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In adult Swiss albino and C57 pigmented mice, RGCs were identified with a retrogradely transported neu-
ronal tracer applied to both optic nerves (ON) or superior colliculi (SCi). After histological processing, the
retinas were prepared as whole-mounts, examined and photographed under a fluorescence microscope
equipped with a motorized stage controlled by a commercial computer image analysis system: Image-
Pro Plus� (IPP). Retinas were imaged as a stack of 24-bit color images (140 frames per retina) using
IPP with the Scope-Pro plug-in 5.0 and the images montaged to create a high-resolution composite of
the retinal whole-mount when required. Single images were also processed by specific macros written
in IPP that apply a sequence of filters and transformations in order to separate individual cells for auto-
matic counting. Cell counts were later transferred to a spreadsheet for statistical analysis and used to
generate a RGC density map for each retina. Results: The mean total numbers of RGCs labeled from
the ON, in Swiss (49,493 ± 3936; n = 18) or C57 mice (42,658 ± 1540; n = 10) were slightly higher than
the mean numbers of RGCs labeled from the SCi, in Swiss (48,733 ± 3954; n = 43) or C57 mice
(41,192 ± 2821; n = 42), respectively. RGCs were distributed throughout the retina and density maps
revealed a horizontal region in the superior retina near the optic disk with highest RGC densities. In con-
clusion, the population of mice RGCs may be counted automatically with a level of confidence compara-
ble to manual counts. The distribution of RGCs adopts a form of regional specialization that resembles a
horizontal visual streak.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The adult rodent primary visual pathway has been widely used
to investigate anatomical, functional and behavioral aspects of the
mammalian central nervous system regeneration (Avilés-Triguer-
os, Sauvé, Lund, & Vidal-Sanz, 2000; Sasaki et al., 1996; Vidal-Sanz,
Avilés-Trigueros, Whiteley, Sauvé, & Lund, 2002; Vidal-Sanz, Bray,
Villegas-Perez, Thanos, & Aguayo, 1987; Vidal-Sanz, Villegas-Pérez,
Bray, & Aguayo, 1993; Whiteley, Sauvé, Avilés-Trigueros, Vidal-
Sanz, & Lund, 1998), degeneration (Agudo et al., 2008; Agudo
et al., 2009; Chidlow, Casson, Sobrado-Calvo, Vidal-Sanz, &
Osborne, 2005; Lafuente, Villegas-Pérez, Sellés-Navarro, et al.,
2002; Lund et al., 2007; Sellés-Navarro, Villegas-Pérez, Salvador-
Silva, Ruiz-Gomez, & Vidal-Sanz, 1996; Villegas-Perez, Lawrence,
Vidal-Sanz, Lavail, & Lund, 1998; Villegas-Perez, Vidal-Sanz, Bray,
& Aguayo, 1988; Villegas-Perez, Vidal-Sanz, & Lund, 1996;
ll rights reserved.

is work.
Villegas-Perez, Vidal-Sanz, Rasminsky, Bray, & Aguayo, 1993;
Wang, Villegas-Pérez, Vidal-Sanz, & Lund, 2000) and neuroprotec-
tion (Avilés-Trigueros et al., 2003; Lafuente López-Herrera, Mayor-
Torroglosa, Miralles de Imperial, Villegas-Pérez, & Vidal-Sanz,
2002; Lafuente et al., 2002; Lund et al., 2007; Mayor-Torroglosa
et al., 2005; Vidal-Sanz et al., 2007; Vidal-Sanz et al., 2007;
Vidal-Sanz et al., 2000).

In rodents, like in most mammals, RGCs project to a number of
central regions known as retino-recipient targets including the
suprachiasmatic nuclei, the accessory optic nuclei, the pretectal
nuclei, the ventral lateral geniculate nuclei, the dorsal lateral
geniculate nuclei, and the superior colliculi (Rodiek, 1979). The
vast majority of RGCs project to the superior colliculi (Lund,
1965; Perry, 1981) where RGCs axons deploy in a very precise
topographic manner (Linden & Perry, 1983; Sauvé, Girman, Wang,
Lawrence, & Lund, 2001; Sauvé, Girman, Wang, Keegan, & Lund,
2002), but to date the exact magnitude of this projection has only
recently been examined in adult rats (Salinas-Navarro et al., 2009).
Within the rodent retina, the RGC population is distributed
throughout in a central-peripheral gradient and some authors have
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found a region with highest RGC density in the superior retina,
mainly within the superior temporal region of mice (Drager & Olsen,
1981; Jakobs, Libby, Ben, John, & Masland, 2005; Jeon, Strettoi, &
Masland, 1998), Syrian hamster (Métin, Irons, & Frost, 1995) and
rat (Dreher, Sefton, Ni, & Nisbett, 1985; Fukuda, 1977; Jeffery,
1985; Perry, 1981; Reese & Cowey, 1986; Schober & Gruschka,
1977), but whether they adopt some form of regional specialization
has been controversial (Danias et al., 2002; Danias et al., 2003;
Reese, 2002; Salinas-Navarro et al., 2009). Such concept is impor-
tant because the distribution of RGCs in the retina reflect the regio-
nal specialization and resolution of the visual system (Drager &
Hubel, 1976; Prusky, Harker, Douglas, & Whishaw, 2002).

