diet group but had not yet initiated gradient feeding. R2 and p values reflect linear

regression (n = 4–5 animals/group). See also Figure S1 and Tables S1 and S2.
overall microbial community structure corresponded to rapid

shifts in the relative abundance of the two major bacterial orders

in the distal gut, the Bacteroidales (phylum: Bacteroidetes) and

Clostridiales (phylum: Firmicutes) (Figures 6C and 6D). These
78 Cell Host & Microbe 17, 72–84, January 14, 2015 ª2015 Elsevier I
high-level changes occurred consistently during each succes-

sive diet shift and were detectable after only a single day. These

trends were consistent with our previous experiments and signif-

icant at multiple taxonomic levels (Table S2A).
nc.
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Figure 5. A Rapid and Reproducible Microbial Response to the High-Fat, High-Sugar Diet in Outbred Mice

(A) Bray-Curtis-based PCoA of the fecal microbiota of animals on a LFPP (blue) or HFHS (red) diet. The first two principal coordinates are shown (representing

27% of the total variance), which clearly separate the 977 fecal samples by diet.

(B) Analysis of the microbial response to the HFHS diet over time, using the first principal coordinate from the Bray-Curtis-based PCoA. Points are labeled based

on the current diet: LFPP (blue) or HFHS (red). Samples were collected weekly, with daily sampling during the first week of the HFHS diet (indicated by the number

of days post shift, dps). On average, 52 mice were sampled at each time point. Values are mean ± SEM.

(C) Time map of consistently responsive species-level bacterial operational taxonomic units (OTUs) in outbred mice. The selected OTUs were present,

responsive, and had consistent temporal patterns inR50% of mice. Each row represents a consensus temporal signature (aggregated model estimates across

mice) for an OTU, ordered by agglomerative clustering of signatures. Blue indicates relative abundances below the mean abundance for the entire signature, and

red indicates relative abundances above the mean. Values represent model estimates, in units of log transformed and standardized relative abundances. The

taxonomic assignment for each OTU is indicated on the right of the heatmap: Bacteroidales (black), Clostridiales (orange), and Lactobacillales (pink).

(D) Relaxation time constant distributions on the secondHFHS diet regimen, for OTUs belonging to the bacterial orders Clostridiales and Bacteroidales (data from

all OTUs are shown, including those with inconsistent behavior across mice). Relaxation time characterizes how quickly an OTU’s relative abundance reaches an

equilibrium level, with shorter times indicating more rapid equilibration.

See also Figures S1–S4 and Tables S1, S2, and S4.
To analyze the impact of successive dietary perturbations

on the time-dependent responses of species-level bacterial

OTUs, we modified our MC-TIMME algorithm to model temporal

signatures using simple linear models with constant levels for

each dietary regimen (LFPP and HFHS) and linear increases or

decreaseswith subsequent dietary switches (oscillation number)

(Figure S4B). Our model merged data from the staggered

(counter-oscillatory) experiments to produce consensus signa-

tures for each OTU (see Supplemental Experimental Proce-

dures). One hundred and twenty-five OTUs were consistently

responsive (present in >50% of mice, with significant changes

on the first or last dietary shifts) and exhibited patterns of change

in response to diet that were consistent in >50% of mice. Thirty-

two OTUs exhibited dependence of their levels over time on the

serial dietary switches (Figures 7A and S7A–S7E; Table S4B),
Cell H
whereas 93 had a consistent difference in abundance on the

LFPP versus HFHS diets but displayed no detectable change

in abundance after each sequential shift (Figures S6C, S7F,

and S7G; Table S4C).

We performed three analyses to assess whether these trends

were primarily dependent on the dietary oscillations, rather than

being dependent on temporal drift caused by other host or envi-

ronmental factors. First, we found no bias in the temporal consis-

tency of the behavior of the detected OTUs between the two

groups of mice subjected to staggered dietary oscillations (p

value = 0.94, paired t test corrected for differing group sizes).

Second, we tested if the 32 OTUs exhibiting dependence on

the serial dietary shifts were also altered over time in control

mice maintained on a constant LFPP or HFHS diet. Of the 32

OTUs, only 8 demonstrated any significant change in abundance
ost & Microbe 17, 72–84, January 14, 2015 ª2015 Elsevier Inc. 79
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Figure 6. Impact of Successive Dietary Shifts on the Gut Microbiota

(A) Analysis of the microbial response to the LFPP (blue) and HFHS (red) diet over time, using the first principal coordinate from the Bray-Curtis-based PCoA. The

two oscillating groups are indicated by a solid line (group 1) or a dashed line (group 2). Time points are colored based on the diet consumed over the prior 24 hr;

i.e., oscillator group 1 was switched onto the HFHS diet on day zero.

