Circulating Endothelial Cells in Non-small Cell Lung Cancer Patients Treated with Carboplatin and Paclitaxel

Makoto Kawaishi, MD,* Yutaka Fujiwara, MD,† Tomoya Fukui, MD,* Terufumi Kato, MD,* Kazuhiko Yamada, MD,† Yuichiro Ohe, MD, PhD,‡ Hideo Kunitoh, MD, PhD,‡ Ikuo Sekine, MD, PhD,† Noboru Yamamoto, MD, PhD,† Hiroshi Nokihara, MD, PhD,† Takeshi Watabe, PhD,‡ Yuji Shimoda, PhD,‡ Tokuzo Arao, MD, PhD,§ Kazuto Nishio, MD, PhD,§ Tomohide Tamura, MD† and Fumiaki Koizumi, MD, PhD*

Introduction: Circulating endothelial cells (CECs) increase in cancer patients and play an important role in tumor neovascularization.

Methods: This study was designed to investigate the role of CEC as a marker for predicting the effectiveness of a carboplatin plus paclitaxel based first line chemotherapy in advanced non-small cell lung cancer (NSCLC).

Results: The CEC count in 4 ml of peripheral blood before starting chemotherapy (baseline value) was significantly higher in NSCLC patients, ranging from 32 to 4501/4 ml (mean ± SD = 395 ± 832), than in healthy volunteers (mean ± SD = 46.2 ± 86.3). We did not detect a significant correlation between the CEC count and estimated tumor volume. CECs were significantly decreased by chemotherapy as compared with pretreatment values (175.6 ± 24 and 173.0 ± 24, respectively). We investigated the correlation between baseline CEC and the clinical effectiveness of chemotherapy. CEC values are significantly higher in patients with clinical benefit (partial response and stable disease, 516 ± 458, 870.8 ± 1215, respectively) than in progressive disease patients (211 ± 150). Furthermore, a statistically significant decrease in CECs, on day 22, was observed only in patients with partial response. Patients who had a baseline CEC count greater than 400/4 ml showed a longer progression-free survival (>400, 271 days [range: 181–361] versus <400, 34 [range: 81–186], p = 0.019).

Conclusion: CEC is suggested to be a promising predictive marker of the clinical efficacy of the CBDCA plus paclitaxel regimen in patients with NSCLC.

Key Words: Circulating endothelial cell, NSCLC, Chemotherapy.

(J Thorac Oncol. 2009;4: 208–213)

Angiogenesis plays a critical role in the growth and metastasis of solid tumors.1 The clinical importance of angiogenesis in human tumors has been demonstrated by several reports indicating a positive relationship between the blood vessel density in the tumor mass and poor prognosis, i.e., survival, in patients with various types of cancers including non-small cell lung cancer (NSCLC).2–8 Furthermore, Natsume et al.7 reported the antitumor activities of anticancer agents to be less active against vascular endothelial growth factor-secreting cells (SBC-3/VEGF), in vivo as compared with its mock transfectant (SBC-3/Neo). In recent years, antiangiogenic agents have also been demonstrated to be active against a variety of malignancies, including lung, colorectal, and renal cancer.8–10 Thus, angiogenesis is a promising target for cancer treatment and is related to the prognosis and efficacy of these drugs, though the tumor vessel biomarkers which predict the effectiveness of antiangiogenic agents and other anticancer agents are not always useful and have not become well-established.

Circulating endothelial cells (CECs) have been recognized as a useful biomarker for vascular damage. CECs are increased in cardiovascular disease, vasculitis, infectious disease, and various cancers.11–14 Recently, CECs were found to be more numerous and viable in cancer patients than in healthy subjects.14,15 Furthermore, elevated CECs in cancer patients were found to be nearly normalized when the tumor was removed surgically or with chemotherapy.15 Therefore, most CECs are considered to be disseminated tissue endothelial cells in the tumors and the CEC number may reflect the extent of tumor angiogenesis. Indeed, the CEC level has been demonstrated to correlate with the plasma level of VEGF, one of the pivotal factors promoting tumor angiogenesis.15 Mancuso et al. reported that CEC kinetics and viability are promising predictors of the response to chemotherapy with antiangiogenic activity in patients with advanced breast cancer.16 Thus, CEC is likely to be a useful marker for predicting the effectiveness of chemotherapy as a noninvasive angiogenesis marker.

NSCLC is the leading cause of cancer-related death worldwide. NSCLC accounts for approximately 50% of patients presenting with unresectable advanced stage,17 and platinum-based chemotherapy offers only a small improve-
ment in survival with advanced NSCLC. Over the past decade, several new agents against NSCLC have become available, including the taxanes, gemcitabine, vinorelbine, and irinotecan. The combination of platinum and these new agents has resulted in a high response rate and prolonged survival compared with older chemotherapy regimens (e.g., vindesine, mitomycin, ifosfamide, with cisplatin). Therefore, these regimens are considered standard chemotherapy for advanced NSCLC. Although new agents have different mechanisms of action, these combination regimens have not been administered based on the biologic characteristics of each tumor.