Adult Swiss and C57BL/6J strains of mice with non-pigmented
and pigmented eyes, respectively, are usually employed for exper-
imental models of injury-induced RGC loss and its prevention, thus
it was of interest to determine, as a reference for future studies, the
total number of RGCs in these mice, the number of RGCs projecting
to the superior colliculi and their regional distribution within the
retina. In the present study we have taken advantage of retro-
gradely transported tracers to identify the entire RGC population
and used an automated methodology to count labeled RGCs (Da-
nias et al., 2002; Nadal-Nicolás et al., 2009; Salinas-Navarro
et al., 2009; Vidal-Sanz, De la Villa, et al., 2007; Vidal-Sanz, Sali-
nas-Navarro, et al., 2007). We report the numbers of RGCs that give
rise to the retinofugal projection in Swiss and Adult C57BL/6J mice,
as well as the numbers of RGCs that contribute to the retinotectal
projection, providing additional direct evidence for the massive
contralateral projection in the retinofugal system of adult mice
(Drager & Olsen, 1981; Lund, 1965). The analysis of the RGC spatial
distribution, adds to the existing literature showing a horizontally
oriented high-density region of RGCs in the dorsal retina, resem-
bling a visual streak. These data provide necessary background
information for studying the effects of genetic and induced
changes associated with mouse disease models of glaucoma, and
the photoreceptor degenerations [part of this work have been pre-
sented in abstract form (Salinas-Navarro et al., 2005; Vidal-Sanz,
Salinas-Navarro, et al., 2007; Villegas-Pérez et al., 2006).

2. Methods

2.1. Animals and anesthesia

Experiments were performed on adult male albino Swiss
(n = 34) and pigmented C57BL/6N (n = 26) mice, (weighing 37
and 31 g, respectively) obtained from the breeding colony of the
University of Murcia (Murcia, Spain). Mice were housed in temper-
ature and light controlled rooms with a 12 h light/dark cycle and
had food and water ad libitum. Light intensity in the animal room
was programmed to be of 24 lux, depending on the location of the
animal cage within the rack, the intensity varied from 9 to 24 lux.

When animal manipulations were performed, the ‘‘Principles of
laboratory animal care” (NIH publication No. 85–23, revised 1985),
the OPRR Public Health Service Policy of the Human Care and the
Use of Laboratory Animals (revised 1986) and the US Animal Wel-
fare Act, as amended, were followed, as well as our institutional
guidelines, European Union regulations for the use of animals in re-
search and the ARVO statement for the use of animals in ophthal-
mic and vision research. In addition, additional measures were
taken to minimize pain or discomfort.

All surgical manipulations were done under general anesthesia
induced with an intraperitoneal (i.p.) injection of ketamine (70 mg/
kg, Ketolar�, Parke-Davies, S.L., Barcelona, Spain) and xylazine
(10 mg/kg, Rompún�, Bayer, S.A., Barcelona, Spain). While recover-
ing from anesthesia, mice were placed in their cages, and an ocular
ointment containing neomycin and prednisone (Oftalmolosa Cusí
Prednisona-Neomicina�; Alcon S.A., Barcelona, Spain) was applied
on the cornea to prevent corneal desiccation. Animals were eutha-
nized with an i.p. injection of an overdose of pentobarbital (Dole-
thal Vetoquinol�, Especialidades Veterinarias, S.A., Alcobendas,
Madrid, Spain).

2.2. Retrograde tracing

In the ganglion cell layer of the rodent retina there are RGC
and displaced amacrine cell populations in similar proportions
(Drager & Olsen, 1981; Perry, 1981; Perry, Henderson, & Linden,
1983), as well as a small number of displaced horizontal cells
(Silveira, Picanço-Diniz, & Oswaldo-Cruz, 1989; Silveira, Yamada,
& Picanço-Diniz, 1989). For instance, in the mouse retina approx-
imately 59% of the neurons in the GC layer are displaced ama-
crine cells (Drager & Olsen, 1981; Jeon et al., 1998; Schmidt,
Vitral, & Linden, 2001). Thus, a well established method to iden-
tify RGCs has consisted on the application of retrogradely trans-
ported tracers to their main target regions in the brain or to
their optic tracts or nerves (Lafuente López-Herrera, et al.,
2002; Peinado-Ramon, Salvador, Villegas-Perez, & Vidal-Sanz,
1996; Sellés-Navarro et al., 1996; Vidal-Sanz, Lafuente, Mayor,
de Imperial, & Villegas-Pérez, 2001). One tracer proven reliable
and efficient for the visual system is FluoroGoldTM (2-Hydroxystil-
bene-4,40-dicarboxamidine bis (methanesulfonate)) (Salinas-Nav-
arro et al., 2009) or its equivalent hydroxystilbamidine
methanesulfonate (OHSt) a small (472,53 kDa Mw) molecule
(Molecular Probes, Leiden, The Netherlands) with similar fluores-
cent and tracer properties to fluorogold (Cheunsuang & Morris,
2005).

2.2.1. Tracing from the optic nerve
To label the bulk of the retinofugal projection from each retina

the optic nerves were transected intraorbitally in 10 Swiss and in 5
C57 mice, a small pledget of gelatin sponge soaked in a solution
containing 10% OHSt (Molecular Probes, Leiden, The Netherlands)
in 0.9% NaCl and 10% dimethyl sulphoxide (DMSO) was applied
to the ocular stump of the cut optic nerve, approximately 1 mm
from the optic disk following previously described methods that
are standard in our laboratory (Lafuente López-Herrera, et al.,
2002; Salinas-Navarro et al., 2009; Vidal-Sanz, Villegas-Perez, Bray,
& Aguayo, 1988; Villegas-Perez et al., 1993), and the animals were
processed 72 h later.

