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Shape memory polymers (SMPs) have gained strong research interests recently due to their mechanical
action that exploits their capability to fix temporary shapes and recover their permanent shape in
response to an environmental stimulus such as heat, electricity, irradiation, moisture or magnetic field,
among others. Along with interests in conventional ‘‘dual-shape’’ SMPs that can recover from one tempo-
rary shape to the permanent shape, multi-shape SMPs that can fix more than one temporary shapes and
recover sequentially from one temporary shape to another and eventually to the permanent shape, have
started to attract increasing attention. Two approaches have been used to achieve multi-shape shape
memory effects (m-SMEs). The first approach uses polymers with a wide thermal transition temperature
whilst the second method employs multiple thermal transition temperatures, most notably, uses two dis-
tinct thermal transition temperatures to obtain triple-shape memory effects (t-SMEs). Recently, one of
the authors’ group reported a triple-shape polymeric composite (TSPC), which is composed of an amor-
phous SMP matrix (epoxy), providing the system the rubber-glass transition to fix one temporary shape,
and an interpenetrating crystallizable fiber network (PCL) providing the system the melt-crystal transi-
tion to fix the other temporary shape. A one-dimensional (1D) material model developed by the authors
revealed the underlying shape memory mechanism of shape memory behaviors due to dual thermal tran-
sitions. In this paper, a three-dimension (3D) finite deformation thermomechanical constitutive model is
presented to enable the simulations of t-SME under more complicated deformation conditions. Simple
experiments, such as uniaxial tensions, thermal expansions and stress relaxation tests were carried out
to identify parameters used in the model. Using an implemented user material subroutine (UMAT), the
constitutive model successfully reproduced different types of shape memory behaviors exhibited in
experiments designed for shape memory behaviors. Stress distribution analyses were performed to ana-
lyze the stress distribution during those different shape memory behaviors. The model was also able to
simulate complicated applications, such as a twisted sheet and a folded stick, to demonstrate t-SME.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Shape memory polymers (SMPs) are a class of smart materials
capable of fixing their temporary shape and recovering to their
permanent shape in response to an environmental stimulus such
as heat (Lendlein and Kelch, 2002, 2005; Liu et al., 2007; Mather
et al., 2009; Xie, 2011), light (Jiang et al., 2006; Koerner et al.,
2004; Lendlein et al., 2005; Li et al., 2003; Long et al., 2009,
2010b, 2011; Scott et al., 2005, 2006), moisture (Huang et al.,
2005), magnetic field (Mohr et al., 2006), among others. SMPs have
promising applications such as microsystem actuation compo-
nents, active surface patterns, biomedical devices, aerospace
deployable structures, and morphing structures. (Davis et al.,
2011; Lendlein and Kelch, 2002, 2005; Liu et al., 2004, 2006; Ryu
et al., 2012; Tobushi et al., 1996a; Wang et al., 2011; Yakacki
et al., 2007).

For most previously developed thermally activated SMPs, a
typical shape memory (SM) cycle involves two shapes: one is the
permanent shape and the other one is the temporary shape (or
programmed shape). This kind of SMPs is often referred to as
‘‘dual-shape’’ SMPs. SMPs can also be ‘‘multi-shape’’. There are
two approaches to achieve multi-shape memory behavior. In the
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first approach, the SMP has a very wide temperature range of ther-
mal transition. Recently, Xie (2010) reported that a thermo-plastic
SMP, perfluorosulphonic acid ionomer (PFSA), which has a very
broad thermal transition temperature range from 55 to 130 �C,
showed multi-shape SM effect if the temperature was increased
in a staggered manner during free recovery. The second approach
is to use multiple thermal transitions, most notably, to use two dis-
tinct transitions to obtain the triple-shape memory effects (t-
SMEs). In the t-SME, the SMP is capable of fixing two temporary
shapes and recovering sequentially from one temporary shape to
the other, and ultimately to the permanent shape (Bellin et al.,
2006, 2007; Luo and Mather, 2010; Xie et al., 2009). Several meth-
ods of achieving the t-SME were reported. For example, Bellin et al.
(2006, 2007) used polymer networks consisting of two microscopic
segments with two separated transitions. Xie et al. (2009) devel-
oped a macroscopic bilayer crosslinked polymer structures with
two well separated phase transitions to achieve the t-SME.

Recently, based on the fabrication of shape memory elastomer
composites (SMECs) (Luo and Mather, 2009), Luo and Mather
(2010) introduced a new and broadly applicable method for
designing and fabricating triple-shape polymeric composites
(TSPCs) with well controlled properties. In the TSPC system, an
amorphous SMP (epoxy with Tg � 20–40 �C, Tg , the glass transition
temperature) works as a matrix providing overall elasticity and
fixes one temporary shape using the glass transition; a crystalliz-
able polymer (PCL with Tm � 50 �C, Tm, the melting temperature)
interpenetrating the epoxy matrix is used as fiber network and
fixes the other temporary shape using the melt-crystal transition.
One advantage of this approach is its fabrication flexibility, since
one can tune the functional component separately to optimize
material properties (Luo and Mather, 2010). A triple-shape mem-
ory cycle of TSPC requires eight thermomechanical loading steps
(Fig. 1). In Step 1 (S1), the material is deformed from L0 to L1 at a
high temperature TH , higher than the two thermal transition tem-
peratures (TTrans I and TTrans II). In Step 2 (S2), the temperature is
cooled down to TL1 (TTrans II < TL1 < TTrans I), while maintaining the
load. In Step 3 (S3), the external load is suddenly removed and
the material fixes the first temporary shape (temporary shape I)
at TL1. In Step 4 (S4), the sample is deformed again at TL1. (In prac-
tice, the loading at S4 is not necessary to have the same direction
with the loading at S1.) In Step 5 (S5), the temperature is decreased
to TL2 (TL2 < TTransII) while keeping the external load applied in S4.
In Step 6 (S6), after a sudden removal of the external load, the sec-
ond temporary shape (temporary shape II) is fixed at TL2. In Step 7
(S7), once the temperature is elevated to TL1, the material recovers
Fig. 1. Schematic of a temperature (T)-loading (P)-length (L) plot sh
into its first temporary shape. In Step 8 (S8), the permanent shape
is recovered by heating back to TH .