Paclitaxel inhibits several endothelial cell functions in vitro such as proliferation, migration, morphogenesis, and metalloprotease production. These activities result in antiangiogenic activity in vivo xenograft models. Interestingly, human endothelial cells are more sensitive to paclitaxel than other cellular types. We hypothesized that the CEC value is associated with tumor neovascularization, which is one of the targets of paclitaxel. In the present study, we investigated whether the CEC count at baseline is associated with the effectiveness of the CDDP plus paclitaxel regimen in patients with advanced-stage NSCLC.

MATERIALS AND METHODS

Patients

Patients with histologically or cytologically documented advanced NSCLC were eligible for this study. Each patient was required to meet the following criteria: (1) no prior treatment including chemotherapy, surgery, irradiation, or any fluid drainage; (2) no prior general anesthesia for diagnostic procedures including mediastinoscopy or thoracoscopy; (3) no concomitant diseases including ischemic heart diseases, systemic vasculitis, pulmonary hypertension, or serious complications including infectious disease or diabetes; (4) written informed consent. The trial document was approved by the institutional review board and written informed consent was obtained from each subject. Samples from NSCLC were obtained before (baseline) and 8 and 22 days after starting chemotherapy. Samples were kept at room temperature and processed within 42 hours after collection. All evaluations were performed without knowledge of the clinical status of the patients. The CellTracks system (Immunicon Corp) which consists of CellTracks AutoPrep system and the CellSpotter Analyzer system was used for endothelial cell enumeration. In this system, CD146-enriched, fluorescently labeled cells were identified as CECs when the cells exhibited the DAPI staining. The enriched cells were then labeled with the nuclear dye 4′,6-diamidino-2-phenylindole (DAPI), CD105 antibodies conjugated to phycoerythrin (CD105-PE), and the pan-leukocyte antibody CD45 conjugated to allophycocyanin (CD45-APC). In this system, CD146+/DAPI+/CD105-PE+/CD45-APC+ cells are defined as CECs. Briefly, cells which express CD146 were immunomagnetically captured using ferrofluids coated with CD146 antibodies. The enriched cells were then labeled with the nuclear dye 4V,6-diamidino-2-phenylindole (DAPI), CD105 antibodies conjugated to phycoerythrin (CD105-PE), and the pan-leukocyte antibody CD45 conjugated to allophycocyanin (CD45-APC). In this system, the CD146-enriched, fluorescently labeled cells were identified as CECs when the cells exhibited the DAPI+/CD105+/CD45- phenotype. We performed CEC enumeration twice, using the same sample, and calculated the mean value.

Treatment Schedule and Response Evaluation

All patients were treated according to the following chemotherapeutic regimen: paclitaxel at 200 mg/m² over a 3-hour period followed by carboplatin at a dose with an area under the curve of 6 on day 1, repeated every 3 weeks. The treatment was repeated for three or more cycles unless the patients met the criteria for progressive disease (PD) or experienced unacceptable toxicity.

The major axis (a) and minor axis (b) of the tumor mass in each patient were measured with computed tomography. Estimated tumor volume (ETV) was calculated using the following formula:

$$ETV = \frac{4}{3} \times \pi \times (a/2 + b/2) \times (a/2 + b/2)/2.$$

Computed tomography examinations were performed before treatment and with every one or two cycles of chemotherapy. Response was evaluated according to the RECIST, and tumor markers were excluded from the criteria.

Assay for CEC

Blood samples from NSCLC patients and healthy volunteers were drawn into a 10-ml Cellsave Preservative Tube (Immunicon Corp. Huntingdon Valley, PA) for CEC enumeration. The CEC protocol used was approved by the Institutional Review Board and written informed consent was obtained from each subject. Samples from NSCLC were obtained before (baseline) and 8 and 22 days after starting chemotherapy. Samples were kept at room temperature and processed within 42 hours after collection. All evaluations were performed without knowledge of the clinical status of the patients. The CellTracks system (Immunicon Corp) which consists of CellTracks AutoPrep system and the CellSpotter Analyzer system was used for endothelial cell enumeration. In this system, CD146+/DAPI+/CD105-PE+/CD45-APC- cells are defined as CECs. Briefly, cells which express CD146 were immunomagnetically captured using ferrofluids coated with CD146 antibodies. The enriched cells were then labeled with the nuclear dye 4V,6-diamidino-2-phenylindole (DAPI), CD105 antibodies conjugated to phycoerythrin (CD105-PE), and the pan-leukocyte antibody CD45 conjugated to allophycocyanin (CD45-APC). In this system, the CD146-enriched, fluorescently labeled cells were identified as CECs when the cells exhibited the DAPI+/CD105+/CD45- phenotype. We performed CEC enumeration twice, using the same sample, and calculated the mean value.