(B) Results from control mice continuously fed a LFPP (solid line) or HFHS diet (dashed line). The full time series, including additional baseline and maintenance

samples, is shown in Figures S6A and S6B.

(C and D) The abundance of (C) the Bacteroidales (phylum: Bacteroidetes) and (D) Clostridiales (phylum: Firmicutes) is shown over time. The two oscillating

groups are indicated by a solid line (group 1) or a dashed line (group 2). Values are mean ± SEM (n = 3–5 mice per group). See also Figures S1, S5, and S6 and

Tables S1 and S2.
over time on either the LFPP or HFHS diet (Table S4D; q value <

0.05, F test and slope R 0.1).

Finally, we tested if the observed hysteresis patterns of spe-

cies-level OTUs were accompanied by a change in the abun-

dance of groups of functionally coherent bacterial genes. 16S

rRNA gene sequencing data were used to predict the abun-

dance of enzyme-level orthologous groups, which were then

filtered and clustered according to their temporal dynamics

with MC-TIMME (see Experimental Procedures). We identified

47 clusters of orthologous groups (containing on average 68 or-

thologous groups each) with a consistent difference in abun-

dance on the LFPP versus HFHS diets (Figure 7B). Thirty-seven

of these clusters exhibited dependence of their levels over time

on the serial dietary switches (hysteresis, using the same criteria

as for OTUs). The clusters that consistently increased on the

HFHS diet were significantly enriched for orthologous groups

from pathways for the metabolism of sucrose, the dominant car-
80 Cell Host & Microbe 17, 72–84, January 14, 2015 ª2015 Elsevier I
bohydrate in the HFHS diet, including a phosphotransferase

system for sucrose import (K02808/K02809) and a key enzyme

for sucrose catabolism (levansucrase, K00692) (Table S4E). Of

note, on the HFHS diet we also found a steady increase in the

abundance of orthologous groups for urea metabolism (found

within the arginine metabolism pathway), including urease

(K01428-30), allophanate hydrolase (K01457), and urea carbox-

ylase (K01941). We also observed significant enrichments for or-

thologous groups in the sucrose and arginine metabolism path-

ways in our outbred mouse time series experiment (data not

shown).

Taken together, these results suggest that gut microbial com-

munity structure andmetabolic activity are, at least in part, deter-

mined by prior dietary history (i.e., oscillation number) and not

simply by current dietary intake. Our use of a relatively simple

linear model provides a conservative estimate of these effects,

which could conceivably include changes in equilibration time
nc.
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Figure 7. Identification of Bacterial Species and Genes Dependent on Prior Dietary Intake

(A) Relative abundance of species-level OTUs that were consistently present, responsive to diet, had consistent temporal patterns, and exhibited dependence of

levels on serial dietary changes (see Experimental Procedures for thresholds used). Each row represents a temporal signature for an OTU (model estimate from

combined data from the staggered dietary oscillation groups). Blue indicates relative abundances below the mean abundance for the entire signature, and red

indicates relative abundances above the mean. Values represent model estimates, in units of log transformed and standardized relative abundances.

The taxonomic assignments for each OTU are labeled on the right of each heatmap: Bacteroidales (black), Clostridiales (orange), Erysipelotrichales (blue), and

Coriobacteriales (green). *OTUs with detailed graphs are shown in Figures S7A–S7E.

(B) Bacterial gene content (KEGG orthologous groups) was inferred using an ancestral state reconstructionmethod (Langille et al., 2013). TheMC-TIMME algorithm

identified 47 clusters of orthologous groups (mean of 68 orthologous groups per cluster) showing consistent differences in abundance on the LFPP versus HFHS

diets. PTS, phosphotransferase system. Each row in the time map represents a consensus temporal signature for the indicated cluster. Blue indicates relative

abundances below themean abundance for the entire signature, and red indicates relative abundances above themean. Values representmodel estimates, in units

of log transformed and standardized relative abundances. The top 37 clusters (above the white line) exhibited dependence of their levels over time on the serial

dietary switches (hysteresis).

See also Figures S1, S4, S6, and S7 and Tables S1 and S4.
with serial dietary shifts or nonlinear dependencies on oscillation

number that our model did not capture.