Along with the fast development of SMPs, constitutive models
also have been developed. In amorphous SMPs, where the SM
effect is due to the glass transition, modeling approaches include
the early model by Tobushi et al. (1996b), the continuum finite
deformation thermoviscoelastic model by Nguyen et al. (2008),
the finite three dimension phase based model by Qi et al. (2008),
the thermo-mechanically coupled theories for large deformations
of amorphous polymers by Ames et al. (2009), Anand et al.
(2009), Srivastava et al. (2010a,b), the finite strain 3D thermovisco-
elastic constitutive model by Diani et al. (2006), the modified stan-
dard linear solid model with Kohlrausch–Williams–Watts (KWW)
stretched exponential function by Hermiller et al. (2011), and the
recent three dimensional (3D) finite deformation constitutive
model with a multi-branch modeling approach to represent non-
equilibrium process during the glass transition by Westbrook
et al. (2011a). In semicrystalline SMPs, Barot and Rao developed
a constitutive model for crystallizable shape memory polymers
using the notion of multiple natural configurations (Barot and
Rao, 2006). Westbrook et al. successfully applied the phase-based
modeling approach to the one-way and two-way SM effects in
semicrystalline (Westbrook et al., 2010b). Recently, Ge et al. devel-
oped a 3D thermomechanical constitutive model for SMECs, which
consists of an elastomeric matrix and crystallizable fiber networks
(Ge et al., 2012). In that model, the SMEC is developed by treating
matrix and fiber network as a homogenized system of multiple
phases, and the fiber networks are taken to be an aggregate of melt
and crystalline regions. It also gives an evolution rule for crystalli-
zation and melting from existing theories (Ge et al., 2012).

The authors have recently reported a 1D thermomechanical
model to explain the underlying shape memory mechanism of t-
SMP (Ge et al., 2013). In this paper, we formulate a 3D finite defor-
mation thermomechanical constitutive model for the TSPCs. The
model combines the multi-branch modeling approach for visco-
elasticity of amorphous SMPs (the matrix), and the constitutive
model with different deformed crystalline phases for the shape
memory behavior of the crystallizable SMP (the fiber network) to
describe the t-SME. For the matrix, the time–temperature superpo-
sition principle is used to describe glass transition; for the fiber
network, the assumption that newly formed crystalline phases of
the fiber network are initially in stress-free state is used to track
the kinematics of evolving phases. The rest of the paper is arranged
in the following manner: In Section 2, the material is introduced
briefly and experimental results including DMA, thermomechanical
owing the eight-step thermomechanical cycle to achieve t-SME.
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tests, stress relaxation tests, dual-shape and triple-shape memory
behaviors are presented. Section 3 introduces a general 3D finite
deformation thermomechanical constitutive model including vis-
coelasticity for the matrix, mechanics for the crystallizable fiber
network, and the thermal expansion model. In Section 4, model
simulations and predictions of shape memory behaviors are pre-
sented. Results from simulations of representative 3D problems
with the user material subroutine based on this model are pre-
sented at the end.

2. Materials and thermo-mechanical behavior

2.1. Materials

The epoxy/PCL TSPC consists of an epoxy-based copolymer
thermoset system as the matrix and a poly(e-caprolactone) (PCL)
as fiber reinforcements. The epoxy-based copolymer thermoset
system consists of an aromatic diepoxide (diglycidyl ether of
bisphenol-A or DGEBA), an aliphatic diepoxide (neopentyl glycol
diglycidyl ether or NGDE) and a diamine curing agent (poly(pro-
pylene glycol) bis (2-aminopropyl) or Jaffamine D230) (Luo and
Mather, 2010). The mole-% ratio DGEBA: NGDE = 30:70 or
D30N70 was chosen for all tests. The fabrication was similar to pre-
viously reported shape memory elastomeric composites (SMECs)
(Luo and Mather, 2009). The epoxy/PCL samples chosen in this
paper for tests were made up of 82% of the epoxy-based matrix
and 18% of the PCL fiber network.

2.2. DMA experiments

Dynamic Mechanical Analysis (DMA) test was conducted using
a dynamic mechanical analyzer (Q800 DMA, TA Instruments). The
epoxy/PCL TSPC sample (11.65 mm � 1.7 mm � 0.43 mm rectan-
gular film) was tested using a dynamic tensile load at 1 Hz. The
temperature was first decreased from 100 to �50 �C at a rate of
0.25 �C/min. After 10 min isothermal holding at �50 �C, it was
heated back to 100 �C at the same rate. Fig. 2 shows the tensile
storage modulus varies with the temperature. Both the heating
trace and the cooling trace exhibit three storage modulus plateaus
in cascade. In the heating trace, in Plateau I, the matrix (epoxy) is in
the glassy state, the fiber network (PCL) is in the semicrystalline
state and the storage modulus of the composite system is
�1.5 GPa. In Plateau II, where the temperature is above Tepoxy

g of
the matrix (epoxy), the matrix transfers into the rubbery state,
but the fiber network stays at the semicrystalline state. The mod-
ulus of the composite system declines into �10 MPa. In Plateau
III, where the temperature is above the TPCL

m of the fiber network
(PCL), the matrix stays in the rubbery state and the fiber network
Fig. 2. The DMA test for the epoxy/PCL TSPC.
transforms from the semicrystalline state to the melt state. The
storage modulus of the composite system saturates at �2 MPa.
During the cooling trace, the temperature range for Plateau II is
quite narrow. We attribute this to the slow kinetics of the melt-
crystal transition of the fiber network (PCL). If the cooling rate is
high (>0.25 �C/min), Plateau II disappears entirely, as the rubber-
glass transition of the matrix and the melt-crystal transition of
the fiber network merging into a single transition step (Ge et al.,
2013; Luo and Mather, 2010).

2.3. Isothermal uniaxial tension tests and thermal strain experiments

Uniaxial tension tests and thermal expansion tests for both the
neat epoxy and the epoxy/PCL TSPC were conducted using
the same DMA tester. Dimensions of the neat epoxy sample and
the epoxy/PCL TSPC sample were 9.09 mm � 1.8 mm � 1.44 mm
and 9.97 mm � 1.97 mm � 0.5 mm, respectively. The uniaxial ten-
sion tests were conducted under isothermal conditions at 40 and
80 �C, respectively. Samples were placed under isothermal condi-
tions for a certain amount of time (30 min at 80 �C to allow melting
to complete, and 60 min at 40 �C to allow crystallization to com-
plete), and then stretched at the loading rate of 0.5 MPa/min.
Fig. 3a shows the uniaxial tension results for both the neat epoxy
and TSPC at 80 and 40 �C, where the strain is engineering strain
and the stress is nominal stress. At 80 �C, both the epoxy and the
TSPC exhibited good linearity. At 40 �C, both the epoxy and the
TSPC showed slight nonlinear stress–strain behaviors. As discussed
later, the uniaxial tension tests were used to identify parameters
such as stress concentration factors, crosslink density of epoxy,
and shear modulus of PCL crystals.