2.2.2. Tracing from the superior colliculi
To identify the population of RGCs contributing to the retinotec-

tal projection, OHSt was applied to both SCi in a group of 24 Swiss or
21 C57 adult mice, from which a total of 43 or 42 retinas were ana-
lyzed, respectively. In brief, after exposing the midbrain, a small
pledget of gelatin sponge (Espongostan� Film, Ferrosan A/S, Den-
mark) soaked in saline containing 10% OHSt in 0.9% NaCl and 10%
DMSO, was applied over the entire surface of both SCi following pre-
viously described methods that are standard in our laboratory (Sali-
nas-Navarro et al., 2009; Vidal-Sanz et al., 1988; Wang et al., 2000).

2.3. Histology and retinal examination

Mice were deeply anesthetized, perfused transcardially through
the ascending aorta with saline and then with 4% paraformalde-
hyde in 0.1 M phosphate buffer (PB) (pH 7.4). Special care was ta-
ken to maintain the orientation of each eye, and right after deep
anesthesia and before perfusion fixation a suture was placed on
the superior pole of each eye. Upon dissection of the eyeball, the
rectus muscle insertion into the superior part of the eye and the
nasal caruncle were used as additional landmarks. Both retinas
were dissected and prepared as flattened whole-mounts by making
four radial cuts (the deepest one in the superior pole), post-fixed
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for an additional hour, rinsed in 0.1 M PB, mounted vitreal side up
on subbed slides and covered with anti-fading mounting media
containing 50% glycerol and 0.04% p-phenylenediamine in 0.1 M
sodium carbonate buffer (pH 9).

Retinas were photographed under a fluorescence microscope
(Axioscop 2 Plus; Zeiss Mikroskopie, Jena, Germany) equipped with
an ultraviolet (BP 365/12, LP 397) filter that allows the observation
of the white–gold OHSt fluorescence. The microscope was also
equipped with a digital high-resolution camera (ProgResTM C10,
Jenoptik, Jena, Germany) and a computer-driven motorized stage
(ProScanTM H128 Series, Prior Scientific Instruments, Cambridge,
UK), connected to an image analysis computer program (IPP 5.1
for Windows�; Media Cybernetics, Silver Spring, MD, USA) with a
microscope controller module (Scope-Pro� 5.0 for Windows�;
Media Cybernetics, Silver Spring, MD, USA).

Retinal whole-mount reconstructions were obtained with reti-
nal multi-frame acquisitions photographed in a raster scan pattern
where the frames were captured contiguously side-by-side with no
gap or overlap between them with a �20 objective (Plan-Neofluar,
20�/0.50; Zeiss Mikroskopie, Jena, Germany). Single frames were
focused manually prior to the capture of the image, which were
then fed into the image analysis program. A scan area was defined
to cover completely the whole retina, this area consists of a matrix
of m frames in columns and n frames in rows, where the total num-
ber of frames in the scan area is indicated by frames in columns
times frames in rows (m � n). Usually 140 images, measuring each
(0.2161 mm2) at a resolution of (300 dots per in.), were taken for
each mouse retina.

The images taken for each retina were saved in a folder as a set
of 24-bit color image pictures and later, these images can be com-
bined automatically into a single tiled high-resolution composite
image of the whole retina using IPP� for Windows�. Reconstructed
images were further processed using image-editing software
(Adobe Photoshop� CS; ver 8.0.1, Adobe Systems, Inc., San Jose,
CA) when needed to produce printouts.

2.4. Image analysis

All individual images taken from every retina were processed
following a specific cell counting subroutine that was developed
to automate repetitive tasks and thus to count FG-labeled RGCs
in mice retinas. These subroutines differ slightly from our previ-
ously described subroutines to count rat RGCs (Nadal-Nicolás
et al., 2009; Salinas-Navarro et al., 2009) and have been outlined
in a schematic figure (Fig. 1). In brief, we used IPP macro lan-
guage to apply a sequence of filters and transformations to each
image in order to clarify cell limits and separate individual cells
for automatic cell counting. In a first step, the images were con-
verted to 8-bit gray scale images. Illumination aberrations
caused by the microscope optics were removed by the software
flatten enhancement filter which evens out the background vari-
ations. This was followed by enhancement of the edges of the
cells using the large spectral filter edge+ command, which ex-
tracts positive edges (in this case fluorescent stained bright cells)
from the dark background. A setting of 8% (kernel size 20 � 20)
was sufficient to enhance the cell edges making detection sim-
pler. Large spectral filters were used where large kernels were
required and cut down on the processing overheads. Small arti-
facts and noise were removed by running three passes of the
median enhancement filter (kernel size 3 � 3). Cell clusters were
then separated by two passes of the watershed split morpholog-
ical filter which erodes objects until they split and then dilates
them until they do not touch. The cells in each image were
counted using predetermined parameters to exclude objects that
were larger than 300 lm2 or smaller than 7 lm2. These parame-
ters correspond to the largest or smallest individual FG-labeled
object detected as RGC (Fig. 1). Finally, each count was exported
by dynamic data exchange to a spreadsheet (Microsoft� Office
Excel 2003, Microsoft Corporation, Redmond, WA, USA).

Retinal area was measured on the tiled high-resolution photo-
montage image of the whole retina with the IPP� program. For that
purpose, a spatial calibration must be applied to the image based
on its capture settings and produced by calibrating the stage.