DISCUSSION

A recent endpoint analysis of 52 matched inbred strains of mice

fed a comparable LFPP or HFHS diet reported a significant asso-

ciation between host genotype and microbial community struc-

ture (Parks et al., 2013). However, our current results, based on

both endpoint and extensive time series analyses, emphasize

that the microbial response to the consumption of the HFHS

diet consistently overshadows preexisting genetic associations.

We found that (1) the gut microbiotas of inbred, transgenic, and

outbred mice were consistently shaped by diet despite widely

divergent genotypes, (2) interstrain and interindividual differ-

ences in community structure were reset after dietary perturba-

tion, and (3) the changes in microbial community structure were

rapid, reproducible, and reversible. These results suggest that
Cell H
environmental factors, namely host diet, play a dominant role

in shaping gut microbial ecology.

The robust linkage between dietary intake and gut microbial

community structure is exemplified by our analysis of C57BL/

6J mice alternating between the LFPP and HFHS diets every

3 days. Remarkably, each diet shift rapidly and reproducibly re-

shaped the gut microbiota, detectable after a single day. Addi-

tional work is necessary to identify the mechanisms responsible

for the observed changes to the gut microbiota during the con-

sumption of the HFHS diet. Although total caloric intake has

been associated with changes to the human gut microbiota

(Jumpertz et al., 2011), studies in bothmice and humans suggest

that these effects are minimal relative to that of dietary composi-

tion (David et al., 2014; Ravussin et al., 2012). But what compo-

nents of the LFPP and HFHS diets matter most? The answer will

likely require systematic comparisons of defined mixtures that

span the nutritional space encompassed by these two diets

(Faith et al., 2011). Whether changes in the microbial community
ost & Microbe 17, 72–84, January 14, 2015 ª2015 Elsevier Inc. 81



arise directly from the altered nutrient environment in the gastro-

intestinal tract or indirectly due to effects of altered diets on host

physiology that are consistent across genotypes, remains a

fascinating area for future inquiry.

These studies also provide a basis from which to consider the

many functional consequences of a gut microbiota altered by

diet. Rapid restructuring of the gut microbiota may contribute

to the beneficial effects of time-restricted feeding (Hatori et al.,

2012) and could broadly alter the microbial contributions toward

metabolism and immunity. It will be important to determine if

similar shifts occur in the context of humans undergoing analo-

gous ‘‘yo-yo’’ diets reflecting alternating periods of increased

and decreased caloric intake (Atkinson et al., 1994). More

broadly, it is interesting to consider whether or not the observed

microbial plasticity may be a selective trait that helped our an-

cestors maintain energy balance given a volatile diet that was

dependent on season and foraging success (Hawkes et al.,

1991). Diet-induced changes in the gut microbiota could also

alter key metabolic activities, as shown recently for the interac-

tion between dietary protein and the bacterial inactivation of car-

diac drugs (Haiser et al., 2013).

Our data also support a role for host genetics and/or other envi-

ronmental factors in mediating variations in community structure

within eachdietary regime. Controlling for diet,microbial commu-

nities clustered by genotype among inbred strains and transgenic

mice. We identified 12 outbred mice with divergent community

structure (2 that resembled LFPP during consumption of the

HFHS diet, and 10 with the opposite response; Figure S3B).

Our computational modeling also highlighted species-level bac-

terial OTUs that behaved inconsistently betweenmice. The range

of relative abundances found within each diet group was sub-

stantial, especially for the Akkermansia genus (phylum: Verruco-

microbia), which dominated the gut microbiota of somemice and

was nearly undetectable in many others (Figures S3C and S3D

and Supplemental Results). Additional studies are warranted to

determine what other host and/or environmental factors may

drive variations in microbial community structure within and be-

tween animal facilities (Ivanov et al., 2009).

These results also demonstrate that during dietary perturba-

tions the gut microbiota can exhibit hysteresis: the dependence

of a complex system not only on its current environment but also

on past exposures. These effects have been described previously

in a wide range of fields, including ecology (Scheffer et al., 2001),

immunology (Das et al., 2009), developmental biology (Sha et al.,

2003), economics (Blanchard and Summers, 1986), and physics

(Jiles and Atherton, 1986). There is also preliminary evidence for

hysteresis in the human gut microbiota following repeated expo-

sure tobroad-spectrumantibiotics (Gerber et al., 2012). Additional

work is needed to test the underlying source of this effect, whether

it is due to adynamic lagbetween the dietary input and the change

in bacterial abundance (i.e., rate-dependent hysteresis) or to

another as-of-yet unknown mechanism that allows the gut

microbiota to remember its past dietary exposures (e.g., through

bacterial interaction networks) (Levy and Borenstein, 2013).