For the thermal strain experiments, samples were initially equil-
ibrated at 100 �C for 30 min, and then cooled to �10 �C at a cooling
rate of 2 �C/min. Fig 3b shows the thermal strain for both the neat
epoxy and the TSPC. For the neat epoxy, above �15 �C, the material
contracts during cooling linearly with a coefficient of thermal
expansion (CTE) 1.6 � 10�4/�C; below�15 �C, the material contracts
with a lower CTE 0.6 � 10�4/�C, as the epoxy in the glassy state. For
the TSPC, above �30 �C, the TSPC contracts linearly with a CTE
2.3 � 10�4/�C; below�10 �C, the TSPC contract linearly with a lower
CTE 1.7 � 10�4/�C; between 10 and 30 �C, the thermal expansion is
nonlinear primarily due to melt-crystal transition of PCL. Fig 3b is
used to identify parameters for the thermal strains in Section 3.4.

2.4. Stress relaxation tests

Stress relaxation tests were also conducted on the DMA tester.
A rectangular TSPC sheet with dimension 8.97 mm � 1.71 mm �
0.43 mm was used for tests. Stress relaxation tests were performed
at 16 different temperatures evenly distributed from 0 to 30 �C.
Samples were preloaded by a 1 � 10�3 N force to maintain
straightness. After reaching the testing temperature, samples were
allowed 30 min for the thermal equilibration. Next, a 0.1% strain
was applied to the sample within 3 s and held for 30 min. Fig. 4a
shows the stress relaxation moduli under the 16 different temper-
atures. As expected, the relaxation moduli strongly depend on the
testing temperatures. Based on the well-known time temperature
superposition principle (TTSP) (Ferry, 1980; Flory, 1953), a relaxa-
tion modulus master curve at a reference temperature of 16 �C
(Fig. 4b) was constructed by shifting relaxation curves using shift
factors at different temperatures (Fig. 4c).

2.5. Triple-shape memory behavior

The triple shape memory behavior test was conducted using the
DMA machine by following the eight-step thermomechanical cycle
introduced in Section 1 with a 10.69 mm � 2.25 mm � 0.42 mm



Fig. 3. Thermal and mechanical tests for the neat epoxy and the TSPC: (a) the uniaxial tensions; (b) the thermal strains for the neat epoxy and TSPC.

Fig. 4. Stress relaxation tests: (a) stress relaxation moduli vs. time under 16 temperatures varying from 0 to 30 �C with 2 �C interval; (b) the stress relaxation modulus master
curve at 16 �C; (c) the shifting factors at the 16 temperatures for achieving the master curve.
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epoxy/PCL TSPC rectangular film: in step S1, the material was
stretched by a nominal stress P1 at TH , (P1 is 0.15 MPa ramped with
a loading rate of 0.5 MPa/min in Fig. 5). In S2, the material was
cooled down to a temperature TL1 (TL1 is 40 �C in Fig. 5) at a rate
of 2 �C/min, while maintaining P1. After arriving at TL1, it was iso-
thermally held for 1 h to make sure the crystallization of PCL com-
plete. In S3, the external load was removed and the first temporary
shape was achieved. In S4, the material was stretched again by a
nominal stress P2 (P2 is 0.45 MPa ramped with a rate of 0.5 MPa/
min to in Fig. 5) at TL1. In S5, it was cooled down to TL2 (TL2 is 0 �C
in Fig. 5) at the same cooling rate with S2, while keeping P2. In S6,
P2 was removed and the second temporary shape was fixed. In S7,
by heating back to TL1 at a rate of 2 �C/min, the sample precisely
recovered to its first temporary shape. In S8, the sample completely
recovered to the permanent shape by heating back to TH .

2.6. One-step-fixing shape memory behavior

The epoxy/PCL TSPC is also capable of exhibiting the so called
‘‘one-step-fixing shape memory behavior’’ (Ge et al., 2013; Luo



Fig. 5. The strain-temperature plot for the triple shape memory behavior of the
epoxy/PCL TSPC.
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and Mather, 2010). Fig. 6 shows the strain-temperature plot of this
one-step-fixing shape memory behavior: at TH (TH is 80 �C in Fig. 6),
the sample was stretched under a nominal stress P (P is 0.2 MPa
ramped with a loading rate of 0.5 MPa/min). Then, it was cooled
down to a low temperature TL (0 �C) at a rate of 2 �C/min, while
the load P was maintained as constant. After the removal of P, the
temporary shape was fixed at TL. During heating from TL to TH at
a rate of 2 �C/min, a strain plateau from �30 to 55 �C was observed
and part of the strain (�60%) was still fixed at this plateau. Raising
the temperature further, the recovery resumed at �55 �C and the
sample returned to its permanent shape at �65 �C.

3. Model description

3.1. Overall model

In this section, a 3D finite deformation thermomechanical con-
stitutive framework for TSPCs is developed by treating matrix and
the fiber network as a homogenized system of multiple phases. The
matrix is taken as an amorphous SMP and the fiber network is
taken to be an aggregate of melt and crystalline regions. The goal
is to develop a modeling approach for this class of materials. At this
point, some levels of detailed understanding are sacrificed in favor
of a simple way to describe the complex thermo-mechanical phe-
nomena and therefore several assumptions are made:

(a) For the sake of simplicity, the framework adopts neo-Hookean
model to describe the stress–strain behavior of the equilib-
rium branch of the matrix and the crystalline phase of the
Fig. 6. The strain-temperature plot for one-step-fixing shape memory behavior of
the epoxy/PCL TSPC.
fiber network. A more sophisticated model can be used
to replace neo-Hookean under large deformations.
(Arruda and Boyce, 1993; Gent, 1996; Mooney, 1940;
Rivlin, 1948).

(b) As the specimens are thin (<0.5 mm), the heat conduction
effect is ignored in the current framework. If considering a
general case, the heat conduction effect can be included
and the heat conduction related parameters can be easily
measured (Westbrook et al., 2010a, 2011a).

(c) In the crystallizable fiber network, it is assumed that the
fiber does not carry load at temperatures above the melting
temperature. During crystallization, crystalline phases are
formed in a stress-free (natural) configuration (Rajagopal
and Srinivasa, 1998a,b). The crystalline phases formed at dif-
ferent times have different deformation history.

(d) In the current framework, the modified Avrami’s theory
(Avrami, 1939, 1940, 1941; Ozawa, 1971) was used to
describe the crystallinity during the isothermal crystalliza-
tion. In a general case, the Evans theory and Hoffman–
Lauritze expression can be used to describe the non-
isothermal crystallization. (Ge et al., 2012)

Here, we consider a 3D solid body in its initial configuration X0

deforms into the current configuration, X. Following continuum
mechanics, we consider a material point containing numerous
material particles, which consist of the amorphous SMP matrix
with a volume fraction of vM and the crystallizable fiber network
with a volume fraction of vF . At time t ¼ 0, a material point in X0

occupies point X at the temperature T0. xðX; t ¼ nDtÞ gives the cur-
rent position of the material point X at time t ¼ nDt, in X, and the
temperature changes to Tn. The deformation gradient is defined by
F ¼ @x=@X.