2.5. Pseudo-colored density maps

The pattern of RGC distribution over the entire retina was ana-
lyzed with isodensity maps. Cell densities were calculated and rep-
resented as a filled contour plot graph. Every captured frame was
divided in an equal number of 36 rectangular areas of interest
(AOI). These AOI were counted (using the previously described cell
counting subroutine as above) and data was exported and saved to
a spreadsheet computer program (Microsoft� Office Excel 2003,
Microsoft Corporation, Redmond, WA). Finally the data were repre-
sented as a filled contour plot using graphing software (SigmaPlot�

9.0 for Windows�, Systat Software, Inc., Richmond, CA) that con-
structs pseudo-colored isodensity maps in a scale of 45 different
steps (each of 125) ranging from 0 to 5625 cells/mm2. This upper
limit was chosen on the basis of the earlier animals analyzed in
the present studies, that showed mean highest densities around
this value. Cell density calculating error due to frames not fully
occupied by retinal tissue on the whole retina contour is mini-
mized by the high number of AOI with a relatively small size in
each frame and by the almost absence of RGCs in the retinal
periphery.

2.6. Method validation

To validate the counting method, a total of 26,606 RGCs labeled
by the application of OHSt to both SCi in Swiss and C57 mice, in 41
randomly selected digital images covering different density rates
of 4 different normal retinas were counted manually by four differ-
ent experienced investigators in a masked fashion. These were also
counted automatically and the results compared to those obtained
manually (Fig. 2).

2.7. Statistics

The statistical analysis of the differences between groups of ret-
inas or groups of animals was done using non-parametric ANOVA
tests using Statistix� V1.0 for Windows 95 software: the Kruskal-
Wallis test was used to compare more than two groups and the
Mann–Whitney test was used when comparing two groups only.
To compare cell counts obtained automatically with those ob-
tained manually we used the Pearson correlation test (SigmaStat�

for WindowsTM Version 3.11; Systat Software, Inc., Richmond, CA,
USA). Differences were considered significant when P < 0.05.
3. Results

The albino (Swiss) and pigmented (C57) strain of mice are com-
monly employed for a number of experimental approaches aimed
at studying the problem of injury-induced RGC loss and its preven-
tion, thus it was of interest to determine as a baseline for future stud-
ies, the population and spatial distribution of RGCs in these mice.
There is a mean of 49,493 and 42,658 RGCs, in the albino and pig-
mented mice, respectively, as revealed by retrograde axoplasmic
transport of OHSt from the optic nerve. The numbers of RGCs retro-
gradely labeled from both SCi in Swiss and C57 mice were slightly
smaller (1.5% and 3.4%, respectively) but comparable to those retro-
gradely labeled from the optic nerves. Thus, in mice (Drager & Olsen,



Fig. 1. Outline of automatic subroutines to count labeled retinal ganglion cells. (A) Fluorescence micrograph from a representative whole-mounted C57 mice retina, showing
at high power retinal ganglion cells retrogradely labeled with OHSt applied to both SCi for 1 week prior to animal processing. The micrograph was taken on the middle region
of the retina and when counted manually shows 154 labeled RGCs. (B) To count automatically this image in a first step the image was converted to 8-bit gray scale image
[IpWsConvertImage(IMC_GRAY, CONV_SCALE, 0, 0, 0, 0)]. (C) Illumination aberrations were removed by the software flatten enhancement filter [IpFltFlatten(1, 20)]. (D) The
edges of the cells were enhanced by using the large spectral filter edge+ command [IpLSFltApply (LF_EDGEPL,50,50,1,10)] and small artifacts and noise were removed by
running three passes of the median enhancement filter [IpFltMedian(3, 3)]. (E) Cells were counted by running the counting function [IpBlbCount()]. (F) Cell clusters were then
separated by two passes of the watershed split morphological filter [IpBlbSplitObjects(1)] and recounted. Scale bar for A, 20 lm.
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1981), as has been shown for rats (Lund, 1965; Perry, 1981; Salinas-
Navarro et al., 2009), the retinofugal system gives rise to a massive
retinotectal projection. There were significant differences between
the total numbers of RGCs in the albino and pigmented mice, which
probably reflect genetic differences (Williams, Strom, Rice, & Goldo-
witz, 1996). The spatial distribution of RGCs within the retina was
examined with filled contour plot graphs and these provided addi-
tional direct evidence (Drager & Olsen, 1981) of a horizontal area
of highest density in the dorsal retina.

3.1. Validation of cell counts

In 41 randomly selected frames from right and left retinas,
26,492 OHSt-labeled RGCs were counted manually by four differ-
ent investigators blinded to the conditions compared. These results
were plotted against the counts obtained automatically with the
analysis program and revealed a strong correlation between both
methods (Pearson correlation test, R = 0.995; P < 0.0001) (Fig. 2),
thus indicating the accuracy of the automatic counting.

3.2. RGCs in Swiss and C57 mice

The mice retinas showed RGCs labeled (Fig. 1A) with bright
punctate and diffuse white or yellow–gold OHSt fluorescence
delineating their soma and occasionally the proximal aspects of
their primary processes (Lafuente López-Herrera, et al., 2002; Laf-
uente, Villegas-Pérez, et al., 2002; Peinado-Ramon et al., 1996;
Sellés-Navarro et al., 1996; Vidal-Sanz et al., 2001). Labeled RGCs



Fig. 2. Validation of automated RGC counting. The numbers of retinal ganglion cells
counted manually were correlated to those obtained automatically in 40 randomly
selected frames with various RGC densities. The dark line is the line that
corresponds to best fit for the data, for which the equation and correlation
coefficient are displayed on the graph.
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were observed throughout the RGC layer of the retina with clusters
containing higher cell densities in the central regions of the retina
(Fig. 3A). Small numbers of displaced OHSt-labeled RGCs, also
called Dogiel’s cells (Dogiel, 1888), were observed when focusing
the inner nuclear layer of the retina but these were not taken into
account for the present study.