Statistical Analyses

This study was carried out as exploratory research for detecting CECs from NSCLC patients. The number of enrolled patients was therefore not precalculated. Spearman’s correlation analysis was performed to investigate the correlation between CEC count and ETV. Between-group comparisons were made using the t test. The association between CEC count and progression free survival (PFS) was estimated using the Kaplan-Meier method. The log-rank test was used to assess the survival difference between strata. Differences were considered statistically significant at p < 0.05.

Table 1. Baseline Characteristics of the Patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N = 31</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>17 (55)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>14 (45)</td>
<td></td>
</tr>
<tr>
<td>Median age (yr)</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>43–71</td>
<td></td>
</tr>
<tr>
<td>ECOG performance status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>18 (58)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13 (42)</td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIA</td>
<td>2 (6)</td>
<td></td>
</tr>
<tr>
<td>IIIB</td>
<td>7 (23)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>22 (71)</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>23 (74)</td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>4 (13)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>4 (13)</td>
<td></td>
</tr>
</tbody>
</table>
RESULTS

Patient Characteristics

A total of 32 patients were enrolled in the study between August 2005 and March 2006 (Table 1). One patient withdrew consent to participate. Table 1 summarizes the characteristics of the study population. The median age of the patients was 60 years (range, 43–71). The histologic and/or cytologic diagnosis was adenocarcinoma in 23 patients (74.2%), squamous cell carcinoma in 4 (12.9%), and unclassified NSCLC in 4 (12.9%). There were 17 males (54.8%). The clinical stage was IIIA in 2 patients (6.5%), IIIB in 7 (22.6%), and IV in 22 (71.0%).

Ninety-two CEC samples from 31 patients (three samples per patient) were obtained and analyzed. One sample, obtained 22 days after treatment, was not examined because of inadequate collection.

Quantification of CEC

In 31 advanced NSCLC patients, CECs ranged from 32 to 4501 cells/4.0 ml of blood, mean ± SD = 595 ± 832 at baseline. CEC counts were elevated in a large portion of patients with NSCLC as compared with healthy volunteers (n = 53, mean ± SD = 46.2 ± 86.3/4 ml). Case 21 had an exceptionally high CEC count (4501 at baseline). We did not detect a significant correlation between the CEC count and ETV in the 28 assessable patients (p = 0.84, Figure 1). The analysis of CECs during the first course of treatment showed significant decrements of CEC levels as compared with pretreatment values (176 ± 141 at 8 days and 173 ± 189 at 22 days after treatment) (Figure 2). These reductions were significant (p = 0.011 on day 8 and p = 0.04 on day 22), but there was no significant difference between CEC amounts on day 8 versus day 22 (p = 0.476). There was no difference in the amount of CEC at baseline when patients were subgrouped according to characteristics, such as sex, smoking history, histologic type, and clinical stage. Furthermore, there was no correlation of CEC amounts with the blood examination data (e.g., number of white blood cells, neutrophils, lymphocytes, hemoglobin, platelets, albumin, LDH, CRP, CEA, CYFRA).

CEC Amounts and Objective Tumor Response to Chemotherapy

Thirteen (41.9%) of the 31 patients who received carboplatin and paclitaxel therapy showed a partial response (PR) and 12 (38.7%) showed stable disease (SD). The other 6 patients (19.4%) showed PD. The amounts of CEC at baseline in the patients who showed PR and SD were 516 ± 458/4 ml and 871 ± 1215/4 ml, respectively, and these values were significantly higher than in PD patients (211 ± 150/4 ml, p = 0.023 and p = 0.044, respectively) (Figure 3A). Although CEC decrements during chemotherapy were observed in all three subgroups, the extent of the decrements tended to be greater in
CEC Amounts and PFS

For all 31 patients, the median PFS was 154 days (range, 81–361 days). Univariate analysis indicated that patients who had a CEC count of more than 400/4 ml at baseline showed a significantly improved PFS (n = 14, median; 244 days) (Log-rank test, p = 0.019, Figure 4). A CEC count below 400 at baseline was associated with a poorer PFS (n = 17, median; 69 days). The CEC count did not exceed the value of 400/4 ml in any of the healthy volunteers. When we compared the patients whose CEC counts exceeded 200 with those whose counts were less than 200, a consistent difference in PFS was observed between the two groups (>200; n = 22, median 227, <200; n = 9, median 116, p < 0.039).