Fig. 7 shows the one dimensional (1D) arrangement of rheolog-
ical elements in the model, which decomposes the total deforma-
tion gradient Ftotal into the mechanical deformation gradient FM

and the thermal deformation gradient FT :

Ftotal ¼ FMFT : ð1Þ

For the mechanical elements, the left set of spring-dashpot
branches represents the stress acting on the amorphous SMP
matrix; the right set of branches represents the stress acting on
the crystallizable fiber network. The total Cauchy stress on the TSPC
system is given by:

rtotal ¼ cMvMrM þ cFvFrF ; ð2Þ

where rM and rF are the stresses acting on the matrix and the fiber
network. Here, the concept of the stress concentration factors from
the micromechanics of heterogeneous solids in linear and nonlinear
elasticity (Benveniste, 1987; Castaneda, 1991; Dunn, 1997) are
adopted to take into account the stress distribution on the phases,
which is highly dependent on details of the microstructure, such
as the geometry, and architecture of the spatial arrangement of
the phases, and the evolution of their properties. cM and cF are
the stress concentration factors of the matrix and the fiber network,
and cMvM + cFvF = 1. For the sake of brevity, we denote cMvM and
cFvF as �vM and �vF .

3.2. Viscoelastic behavior of the matrix

In Fig. 7, an equilibrium branch and several nonequilibrium
branches are arranged in parallel. Each nonequilibrium branch is
a nonlinear Maxwell element where an elastic spring and a dash-
pot are placed in series. The set of nonequilibrium branches repre-
sents different modes of the relaxation behavior, which are either
structural or segmental relaxation of polymers. The total Cauchy
stress acting on the matrix rM is:



Fig. 7. The 1D rheological schematic of the proposed model: the total deformation gradient Ftotal can be decomposed into the mechanical deformation gradient FM and the
thermal deformation gradient FT . The total Cauchy stress consists of the stress on the matrix (the left red box) and the stress on the fiber network (the right blue box). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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rM ¼ req þ
Xn

i¼1

ri
non; ð3Þ

where req and ri
non are Cauchy stresses in equilibrium branch and

the ith nonequilibrium branch, respectively.

3.2.1. Hyperelastic behavior of the equilibrium branch
Hyperelastic material models typically for rubbers are used for

the equilibrium behaviors. Here, the neo-Hookean model is
adopted to define req:

req ¼
NkBT

JM

�B� 1
3

tr�B
� �

þ KeqðJM � 1ÞI; ð4Þ

where N is the crosslinking density, kB is Boltzmann’s constant, T is
the absolute temperature. NkBT is the temperature dependent shear
modulus, which indicates entropic elasticity. Keq is the bulk modu-
lus of the equilibrium branch, which is typically orders of magni-
tude larger than the shear modulus. �B is the modified left
Cauchy–Green tensor given by �B ¼ �FMð�FMÞ

T
, with �FM ¼ ðJMÞ

�1=3FM

and JM ¼ detðFMÞ.

3.2.2. Viscoelastic behavior of nonequilibrium branches
For the nonequilibrium behaviors in the ith viscoelastic

branches, the deformation gradient can be further decomposed
into an elastic part and a viscous part:

FM ¼ Fi
eFi

v ; ð5Þ

where Fi
v is a relaxed configuration obtained by elastically unload-

ing by Fi
e. The Cauchy stress on ith nonequilibrium branch, ri

non, is
given by:

ri
non ¼

1

Ji
e

ðLi
e : ln Vi

eÞ; ð6Þ

where Ji
e ¼ detðFi

eÞ, Vi
e ¼ Fi

eðR
i
eÞ

T
and Ri

e is the rotation tensor. Li
e is

the fourth order isotropic elasticity tensor which is taken by:

Li
e ¼ 2li I � 1

3
I� I

� �
þ 2KiI� I; ð7Þ

where I is the fourth order identity tensor, li and Ki are shear and
bulk moduli for the ith branch, respectively. In the above equations,
the symbol (:) represents a tenor double contraction and (�) repre-
sents the tensor dyadic product; li is the shear modulus; Ki is typ-
ically orders of magnitude larger than the shear modulus.

In each nonequilibrium branch, the second Piola–Kirchoff stress
in the intermediate configuration (or elastically unload configura-
tion) and the Mandel stress are given by:
Si
non ¼ Ji

eðF
i
eÞ
�1

ri
nonðF

i
eÞ
�T

and Mi
non ¼ Ci

eSi
non; ð8Þ

where Ci
e ¼ ðF

i
eÞ

T
Fi

e is the right Cauchy–Green deformation tensor.
Typically for inelastic materials, the Mandel stress is used to drive
the viscous flow _ci

v via the equivalent shear stress:

_ci
v ¼

�Mi

lisiðTÞ
; ð9Þ

where the temperature dependent relaxation time siðTÞ will be dis-
cussed in the next section and the equivalent shear stress is defined
as �Mi ¼ ½12 ðMiÞ0 : ðMiÞ0�

1=2 with ðMiÞ0 ¼Mi � 1=3trðCi
eÞI.

The viscous stretch rate Di
v is constitutively prescribed to be:

Di
v ¼

_ci
vffiffiffi

2
p

�Mi

Mi: ð10Þ

As discussed previously in Boyce et al. (1988), Di
v can be made equal

to the viscous spatial velocity gradient _li
v ¼ _Fi

vðF
i
vÞ
�1

by ignoring the
spin rate Wi

v and therefore:

_Fi
v ¼ Di

vFi
v : ð11Þ
3.2.3. Temperature dependent relaxation time
The relaxation times of each nonequilibrium branch are tem-

perature dependent, with the temperature dependent stress relax-
ation time siðTÞ being obtained from the reference time using a
shifting factor aT :

siðTÞ ¼ aTs0i; ð12Þ

where s0i is the stress relaxation time at a reference temperature. It
was found that depending on whether temperature is above, near,
or below Tg , the shifting factor aT can be calculated by two different
method (O’Connell and McKenna, 1999):

aT ¼
10�

C1 ðT�Tr Þ
C2þðT�Tr Þ T P Tr

e�
AFC

k
1
T�

1
Trð Þ T < Tr

8<
: ; ð13Þ

where C1, C2 and A are material constants, Fc is the configuration
energy, k is Boltzmann’s constant and Tr is the reference tempera-
ture. Parameters in Eqs. (12) and (13) can be identified by stress
relaxation tests and will be discussed in Section 4.1.2.