3.2.1. Retinofugal population of RGCs
Three days after tracer application to the intraorbital aspect of

the ON, the mean total number of retrogradely labeled RGCs was
49,493 ± 3936 (n = 18; mean ± SD) (Table 1) or 42,658 ± 1540
(n = 10; mean ± SD) (Table 2) for Swiss or C57 mice, respectively.
There were no significant differences between the numbers of
Fig. 3. Retinal whole-mount of a representative Swiss mice right retina showing RGC
processing and its corresponding filled contour plot pseudo-color isodensity map. (A
photomicroscope with a high-resolution camera connected to an image analysis system
Silver Spring, MD, USA). Retinal multi-frame acquisitions were photographed in a raster s
or overlap between them. Intensely labeled RGCs are distributed throughout the retina, b
retina. (B) Isodensity map constructed for this retina, represented as a filled contour plot
color code according to its RGCs density value within a 45-step color scale range from 0
orientated at the 12 o’clock orientation. This retina has 47,823 OHSt-labeled RGCs. Scale
OHSt-labeled RGCs obtained in the right retinas when compared
to their fellow contralateral left retinas for the Swiss (Mann–Whit-
ney test, P = 0.5962) (Table 1) or C57 mice retinas (Mann–Whitney
test, P = 0.5309) (Table 2), respectively.

3.2.2. Retinotectal population of RGCs
Seven days after OHSt application to the SCi the numbers of la-

beled RGCs were 48,733 ± 3954 (n = 43; mean ± SD) (Table 3) or
41,192 ± 3395 (n = 42; mean ± SD) (Table 4), in the Swiss or C57
mice retinas, respectively. There were no differences between
the numbers of labeled RGCs obtained in the right retinas when
compared to their fellow contralateral left retinas in the Swiss
(Mann–Whitney test, P = 0.9129) (Table 3) or C57 (Mann–Whitney
test, P = 0,1249) (Table 4) mice, respectively. Overall, the values
obtained were quite consistent within each group o retinas
analyzed.

3.3. Areas and RGC densities

In the group of Swiss mice, the areas of the retinas varied be-
tween 12.5 and 22.7 mm2 with a mean value of 16 ± 2.3 (n = 43;
mean ± SD) for the group of Swiss mice labeled from the SCi and
between 12.4 and 20.8 mm2 with a mean value of 16 ± 2.3
(n = 18; mean ± SD) for the group of Swiss mice labeled from the
ONs. (Tables 1 and 3). In these retinas, the mean densities of la-
beled RGCs varied between 2280 and 3898 with a mean of
3083 ± 378 (n = 43; mean ± SD) (Table 1) for the group of Swiss
mice labeled from the SCi and between 2616 and 3771 with a
mean of 3122 ± 277 (n = 18; mean ± SD) (Table 3) for those labeled
from the ONs.

In the groups of C57 mice, the areas of the retinas varied be-
tween 12.8 and 17 mm2 with a mean value of 14.6 ± 0.8 (n = 42;
mean ± SD) (Table 2) for the group of C57 mice labeled from the
SCi and between 12.8 and 16.2 mm2 with a mean value of
14.5 ± 1 (n = 10; mean ± SD) (Table 4) for the group of C57 mice la-
beled from the ONs. In these retinas, the densities of labeled RGCs
varied between 2044 and 3549 with a mean of 2821 ± 281 (n = 42;
mean ± SD) (Table 2) for the group of C57 mice labeled from the SCi
and between 2693 and 3155 with a mean of 2949 ± 143 (n = 10;
mean ± SD) (Table 4) for the group of C57 mice labeled from the
ONs.
s retrogradely labeled with OHSt applied to both SCi for 1 week prior to animal
) Whole-mount reconstruction prepared with the aid of a motorized stage on a
with an automatic frame grabber device (Image-Pro� Plus, V5; Media Cybernetics,
can pattern where the frames were captured contiguously side-by-side with no gap
ut present higher densities in a region along the naso-temporal axis on the superior
generated by assigning to each one of the 36 subdivisions of each individual frame a

(dark blue) to 5625 or higher RGCs/mm2 (red). For all retinas the superior pole is
bar = 1 mm.



Table 1
Number of ganglion cells retrogradely labeled from the superior colliculi (Swiss mice).

Animal # Right retina Left retina

Cells Area (mm2) Mean cell density (cells/mm2) Cells Area (mm2) Mean cell density (cells/mm2)

1 – – – 48,383 15.2 3175
2 45,398 12.8 3536 46,716 13.2 3547
3 50,712 13.0 3898 50,362 14.0 3605
4 48,358 14.0 3457 50,947 14.4 3538
5 45,961 14.9 3085 48,613 13.8 3525
6 44,332 12.5 3538 44,345 12.5 3548
7 47,748 14.0 3411 47,880 13.8 3470
8 54,940 15.2 3622 51,620 14.0 3700
9 49,949 18.0 2780 44,215 15.8 2806
10 49,871 15.4 3234 51,616 16.4 3140
11 51,300 16.1 3178 52,924 16.4 3223
12 46,158 14.5 3188 44,306 16.1 2760
13 45,994 15.8 2907 – – –
14 44,700 16.1 2776 43,979 15.0 2923
15 44,246 15.6 2837 39,281 15.1 2598
16 52,579 20.5 2563 51,353 19.7 2601
17 56,143 20.6 2723 56,721 22.7 2502
18 45,150 15.5 2907 – – –
19 – – – 49,956 16.6 3002
20 50,128 17.2 2911 50,108 17.1 2934
21 52,414 17.9 2928 40,513 17.9 2280
22 51,156 16.4 3121 52,321 17.2 3037
23 52,248 18.0 2901 52,031 18.5 2819
24 47,823 20.4 2345 – – –

Mean 48969b 16.1 3084 48485b 16 3082
SD 3502 2.4 378 4370 2.4 414
n 22 22 22 21 21 21

Meana 48,733 16.0 3083
SDa 3954 2.3 378
n 43 43 43

a Data from both retinas.
b Not significantly different (Mann–Whitney Test, P = 0.913).