Finally, this study provides a cautionary note for ongoing ef-

forts to link host genetics to the composition and function of

the human gut microbiota. Perhapsmore so than any other com-

plex trait, the gut microbiota is shaped by a wide range of envi-

ronmental factors, including diet (David et al., 2014), antibiotics
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and other drugs (Maurice et al., 2013), and geography (Yatsu-

nenko et al., 2012). It will be difficult to identify host factors

that are reproducibly associated with alterations to the gut mi-

crobiota without adequately controlling for these environmental

factors. We anticipate that studies of large cohorts of outbred

mice, fed a wide range of diets, coupled to experiments with

inbred, transgenic, and gnotobiotic animal models will be an

important strategy to elucidate the complex interrelationships

between diet, host genetics, and the gut microbiota.
EXPERIMENTAL PROCEDURES

Animal Husbandry

Animal procedures were approved by the Jackson Laboratory and Harvard

University. The LFPP diet (LabDiet; 5K52) contained 16.0% kcal from fat (pri-

marily soybean oil) and 61.7% from carbohydrates (primarily whole grains).

The HFHS diet (Harlan Laboratories; TD.08811) contained 44.6% kcal from

fat (primarily milk-derived saturated fat) and 40.6% from carbohydrates

(sucrose, maltodextrin, and corn starch). Mice in the dietary gradient experi-

ment were fed custom diets representing defined mixtures of TD.08811

and TD.96338, a Harlan product that is the nutritional equivalent of LabDiet

5K52.

16S rRNA Gene Sequencing and Analysis

DNA was extracted using the PowerSoil bacterial DNA extraction kit (MoBio)

and PCR amplified using barcoded universal bacterial primers targeting vari-

able region 4 of the 16S rRNA gene. Barcoded amplicons from multiple sam-

ples were pooled and sequenced using the Illumina HiSeq platform. 16S rRNA

gene sequences were analyzed on the Harvard Odyssey cluster using the

QIIME (Quantitative Insights IntoMicrobial Ecology) software package (Capor-

aso et al., 2010) along with customPerl scripts. LefSe was used to identify taxa

associated with each experimental group (Segata et al., 2011).

Data Preprocessing for Dynamical Modeling

An operational taxonomic unit (OTU) was defined as present in a givenmouse if

there were R10 sequence counts at R5 time points. For the outbred mouse

time series, we defined each OTU as responsive in a given mouse if its relative

abundance on the first LFPP diet interval was significantly different from that

on the final HFHS diet interval (q value < 0.05, Wilcoxon rank-sum test) (Ben-

jamini and Hochberg, 1995). For the dietary oscillation experiment, we defined

each OTU as responsive in a given mouse if its relative abundance on all LFPP

time points was significantly different compared to its relative abundance on all

HFHS time points (q value < 0.05, Wilcoxon rank-sum test).

Modeling of Dynamics

We customized the MC-TIMME model (Gerber et al., 2012) to capture dy-

namics of the outbred mouse time series and dietary oscillation experiments.

This model uses nonparametric Bayesian methods to infer prototypical pat-

terns of change in OTU relative abundances over time (signatures), and groups

of OTUs with similar temporal behavior (signature groups). For the outbred

mouse experiments, we used exponential relaxation process models to cap-

ture the dynamics of dietary shifts. For the dietary oscillation experiments

we adjusted the MC-TIMME model to assess the dependence of changes in

the microbiota on repeated dietary shifts. See Supplemental Experimental

Procedures for justifications of our assumptions and a detailed model

validation.

Analysis of Gene and Pathway Abundances

PICRUSt version 0.9.1 (Langille et al., 2013) was used to impute the abun-

dance of KEGG orthologous groups (KOs). We retained KOs with >100 pre-

dicted counts in R5 time points in >50% of mice and a significant response

to diet in >50% of mice (Wilcoxon rank-sum test, q value < 0.05). Postfiltering,

we clustered the remaining KOs based on their temporal abundance patterns

using theMC-TIMME algorithm.We then used the hypergeometric test to eval-

uate pathway-level enrichment.
nc.



Statistical Analysis

Statistical analyses were performed using GraphPad Prism. Data are ex-

pressed as mean ± SEM, and significance was set at a two-tailed p value <

0.05, unless otherwise indicated.
ACCESSION NUMBERS

Sequencing reads are in MG-RAST (Meyer et al., 2008) under the accession

number 11172.
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