3.3. Mechanical behavior of the crystallizable fiber network

In Fig. 7, a set of springs is used to represent the mechanical
behavior of the crystallizable fiber network. During crystallization,
fiber crystals form gradually. Once a small piece of crystalline
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phase forms, the corresponding switch in Fig. 7 turns on. More spe-
cifically, we assume that crystals are formed in a stress-free (natu-
ral) configuration. Upon such incremental crystallization, the
entire material may undergo an immediate deformation. Thus,
we further assume that the deformation transfer can be simplified
by an averaging scheme that assumes both the matrix and fiber
crystals undergo a small deformation increment. These assump-
tions were used to model different active polymer systems (Ge
et al., 2012; Long et al., 2009, 2010a,b, 2011, 2013; Ryu et al.,
2012; Westbrook et al., 2011b) in the past. Depending on the ther-
momechanical condition, the crystalline phases forming at differ-
ent times may have different deformation histories. During
melting, the crystalline phases melt gradually. In terms of the
kinetics of the melting process, the portions of crystalline phases
that form at a later time melt first (Ge et al., 2012). Once a small
portion of crystalline phases melts, the corresponding switch in
Fig. 7 turns off and does not carry any load.

3.3.1. Constitutive model for crystalline phases
For the convenience of model description, we assume fiber crys-

tals also follow the hyperelastic behavior and the neo-Hookean
model is used to describe the Cauchy stress on fiber crystals:

rC
F ðFÞ ¼

lC

J
�B� 1

3
tr�B

� �
þ KCðJ � 1ÞI; ð14Þ

where F is the deformation gradient lC and KC are shear and bulk
moduli for fiber crystals.

3.3.2. Mechanics during crystallization
As indicated above, during crystallization, we assume that

when a small portion of crystalline phase forms, it is in a stress-free
state. In order to satisfy boundary conditions, either overall or
locally, however, this small piece of crystalline phase will deform
immediately. This stress-free state for newly forming crystalline
phases was referred to as the natural configuration by Rajagopal
and Srinivasa (1998a,b). According to the algorithm for SMEC (Ge
et al., 2012), for a crystalline phase forming at time t ¼ t0 þ iDt,
its deformation gradient at the current time t ¼ t0 þmDt (m > i)
is the accumulative deformation gradient from t ¼ t0 þ iDt to
t ¼ t0 þmDt, Fi!m:

Fi!m ¼
Ym
j¼i

L

DFj ¼ FmðFiÞ�1
; ð15Þ

where
Qn

i¼1
LðÞi ¼ ðÞn � � � ðÞ2ðÞ1. DFj is the incremental deformation

gradient at t ¼ t0 þ jDt.
The total Cauchy stress on the crystallizable fiber network

equals to the summation of individual crystalline phase forming
at different time weighted by its own volume fraction:

rF ¼
Xm

i¼1

½DvC
i r

C
F ðFi!mÞ�; ð16Þ

where Dv C
i is the volume fraction of the crystalline phase formed at

time t ¼ t0 þ iDt and the calculation of Dv C
i will be discussed in next

section.
For deformation gradients within crystalline phases during

melting, it is essentially a reverse process of crystallization. Assum-
ing that at the starting point of the melting process time t ¼ tml, the
total number of crystalline phases (which is equal to the total
number of time increments during crystallization) is me. Recalling
that crystalline phases that form later melt earlier, the crystalline
phases melt gradually from the me-th phase to the 1st phase. For
instance, at time t ¼ tml þ Dt, the me-th crystalline phase melts
with its volume fraction Dvc

me
, and at time t ¼ tml þmDt, the

ðme �mþ 1Þ-th crystalline phase melts with its volume fraction
Dvc
me�mþ1. Concurrently to the melting process, for example, at time

t ¼ tml þmDt, a small deformation DFmelt
m is induced. Following the

same assumption for the mechanical deformation during

crystallization, we assume that the deformation DFmelt
m is applied

to all the existing crystalline phases from the 1st to the
ðme �mÞ-th. Therefore, the total stress is

rF ¼
Xme�m

i¼1

DvC
i r

C
F Fmelt

1!mFi!ml

� �h i
;

Fmelt
1!m ¼

Ym
i¼1

L

DFmelt
i :

ð17Þ

Details about the mechanics during melting were discussed in Ge
et al. (2012). In addition, the effective phase model (EPM) (Long
et al., 2010a) for the phase evolution of crystalline phases is adopted
to enhance computational efficiency, when implementing the con-
stitutive model into finite element analysis. Details about the algo-
rithm for combining crystalline phases formed at different times
into one effective phase were presented in Ge et al. (2012).

3.3.3. Kinetics of crystallization and melting
The modified Avrami’s theory (Avrami, 1939, 1940, 1941;

Ozawa, 1971) was use to describe the crystallinity during the iso-
thermal crystallization. At time t ¼ t0 þ iDt:

vC
i ¼ v1 1� exp½�k � ðtÞn�

� �
; ð18Þ

where k is a constant related the growth rate of crystallization, n is a
constant related to the dimension of the crystals, and v1 is the sat-
urated crystallinity at certain condition. For the PCL network, v1 is
taken to be 25% (Ge et al., 2012). The increment of crystallinity or
the volume fraction of crystalline phase form at time t ¼ t0 þ iDt,
DvC

i , is:

DvC
i ¼ vC

i � vC
i�1: ð19Þ

DvC
i is used in Eq. (16) to calculate the total Cauchy stress on the

crystallizable fiber network.

3.4. Thermal expansion

The thermal expansion is assumed to be isotropic, i.e.,

FT ¼ JT I; ð20Þ

where JT is the volume change due to thermal expansion, i.e.,:

JT ¼
VðTÞ
V0

; ð21Þ

where VðT; tÞ is the instantaneous volume at temperature T , V0 is
the reference volume at the reference temperature T0. It is well
known that as amorphous polymers vitrify, they transfer from an
equilibrium rubbery state to a nonequilibrium glassy state. During
the transition, the volume change is a function both of temperature
and time. In addition, if the temperature is far below Tg , the depen-
dence on time can become very weak (as the time constant for this
dependence can be very long) (Hutchinson, 1995; McKenna, 1989).
In the past, different theories (Kovacs et al., 1979; Moynihan et al.,
1976; Robertson et al., 1984) have been developed to represent
the evolution of the nonequilibrium volume change. The
nonlinear volume change can also be simplified by a bilinear
representation,

dVðTÞ ¼ 3ardT; ðT > TgÞ and dVðTÞ ¼ 3agdT; ðT 6 TgÞ; ð22Þ

where ar and ag for the coefficients of thermal expansion (CTE) of
the rubbery state and the glassy state, respectively. The instanta-
neous volume at temperature T is the integral of the volume
change:



Fig. 8. Model predictions for thermal expansion of the neat epoxy and the TSPC.
(Solid lines represent experiments and circles represent model predictions).

Fig. 9. Model fitting for uniaxial loading. (Continuous lines represent experiments
and discrete circles represent model fittings).
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VðTÞ ¼
Z T

T0

dVðTÞ; ð23Þ

In Fig. 8, the model with ar = 1.6� 10�4/�C and ag = 0.6� 10�4/�C
measured from Fig. 3b predicts the thermal expansion of the neat
epoxy. Tg in Eq. (22) equals to Tr in Eq. (13), which is determined
by stress relaxation tests.