Table 2
Number of ganglion cells retrogradely labeled from the optic nerve (Swiss mice).

Animal # Right retina Left retina

Cells Area (mm2) Mean cell density (cells/mm2) Cells Area (mm2) Mean cell density (cells/mm2)

1 51,835 16.8 3080 49,182 16.2 3042
2 50,044 16.7 2993 – – –
3 49,809 16.4 3035 49,298 17.7 2784
4 52,620 18.9 2792 54,011 18.4 2942
5 56,276 19.2 2937 54,410 20.8 2616
6 49,042 14.2 3444 46,723 12.4 3771
7 48,389 14.6 3319 49,251 15.0 3292
8 – – – 48,777 14.4 3387
9 49,539 14.9 3325 49,824 15.3 3261
10 40,686 13.2 3078 41,151 13.3 3106

Mean 49804b 16.1 3111 49181b 15.9 3133
SD 4180 2.0 210 3902 2.7 344
n 9 9 9 9 9 9

Meana 49,493 16.0 3122
SDa 3936 2.3 277
n 18 18 18

a Data from both retinas.
b Not significantly different (Mann–Whitney Test, P = 0.596).
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3.4. Topography of RGCs

Upon fluorescence microscopic examination of the retinas, it
was clear that OHSt-labeled RGCs were not uniformly distributed
throughout the retina, but rather tended to concentrate in the cen-
tral retina compared to the periphery (Figs. 3 and 4). Within the
many retinas examined, there was certain variability in the loca-
tion of the region containing the highest RGC density, but there
was a clear tendency for this high-density region to localize in
the superior retina, forming a horizontally oriented area extending
naso-temporally, approximately 1 mm dorsal to the optic disk,
adopting the form of a visual streak.

This high-density area was analyzed in depth using filled con-
tour plot graph to construct colored isodensity maps in a scale of
45 different steps (each of 125) ranging from 0 to 5625 (Figs. 3
and 4). These detailed maps showed a region with highest density
located in the superior retina, with RGC densities falling off rap-
idly from this area towards the superior and inferior retina, but



Table 3
Number of ganglion cells retrogradely labeled from the superior colliculi (C57 mice).

Animal # Right retina Left retina

Cells Area (mm2) Mean cell density (cells/mm2) Cells Area (mm2) Mean cell density (cells/mm2)

1 41,096 13.8 2978 43,072 14.5 2962
2 43,841 15.0 2921 44,361 15.5 2858
3 46,173 13.0 3549 43,059 14.7 2935
4 39,509 12.8 3084 45,416 13.8 3303
5 42,978 14.7 2926 45,033 14.8 3037
6 38,810 14.8 2629 40,171 14.3 2817
7 41,502 13.6 3045 40,027 13.2 3032
8 40,924 13.6 3005 47,259 16.0 2963
9 46,123 14.3 3234 45,271 14.3 3168
10 44,906 14.3 3151 45,920 15.8 2903
11 41,006 14.6 2809 41,184 14.2 2892
12 40,767 14.8 2753 42,089 15.0 2810
13 33,201 14.7 2262 36,291 14.8 2457
14 38,326 15.2 2525 41,880 16.3 2574
15 41,519 15.1 2744 42,266 15.0 2812
16 40,675 14.7 2773 – – –
17 – – – 40,584 15.1 2688
18 35,708 14.9 2397 37,949 15.0 2528
19 38,656 14.8 2617 39,359 15.0 2629
20 38,813 14.7 2635 40,138 14.8 2719
21 31,952 15.6 2044 38,421 13.1 2931
22 39,451 14.3 2761 44,362 17.0 2613

Mean 40283b 14.4 2802 42101b 14.9 2840
SD 3658 0.7 340 2916 0.9 212
n 21 21 21 21 21 21

Meana 41,192 14.6 2821
SDa 3395 0.8 281
n 42 42 42

a Data from both retinas.
b Not significantly different (Mann–Whitney Test, P = 0.125).

Table 4
Number of ganglion cells retrogradely labeled from the optic nerve (C57 mice).

Animal # Right retina Left retina

Cells Area (mm2) Mean cell density (cells/mm2) Cells Area (mm2) Mean cell density (cells/mm2)

1 42,185 14.1 3002 40,288 12.8 3155
2 41,506 13.8 3014 42,417 15.8 2693
3 45,945 16.2 2841 41,554 14.1 2958
4 43,479 15.3 2844 42,347 15.0 2829
5 43,188 14.1 3065 43,674 14.1 3089

Mean 43261b 14.7 2953 42056b 14.3 2945
SD 1695 1.0 104 1246 1.1 188
n 5 5 5 5 5 5

Meana 42,658 14.5 2949
SDa 1540 1.0 143
n 10 10 10

a Data from both retinas.
b Not significantly different (Mann–Whitney Test, P = 0.531).
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doing so more pronouncedly on the superior retina, with a clear
gradient toward the periphery (Fukuda, 1977; McCall, Robinson,
& Dreher, 1987; Perry, 1981; Schober & Gruschka, 1977). This re-
gion had the highest individual densities; the mean for these
highest densities were 5959 ± 495 (n = 43; mean ± SD) or
5851 ± 430 (n = 42; mean ± SD) for Swiss or C57 mice, respec-
tively, when OHSt was applied to both SCi and 6290 ± 605
(n = 18; mean ± SD) or 6352 ± 319 (n = 9; mean ± SD) for the Swiss
or C57 mice, respectively, when OHSt was applied to the optic
nerve. The difference between central and peripheral retina var-
ied but in general, there is a factor of 35–38. These values are
comparable to those obtained in our laboratory for adult albino
and pigmented rats, where densities differed by a factor of 33–
34 (Salinas-Navarro et al., 2009).
4. Discussion