DISCUSSION

In the present study, we investigated the number of CEC during the first course of CBDCA plus paclitaxel chemotherapy. To our knowledge, this is the first report of CEC in NSCLC patients before treatment. Our findings demonstrated CEC counts in advanced NSCLC at baseline level to be much higher than those in healthy subjects (595 ± 832/4.0 ml versus 32.6 ± 29.5/4.0 ml). Because the NSCLC patients had not yet received anticancer therapy, these increased CECs are likely to be mostly derived from the tumor site. In a previous study, it was found that the amounts of CECs correlate strongly with tumor volume in vivo in an animal model. Nevertheless, we did not find a significant correlation between CECs and ETIV. Because the number of CECs could be influenced by many factors related to tumor vasculature, neovascularization, and localization of the tumor, our failure to identify a strong correlation in this study is not surprising. We were also unable to detect a significant direct correlation between CEC amounts and various blood examination data including tumor markers such as CEA and CYFRA. It is unclear at present what biologic characteristics of the tumor or clinical features the CEC count most closely reflects as a biomarker. Mancuso et al. reported that CECs are strongly associated with plasma levels of VCAM-1 and VEGF in breast cancer and lymphoma patients. Because VCAM-1 and VEGF are crucial factors for tumor angiogenesis, the variability in CEC values among NSCLC patients might indicate a difference in the neovascularization of each tumor.

We were further able to demonstrate that elevated CECs decreased dramatically after CBDCA plus paclitaxel treatment, but did not reach the level of healthy subjects. Decreased CEC values did not rise again during the first cycle of chemotherapy. Although myelosupression was observed on day 8 and recovered on day 22 in many patients (data not shown), CEC kinetics do not parallel those of WBC, indicating that CEC kinetics might not be influenced by myelosupression. Several clinical studies in the field measuring CEC found chemotherapy to be associated with either an increase or a decrease in CECs. The different tumor types, stages, prior therapy or not, the anticancer drugs used, measuring points and quantification methods of CEC might have influenced the CEC results after treatment. In the present study, the pretreatment CEC value was much higher than that in lung cancer with metastasis (mean ± SD = 146 ± 270/4 ml), as reported elsewhere. Although the details of the prior therapy in patients with metastatic carcinoma were not provided, chemotherapy can eventually decrease the CEC count.

Schiller et al. compared four standard chemotherapy regimens, cisplatin plus paclitaxel, cisplatin plus gemcitabine, cisplatin plus docetaxel, and carboplatin plus paclitaxel and found no significant difference in survival. Despite the different modes of action of each nonplatinum agent against tumors and different biologic characteristics of each tumor, we could not select the regimen based on these characteristics. In our small study, the patients with PR/SD and longer PFS had higher baseline CEC values. Therefore, it seems that the baseline CEC count is a promising predictor of clinical response to the CBDCA plus paclitaxel regimen and survival in advanced NSCLC. If CEC is a marker for angiogenesis and reflects tumor neovascularization, it is likely that a high CEC is associated with a poor prognosis and lower effectiveness of antiangiogenic therapy. Paclitaxel and docetaxel are categorized as mitotic spindle agents with potent antiangiogenic properties. This is why a paclitaxel based regimen might be more effective against tumors with high CEC values. Nevertheless, CEC counts have also been reported to be increased in several clinical syndromes, such as cardiovascular diseases, infectious diseases, and vasculitides. The CEC counts in patients with vasculitides have been reported to be dozens of fold higher than those in healthy subjects, therefore, we have to consider the patient condition carefully while interpreting the CEC counts in individual patients, although there were no patients with vasculitis in the present study. Further clinical investigation, with a similar approach, including other nonplatinum anticancer agents, such as...
CDDP plus gemcitabine, is essential for the clinical application of CEC for made-to-order chemotherapy in NSCLC.

Antiangiogenic therapy targeting the VEGF pathway such as bevacizumab and VEGFR inhibitors have shown promise in the treatment of solid tumors.8,39 These agents inhibit endothelial cells through inhibition of the VEGF pathway. It was recently demonstrated that the addition of bevacizumab to CBDDCA plus paclitaxel in advanced NSCLC patients produces a significant survival benefit as compared with chemotherapy alone.40 Considering the outstanding clinical trial and our present study, it would be of great interest to investigate the role of CEC in this regimen.

In conclusion, CECs were measured in NSCLC patients before treatment. Our small clinical study indicates that the CEC count at baseline is a potential biomarker for predicting the response to chemotherapy and PFS, but further clinical evaluation is needed. In the near future, we will start a clinical investigation, using a similar approach, to examine other chemotherapeutic regimens.

ACKNOWLEDGEMENTS

This study was supported in part by a Grant-in-Aid for the 3rd Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Welfare and Labour, Japan.

REFERENCES