TSPC at high temperatures (T > Tm > Tg) expands/contracts
linearly with a high CTE, and the instantaneous volume change is:

dVðTÞ ¼ 3aTSPC
1 dT; ðT > Tm > TgÞ; ð24Þ

where aTSPC
1 = 2.3 � 10�4/�C measured from Fig. 3b. We can also

express aTSPC
1 as aTSPC

1 ¼ �vMar þ �vFam, where am is the CTE of PCL
melts and am = 3 � 10�4/�C. At low temperatures (T 6 Tg), the TSPC
contracts linearly with a low CTE, and the instantaneous volume
change is:

dVðTÞ ¼ 3aTSPC
2 dT; ðT 6 TgÞ; ð25Þ

where aTSPC
2 = 1.7 � 10�4/�C measured Fig. 3b. Here, aTSPC

2 can also be
expressed as aTSPC

1 ¼ �vMag þ �vF ½ð1� v1Þam þ v1ac�, where ac is the
CTE of PCL crystals and ac = 1.8 � 10�4/�C. At temperatures between
Tm and Tg , a volume shrink due to the melt-crystal transition of PCL
is observed, and the instantaneous volume change is:

dVðTÞ ¼ 3aTSPC
3 ðTÞdT þ VSdvCðTÞ; ðTg < T < TmÞ; ð26Þ

where aTSPC
3 ðTÞ ¼ �vMar þ �vFf½1� vCðTÞ�ac þ vCðTÞacg, and VS is the

volume shrink when PCL is 100% crystallized and it is 2.7 � 10�2.
Fig. 8 shows the model fitting for the thermal expansion of the
epoxy/PCL TSPC.

4. Results

4.1. Parameter identification

4.1.1. Uniaxial tensions
Experimental results for the neat epoxy and the epoxy/PCL TSPC

introduced in Section 2 were used to identify parameters for the
model. The uniaxial tension tests at 80 �C (Fig. 9) were used to
determine the crosslinking density N for the epoxy matrix and
stress concentration factors cM and cF . As the neat epoxy is in the
rubbery state at 80 �C, the relaxation time is faster than the loading
rate and only the equilibrium branch carries load. For the uniaxial
tension, we assume Keq ¼ 1 GPa (three orders of magnitude larger
than the shear modulus), to ensure the material incompressibility.
Consequently, Eq. (4) reduces into a 1D form:

req ¼
2NkBT

3
k2 � 1

k

� �
; ð27Þ
where the material stretch k ¼ L=L0, L and L0 are the current and the
initial length, respectively. N is identified as 5:76� 1023 m�3. For
the epoxy/PCL TSPC, PCL fibers are in melt state at 80 �C and the
total Cauchy stress on the TSPC is rtotal ¼ cMvMreq. The total Cauchy
stress in 1D form is:

rtotal ¼ vMcM
2NkBT

3
k2 � 1

k

� �
: ð28Þ

By fitting the uniaxial tension for the TSPC at 80 �C (Fig. 9), cM ¼
0:57 and cF ¼ 2:94, as vM ¼ 0:82, vF ¼ 0:18, and cMvM þ cFvF ¼ 1.

For neat epoxy, the model predicts the experimental observa-
tions well and the modulus decreases at 40 �C to the value deter-
mined by entropic elasticity. For the TSPC at 40 �C, PCL
crystallizes with crystallinity v1 and the Cauchy stress in 1D form
follows:

rtotal ¼ cMvM
2nkBT

3
k2 � 1

k

� �
þ cFvFv1

2lC

3
k2 � 1

k

� �
: ð29Þ

In Eq. (29), lC can be identified by fitting the uniaxial tension for
TSPC at 40 �C and lC = 13.8 MPa.

4.1.2. Stress relaxation
Stress relaxation tests were used to identify parameters of non-

equilibrium branches. The stress relaxation master curve at 16 �C
can be described by Maxwell elements in parallel and the stress
relaxation modulus is:

EðtÞ ¼ E1 þ
Xn

i¼1

Ei exp � t
s0i

� �	 


with s0i ¼ 10i�1s01; ði ¼ 2; . . . ;nÞ; ð30Þ

In Eq. (30), E1 is the relaxation modulus at time t =1
(E1 = 7 MPa in Fig. 4b); Ei and s0i are modulus and relaxation time
for the i-th branch at the reference temperature (16 �C), respec-
tively. We assume that the relaxation time of the i-th branch is a
decade longer than the (i � 1)-th branch. At time t = 0, the relaxa-
tion modulus of the TSPC system is Eð0Þ ¼ E1 þ

Pn
i¼1Ei.

Fig. 10 presents the model fitting for the stress relaxation. In
Fig. 10a, one nonequilibrium branch (n = 1) was used to describe
the stress relaxation modulus master curve. Based on Eq. (30)
(Eð0Þ ¼ E1 þ E1), one has E1 ¼ 1422 MPa (Eð0Þ ¼ 1429 MPa and
E1 ¼ 7 MPa in Fig. 10a). Through the observation of the stress relax-
ation master curve in Fig. 10a, the obvious stress relaxation occurs
at�5 min. Here, s01 ¼ 180 s was taken for the relaxation time of the
first nonequilibrium branch. It is shown that that increasing num-
ber of nonequilibrium branches is required to precisely describe
the stress relaxation modulus master curve. Fig. 10b and c shows



Fig. 10. Model fitting for stress relaxation: (a)–(c) the stress relaxation master curve at 16 �C; (d) the shifting factors with temperature.
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the model fitting for the stress relaxation with n = 3, 5 nonequilib-
rium branches and the model fitting improves dramatically by
introducing more nonequilibrium branches. Here, we take n = 2 as
an example to demonstrate the fitting procedure. In Fig. 10a, at time
t ¼ s01, the discrepancy between the master curve and the model
fitting is �350 MPa. This discrepancy can be corrected by introduc-
ing the second nonequilibrium branch with E2 ¼ 350 MPa. Based on
Eq. (30) (Eð0Þ ¼ E1 þ E1 þ E2), one has a new E1 equal to 1072 MPa.
Assuming that the relaxation time of the second nonequilibrium
branch is a decade longer than the first one, we have s02 ¼ 10s01.
Following the same fitting procedure, one has moduli for the all
of the five nonequilibrium branches (E1 ¼ 782 MPa, E2 ¼ 350 MPa,
E3 ¼ 220 MPa, E4 ¼ 50 MPa and E5 ¼ 20 MPa).

For the shear modulus of the TSPC, Ei ¼ 3�vMli, so l1 ¼ 555 MPa,
l2 ¼ 248 MPa, l3 ¼ 156 MPa, l4 ¼ 36 MPa and l5 ¼ 14 MPa. In
Fig. 10c, the model with five nonequilibrium branches is able to
precisely describe the stress relaxation master curve. Although
the stress of the model relaxes faster that the experimental result
at time �104, the time scale is well above the practical lab time
scale.