The Swiss and C57 strain of mice are commonly employed for a
number of experimental approaches aimed at studying the prob-
lem of injury-induced RGC loss and its prevention, thus it was of
interest to determine as a baseline for future studies, the popula-
tion of RGCs in these mice to compare with mice undergoing
experimental manipulations. The need for modern accurate meth-
ods to identity a specific population of neurons (e.g., RGCs) is high-
lighted by the fact that numbers of ganglion cells among diverse
types of mice have been reported to be highly variable, with a
range between 32,000 and 87,000 (Williams et al., 1996).

Identification of RGCs within the RGC layer is not a simple task.
Classic morphological criteria or molecular markers have not been



Fig. 4. Filled contour plots showing densities of RGCs in whole-mounts from both right (left column, A,C,E,G) and left (right column, B,D,F,H) retinas in three representative
Swiss (AB,CD,EF) and one C57 (GH) mice in which OHSt had been applied to both superior colliculi for 1 week prior to animal processing. Maps are represented as filled
contour plots generated by assigning to each one of the 36 subdivisions of each individual frame a color code according to its RGCs density value within a 45-step color scale
range from 0 (dark blue) to 5625 or higher RGCs/mm2 (red). The maps show the typical high-density distribution along a naso-temporal streak in the superior retina. For all
retinas the superior pole is orientated at the 12 o’clock orientation. Scale bar = 1 mm.
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proven to reliably distinguish RGCs from the many amacrine cells
that are displaced into the rodent RGC layer (Drager & Olsen, 1981;
Jeon et al., 1998; Perry, 1981; Perry et al., 1983; Schmidt et al.,
2001) even though recent stereological approaches (Fileta et al.,
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2008) as well as some molecular markers for RGCs (Nadal-Nicolás
et al., 2009; Quina et al., 2005; Soto et al., 2008) look promising. In-
deed, displaced amacrine cells and small RGCs overlap in size, thus
making it difficult to distinguish these classes of retinal neurons
(Villegas-Perez et al., 1988; Villegas-Perez et al., 1993). For this
reason, identification of RGCs in the rodent retina has relied on
the use of retrogradely transported tracers applied to the optic
nerves, optic tracts or to their main target regions in the brain
(Salinas-Navarro et al., 2009; Vidal-Sanz et al., 1988; Villegas-Perez
et al., 1993; Wang et al., 2000). Our previous work requiring quan-
titative estimation of the population of retinal ganglion cells (RGC)
has consisted of manual counts of identified retrogradely labeled
RGCs from printed photographs from standard regions of the retina
that only comprised a small portion of the retina. This method is
not only tedious and time consuming but also requires expertise
from the investigator to identify RGCs.

Using a retrogradely transported neuronal tracer to identify the
RGC population and a methodology to count labeled RGCs (Danias
et al., 2002; Danias et al., 2003; Salinas-Navarro et al., 2009), in the
present study we have quantified the population of RGCs giving
rise to the retinofugal and retinotectal projection, respectively,
and we have also constructed filled contour plot graphs to demon-
strate their spatial distribution within the retina, in Swiss albino
and C57 pigmented adult mice. In performing the task of counting
the number of RGCs, compared to manual counting the present
method takes advantage of commercially available software to
do the job automatically. Moreover it is reproducible; indeed the
total counts of RGCs obtained in different retinas of our groups of
albino or pigmented mice were comparable (Tables 1–4). We antic-
ipate that this counting procedure will be useful in normal and in
experimental conditions in which neuronal tracers may be applied
efficiently after injury (García-Ayuso et al., 2008; Marco-Gomariz,
Hurtado-Montalbán, Vidal-Sanz, Lund, & Villegas-Pérez, 2006; Sali-
nas-Navarro et al., 2006; Salinas-Navarro et al., 2009; Schnebelen
et al., 2007; Schnebelen et al., 2008; Vidal-Sanz, De la Villa, et al.,
2007; Vidal-Sanz, Salinas-Navarro, et al., 2007). The present stud-
ies, however, could not analyze the size of the cell somas due to
the transformations imposed to the OHSt-labeled RGCs in the anal-
ysis process. Neither did we take into account the displaced RGCs
observed in the inner nuclear layer of the retina, which accounts
for approximately 1–2% of the RGC population in mice (Drager &
Olsen, 1981), is smaller in albinos compared to pigmented mice
(Drager & Olsen, 1980) and may be responsible for the decreased
uncrossed projection in albinos as compared to pigmented mice
(Balkema & Drager, 1990).

Overall, the population of RGCs labeled from the ONs, and thus
contributing to the retinofugal projection, was slightly greater
(1.5% for Swiss and 3.4% for C57 mice, respectively) than the pop-
ulation of RGCs labeled from both SCi, and thus contributing to the
retinotectal projection, but in both cases the differences were not
significant (Swiss mice, Mann–Whitney test, P = 0.5426; C57 mice,
Mann–Whitney test, P = 0.1066). This finding is in agreement with
previous studies and provides additional evidence towards the
massive projection from the retina towards the tecta (Drager & Ol-
sen, 1980; Drager & Olsen, 1981; Linden & Perry, 1983; Lund, 1965;
Lund, 1969; Lund, Land, & Boles, 1980).