As introduced in Section 3.2.3, for temperatures above and near
Tg , aT follows the WLF equation and for temperatures below Tg , aT

follows an Arrhenius-type behavior. Fig. 10d clearly shows aT can
be characterized by these two equations, where Tr is 16 �C, C1 is
24, C2 is 50 �C and AFc=k is �35,000 K.

4.2. Comparison between model simulations and experiments

The constitutive model was implemented into a user material
subroutine (UMAT) in the finite element software package ABAQUS
(Simulia, Providence, RI). With parameters identified by experi-
ments listed in Table 1, the FEA simulations were performed for
both dual- and triple-shape memory behaviors with the exact size
of the TSPC strips under different circumstances. In simulations,
the TSPC strips were meshed by 8-node linear brick, hybrid, con-
stant pressure, reduced integration, hourglass control elements.
All degrees of freedom of the central nodes in one bottom were
fixed while the remaining nodes in that bottom were modeled with
rollers. The prescribed external loads were applied to the other
bottom to stretch the samples.

Fig. 11a shows that the simulation successfully reproduced the
experimental result of triple shape testing. The largest discrepancy
occurs when unloading at 40 �C where the experimental sample
fixed the first temporary shape slightly more than in the simula-
tion. We attribute this discrepancy to the nonlinear stress–strain
of the TSPC at 40 �C (in Fig. 9), which the neo-Hookean model for
PCL crystals is unable to fully capture. The stress distributed across
individual branches is seen in Fig. 11b–i. After loading at 80 �C
(Fig. 11b), as the fiber network is in the melt state, the extension
stress (0.15 MPa) is totally applied to the equilibrium branch. After
unloading at 40 �C (Fig. 11c), the semicrystalline fiber network is
compressed to balance the stress acting on the equilibrium branch
to fix the first temporary shape. At 40 �C, the five nonequilibrium
branches are inactive as the relaxation times of these branches
are much shorter than the lab time scale and significant stress
relaxations occur for them. Once the TSPC is stretched again with
the load of 0.45 MPa at 40 �C, the extension stress is distributed
to both the equilibrium branch and the fiber network (Fig. 11d).
When the temperature is decreased to 0 �C, the mobility of dash-
pots in the five nonequilibrium branches is significantly reduced,
and removing the external load at 0 �C results in the redistribution
of stresses in all the branches to fix the second temporary shape. In
particular, all the nonequilibrium branches are compressed to bal-
ance the extension stresses acting on the equilibrium branch and
the fiber network (Fig. 11e). When heating begins, the dashpot in
each nonequilibrium branch regains mobility. First, the 1st
nonequilibrium branch releases its compressive stress due to its
smallest relaxation time. Successively, starting from the 2nd non-



Table 1
List of material parameters.

Parameters Value Description

Composition
vM 0:82 Volume fraction of the matrix (epoxy)
vF 0:18 Volume fraction of the fiber network (PCL)
cM 0:57 Stress concentration factor of the matrix (epoxy)
cF 2:94 Stress concentration factor of the fiber network (PCL)

Matrix
N (m�3) 5:76� 1023 Polymer crosslinking density for the equilibrium brunch

l1, l2, l3 l4, l5 (MPa) 555, 248, 156, 36, 14 Shear moduli for the 1st–5th nonequilibrium branches
s01 (min) 3 Relaxation time for the 1st nonequilibrium branch at Tr

Tr (�C) 16 Reference temperature in WLF equation and Arrhenius-type behavior
C1 24 WLF constant at Tr

C2 (�C) 50 WLF constant at Tr

AF=k (K) �35000 Pre-exponential parameter for Arrhenius-type behavior

Fiber network
lC (MPa) 9:2 Shear modulus for fiber crystals (PCL)

Thermal expansion

ar (	C�1) 1:6� 10�4 CTE for epoxy in rubbery state

ag (	C�1) 0:6� 10�4 CTE for epoxy in glassy state

am (	C�1) 3� 10�4 CTE for PCL in melted state

ac (	G�1) 1:8� 10�4 CTE for PCL in crystallized state

VS 2:7� 10�2 Volume shrink due to crystallization of PCL

Kinetics of isothermal crystallization
k (min�3) 1� 10�8 Parameter related to the growth of the crystalline phases

n 3 Dimension of the crystalline phases

Fig. 11. (a) Shows the comparison between simulation and experiment of the triple-shape memory behavior in the strain-temperature plot; (b)–(i) show the stress
distribution in individual branches during the shape memory cycle: (b) after loading at 80 �C; (c) after unloading at 40 �C; (d) after loading at 40 �C; (e) after unloading at 0 �C;
(f) during heating at 25 �C; (g) during heating at 40 �C; (h) during heating at 60 �C; (i) after heating to 80 �C. The x-label ‘‘E’’, ‘‘F’’ and ‘‘1’’–‘‘5’’ represent the equilibrium branch,
the fiber network, and the 1st–5th nonequilibrium branches.
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equilibrium branch, the compressive stress first increases to main-
tain the overall stress equilibrium, and finally decays to zero. At
40 �C, stresses in all nonequilibrium branches are released, the
stress on the fiber network becomes compressive, and the TSPC
recovers into its first temporary shape (Fig. 11g). Continued heat-
ing causes the fiber crystals commence melting, the compressive
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stress on the fiber network decreases, and the TSPC starts to
recover from the first temporary shape to the permanent shape
(Fig. 11h). Once the fiber crystals completely melt, all stresses on all
branches become zero, and the TSPC returns to its permanent shape.

Fig. 12a presents the simulation of the one-step-fixing shape
memory behavior. In comparing simulation and experiment, the
simulation shows good agreement. Fig. 12b–g presents the stress
distribution on individual branches during the shape memory
cycle. After loading at 80 �C (Fig. 12b), since the fiber network is
in the melt state and all the nonequilibrium branches are inactive,
the extension stress (0.2 MPa) was only applied to the equilibrium
branch. After unloading at 0 �C (Fig. 12c), the stress acting on the
equilibrium branch is balanced by the compressive stresses acting
on the nonequilibrium branches, but no obvious compressive
stress is observed acting on the fiber network, as almost 100% of
the strain is fixed and the compressive strain in the fiber network
is nearly zero. Once the temperature is elevated to 30 �C (Fig. 12d),
as the relaxation times of all nonequilibrium branches were signif-
icantly decreased, the compressive stresses only act on the 4th and
5th nonequilibrium branches, and the semicrystalline fiber net-
work starts to be compressed to balance certain extension stress.
At 40 �C (Fig. 12e), all nonequilibrium branches turned into the
inactive state and only the semicrystalline fiber network is com-
pressed to balance the extension stress. The TSPC reaches the
strain plateau from 40 to 60 �C. At 60 �C (Fig. 12f), as a part of semi-
crystalline fiber network melts, the compressive stress acting on
the fiber network decreases and the TSPC continues the free recov-
ery process. Once the semicrystalline fiber network completely
melts, the stress stored on it is released and the TSPC recovers into
its permanent shape (Fig. 12g).
Fig. 12. (a) Shows the comparison between simulation and experiment of the one-step-fi
distribution in individual branches during the shape memory cycle: (b) after loading at
40 �C; (f) during heating at 60 �C; (g) after heating to 80 �C. The x-label ‘‘E’’, ‘‘F’’ an
nonequilibrium branches.
4.3. Applications of the model

Having implemented our model into the user material subrou-
tine (UMAT) in ABAQUS (Simulia, Providence, RI), it is capable to
simulate complicated 3D shape memory phenomena. Here, two
applications of the model, t-SMEs of a twisted sheet and a folded
stick are presented.

Fig. 13 shows the t-SME of a twisted sheet. In Fig. 13a, a
5 mm � 2mm � 0.2mm sheet was meshed by 8-node linear brick,
hybrid, constant pressure, reduced integration, hourglass control
elements. The two surfaces parallel to the yz plane were tied to
analytical rigid bodies for boundary condition definition. All
degrees of freedom of one analytical rigid body were fixed to con-
strain one end of the sheet. At 80 �C, the other movable analytical
rigid body was rotated by 90� in the counterclockwise direction to
twist the sheet (Fig. 13b). The Mises stress was �0.1 MPa with the
highest Mises stress at two corners. At 40 �C (Fig. 13d), once the
boundary condition of the movable analytical rigid body was deac-
tivated, the Mises stress throughout the sheet was reduced to zero
and the sheet fixed �60% of the twisting (the first temporary
shape), which was consistent with the t-SME in 1D manner shown
in Fig. 11. Then, the analytical rigid body was rotated back to the
original position at 40 �C (Fig. 13e). The high stress area with
�0.17 MPa Mises stress was observed in the middle of the sheet.
After deactivating the boundary condition of the movable analyti-
cal rigid body at 0 �C, the Mises stress throughout the sheet fell to
zero again, and �100% of the twisting (the second temporary
shape) was fixed (Fig. 13g), which was also consistent with the
t-SME in 1D manner shown in Fig. 11. By heating back to 40 �C,
it recovers to the first temporary shape (Fig. 13h). It returns to
xing shape memory behavior in the strain-temperature plot; (b)–(g) show the stress
80 �C; (c) after unloading at 0 �C; (d) during heating at 30 �C; (e) during heating at
d ‘‘1’’–‘‘5’’ represent the equilibrium branch, the fiber network, and the 1st–5th



Fig. 13. Comparison between finite element simulation and experiment of a twisted sheet demonstrating t-SME: (a) initial shape; (b) after loading at 80 �C; (c) after cooling
to 40 �C; (d) after unloading at 40 �C; (e) after loading at 40 �C; (f) after cooling to 0 �C; (g) after unloading at 0 �C; (h) after heating to 40 �C; (i) after heating to 80 �C. (Insets
present the t-SME of the twisted sheet in experiment, and the black scale bar is 5 mm.).

Fig. 14. Comparison between finite element simulation and experiment of a folded stick demonstrating t-SME: (a) boundary conditions; (b) after loading at 80 �C; (c) after
cooling to 40 �C; (d) after unloading at 40 �C; (e) after loading at 40 �C; (f) after cooling to 0 �C; (g) after unloading at 0 �C; (h) after heating to 40 �C; (i) after heating to 80 �C.
(Insets present the t-SME of the folded stick in experiment, and the black scale bar is 10 mm.).
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the permanent shape at 80 �C (Fig. 13i). Insets in Figs. 13 present
the real experiment of a twisted sheet exhibiting the t-SME. The
experiment agrees the simulation well, which validates our model.

In Fig. 14, our model is used to simulate the t-SME of a folded
stick. In Fig. 14a, a 50mm � 0.5 mm � 0.5mm sheet was meshed
by 8-node linear brick, hybrid, constant pressure, reduced integra-
tion, hourglass control elements. In Fig. 14a, both End A and End B
were constrained in the x-direction. In order to prevent the stick
from rigid motion, one surface parallel to the xy plane was con-
strained in the z-direction. At 80 �C, Rigid A moved in the negative
x-direction to deform the stick into a ‘‘C’’ shape (Fig. 14b). At 40 �C
(Fig. 14d), once Rigid A was removed, the Mises stress throughout
the stick was reduced to zero, and the stick stayed at the ‘‘C’’ shape
(the first temporary shape). Then, after being compressed by Rigid
B and Rigid C, the ‘‘C’’ stick was folded (Fig. 14e). At 0 �C (Fig. 14d);
when the Rigid B and Rigid C were removed, the Mises stress
throughout the stick was reduced to zero, and the stick stayed at
the folded shape (the second temporary shape). During heating,
the ring transformed from the folded shape to the ‘‘C’’ shape (the
first temporary shape) at 40 �C (Fig. 14h), and eventually returned
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to the shape original at 80 �C (Fig. 14i). Insets in Fig. 14 present the
real experiment of a folded stick exhibiting the t-SME. The results
of the experiment show slightly different from those of the simu-
lation primarily due to the slightly different of the tools inducing
deformation. Overall, the simulation agrees the experiment well.

5. Conclusion

Triple-shape memory behaviors of a TSPC were investigated in
this paper using a full 3D model. In the TSPC system, an amorphous
SMP (epoxy) serves as a matrix to fix one temporary shape and a
crystallizable fiber network (PCL) is utilized to fix the other tempo-
rary shape. During heating, the material sequentially recovers from
the second temporary shape to the first one and eventually its per-
manent shape. A 3D finite deformation thermomechanical consti-
tutive model was introduced to capture t-SMEs of the TSPC. In
this model, a multi-branch approach was used to describe visco-
elastic behavior of the amorphous SMP matrix, and the constitutive
model with differently deformed crystalline phases was used to
describe the SM behaviors of crystallizable fiber networks. Experi-
mental results including uniaxial tensions, thermal expansions,
and stress relaxation tests were used to identify parameters in
the model. Using the implemented user material subroutine
(UMAT), the constitutive model successfully reproduced different
types of shape memory behaviors exhibited in experiments,
including dual-shape memory behaviors under different tempera-
ture ranges, the one-step-fixing shape memory behavior and the
triple-shape memory behavior. Stress distribution analyses were
also performed to visualize the stress distribution during those
different shape memory behaviors. The model was also able to
simulate complicated triple shape phenomena, such as a twisted
sheet and a folded stick demonstrating t-SME, inspiring future
experiments.
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