In our study the population of RGCs was greater in Swiss than in
C57 mice. This was the case for RGCs giving rise to the retinofugal
(Mann–Whitney test, P = 0.0006) or the retinotectal (Mann–Whitney
test, P = 0.0000) projection. This finding is in agreement with previ-
ous studies and may reflect a genetic difference between albino
and pigmented mice (Fukuda, Sugimoto, & Shirokawa, 1982; Wil-
liams et al., 1996).

The total numbers of RGCs obtained in our experiments from
counts of OHSt-labeled RGCs in wholemounts are comparable to
other studies that have investigated the numbers of RGCs in albino
or pigmented mice counting ON axons (Cenni et al., 1996; Howell
et al., 2007; Jeon et al., 1998; Mabuchi, Lindsey, Aihara, Mackey, &
Weinreb, 2004; Parson, Dhillon, Findlater, & Kaufman, 1995; Wil-
liams et al., 1996) or using RGC markers (Bernstein, Guo, Slater,
Puche, & Kelman, 2007). For instance, in C57/BL6 mice Jeon and
colleagues (1998) and Cenni and colleagues (1996), counting ON
axons found a total number of approximately 44,860 ± 3125 and
45,400 ± 4000, respectively. Our results are however somewhat
smaller than those reported by others using retrograde tracers to
label RGCs (Danias et al., 2003; Schmidt et al., 2001) or counting
ON axons (Zhou, Strom, Giguere, & Williams, 2001). For instance,
Danias and colleagues (2003) using a similar approach found in
C57/BL6 mice a total number of RGCs of 84,027 ± 2171, which is
larger than that found in our study. There are several possible
explanations for these differences; the different regions and num-
ber of areas examined, the tracers employed and their mode of
application, or the methods employed to estimate the total RGC
population. Overall, the more likely explanation may relate to the
different strains employed for the studies. Williams and colleagues
(1996) have shown that there are large variations in the total num-
bers of RGCs in mice of different species, subspecies and strains
(with a mean of 58,500 ± 7800 with a range from 32,000 to
87,000), and that these are genetically controlled.

The values obtained for the densities of RGCs in the groups of
Swiss or C57 mice are within the range reported for albino or pig-
mented mice in previous studies from other independent laborato-
ries using retrograde tracers to label RGCs (Inoue, Hosokawa,
Morigiwa, Ohashi, & Fukuda, 2002; Murphy, Franklin, Rafuse, &
Clarke, 2007; Robinson & Madison, 2004). Nevertheless, when cen-
tral regions of the retina are sampled, the densities of FG-labeled
RGCs tend to be significantly higher. This is reflected in previous
studies from this (Wang et al., 2000) and other laboratories (Buck-
ingham et al., 2008; Haustead et al., 2008; Jakobs et al., 2005; Lev-
kovitch-Verbin et al., 2000; Schmidt et al., 2001) and this may be
due to the different RGC distribution throughout the retina, with
highest densities in central regions (see below). Moreover, the eyes
of mice grow through early adult life, thus changing their absolute
density (Jeon et al., 1998), something we could only control for the
present study by using animals of comparable weight. Although it
is unlikely, we cannot rule out the possibility that the mice used in
our experiments had similar weights but different ages, and this
would explain the variations observed in the areas of the retinas
in some of these mice.

The presence in the dorsal retina of an elongated region of ele-
vated RGC density horizontally oriented along the naso-temporal
axis, resembles a visual streak. This regional specialization of the
RGC distribution in the retina, which has its counterpart on the vi-
sual field representation in the superior colliculus (Drager & Hubel,
1976), was observed by others in the Syrian hamster (Métin et al.,
1995), in the rat (Jeffery, 1985; Reese & Cowey, 1986) and in pig-
mented (C57BL/6J) mice (Drager & Olsen, 1981), and also in this
Laboratory for the pigmented non-dystrophic RCS rat (Marco-
Gomariz et al., 2006), the Sprague-Dawley and the PVG rat (Sali-
nas-Navarro et al., 2009). Previous studies have pointed out the
presence of visual streaks with very shallow gradients, such as
those presented in this work for mice, in the guinea pig (do Nasci-
mento, do Nascimento, Damasceno, & Silveira, 1991) or with extre-
mely pronounced gradients in larger rodents such as the agouti
and the capybara (Silveira et al., 1989; Silveira et al., 1989).

Our present findings are in contrast to previous reports (Danias
et al., 2003), but in our analysis we did not find evidence for the vi-
sual streak until detailed density maps, based on small frames,
were constructed (Figs. 3 and 4). Indeed, our filled contour plots
constructed on the base of the analysis of the 36 areas of interest
in which every frame was divided, implies an increase in resolution
of approximately 15 times, when compared to such study (Danias



646 M. Salinas-Navarro et al. / Vision Research 49 (2009) 637–647
et al., 2003). This was also the case for our previous study in which
we did examine the retinal distribution of RGCs in adult pigmented
and non-pigmented rat retinas (Salinas-Navarro et al., 2009). Nev-
ertheless, our maps show that the highest density clusters of RGCs
tended to localize on the superior temporal quadrant in most ret-
inas, and this is in agreement with previous studies in range of ro-
dents, including Syriam hamster (Métin et al., 1995) rat (Dreher
et al., 1985; Fukuda, 1977; Jeffery, 1985; McCall et al., 1987; Perry,
1981; Reese & Cowey, 1986; Schober & Gruschka, 1977) and mice
(Drager & Olsen, 1981; Jakobs et al., 2005; Jeon et al., 1998).
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