The Ginzburg-Landau Equation

G. Adomian
General Analytics Corporation, 155 Clyde Road
Athens, GA 30605, U.S.A.
R. E. MEyERS
U.S. Army Research Laboratories
White Sands, NM, U.S.A.

(Received July 1994; accepted August 1994)

Abstract

The decomposition method is applied to the Ginzburg-Landau equation.

Keywords-Decomposition method, Real G-L equation, Complex G-L equation, A_{n} polynomials.

The general equation is

$$
u_{t}=(v+i \alpha) u_{x x}-(k+i \beta)|u|^{2} u+\gamma u, \quad u(x, 0)=f(x), \quad u(0, t)=g(t), ~\left(\begin{array}{l}
0 \leq x<\infty, \quad 0 \leq t<\infty
\end{array}\right.
$$

where $\alpha, \beta, \gamma, v, k$ are real, $v>0, k>0$. Let's consider first the real G-L equation where $\alpha=\beta=0$. Then

$$
u_{t}+v u_{x x}-k|u|^{2} u+\gamma u=0 .
$$

Let $L_{t}=\frac{\partial}{\partial t}, L_{t}^{-1}=\int_{0}^{1}(\cdot) d t, u=\sum_{n=0}^{\infty} u_{n}, f(u)=|u|^{2} u=\sum_{n=0}^{\infty} A_{n}$,

$$
\begin{aligned}
u & =u(0)-L_{t}^{-1} \gamma \sum_{n=0}^{\infty} u_{n}-L_{t}^{-1} v\left(\frac{\partial^{2}}{\partial x^{2}}\right) \sum_{n=0}^{\infty} u_{n}+k \sum_{n=0}^{\infty} A_{n}, \\
u_{0} & =u(t=0)=f(x), \\
u_{1} & =-L_{t}^{-1} \gamma u_{0}-L_{t}^{-1} v\left(\frac{\partial^{2}}{\partial x^{2}}\right) u_{0}+k A_{0}, \\
u_{2} & =-L_{t}^{-1} \gamma u_{1}-L_{t}^{-1} v\left(\frac{\partial^{2}}{\partial x^{2}}\right) u_{1}+k A_{1},
\end{aligned}
$$

When the A_{n} polynomials [1,2] are evaluated, we can determine u as closely as necessary by computing an m-term approximant $\varphi_{m}=\sum_{n=0}^{m-1} u_{n}$ which converges to u.

For the general case, proceeding in the same manner,

$$
u=u(t=0)+L_{t}^{-1}(v+i \alpha) \frac{\partial^{2}}{\partial x^{2}} \sum_{n=0}^{\infty} u_{n}-L_{t}^{-1}(k+i \beta) \sum_{n=0}^{\infty} A_{n}+L_{t}^{-1} \gamma \sum_{n=0}^{\infty} u_{n}
$$

This work was supported by the Atmospheric Sciences Laboratory under the auspices of the U.S. Army Research Office Scientific Services Program.

Hence, the decomposition components are: [1]

$$
\begin{aligned}
& u_{0}=u(t=0) \\
& u_{1}=L_{t}^{-1}(v+i \alpha) \frac{\partial^{2}}{\partial x^{2}} u_{0}-L_{t}^{-1}(k+i \beta) A_{0}+L_{t}^{-1} \gamma u_{0} \\
& u_{2}=L_{t}^{-1}(v+i \alpha) \frac{\partial^{2}}{\partial x^{2}} u_{1}-L_{t}^{-1}(k+i \beta) A_{1}+L_{t}^{-1} \gamma u_{1} \\
& \vdots \\
& u_{n}=L_{t}^{-1}(v+i \alpha) \frac{\partial^{2}}{\partial x^{2}} u_{n-1}-L_{t}^{-1}(k+i \beta) A_{n-1}+L_{t}^{-1} \gamma u_{n-1}
\end{aligned}
$$

To evaluate the $f(u)$ in terms of the A_{n} polynomials, we write

$$
\begin{aligned}
f(u) & =u|u|^{2} \\
|u| & =u \eta(u) ; \quad \eta(u)=H(u)-H(-u)
\end{aligned}
$$

where H is the Heaviside (step) function of the first kind and η is the Heaviside (step) function of the second kind

$$
\begin{aligned}
H(u)=+1, & \text { for } u>0 \text { and } 0 \text { for } u<0 \\
\eta(u)=+1, & \text { for } u>0 \text { and }-1 \text { for } u<0
\end{aligned}
$$

Thus,

$$
\begin{aligned}
|u|^{2} & =u^{2} \eta^{2}(u) \\
& =u^{2}\left[H^{2}(u)-2 H(u) H(-u)+H^{2}(-u)\right] \\
f(u) & =(u)\left(u^{2} \eta^{2} u\right)=u^{3} \eta^{2}(u)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
f(u) & =\sum_{n=0}^{\infty} \eta^{2}(u) A_{n}\left\{u^{3}\right\} \\
A_{0} & =u_{0}^{3} \\
A_{1} & =3 u_{0}^{2} u_{1} \\
A_{2} & =3 u_{0}^{2} u_{2}+3 u_{1}^{2} u_{0} \\
A_{3} & =u_{1}^{3}+3 u_{0}^{2} u_{3}+6 u_{0} u_{1} u_{2} \\
A_{4} & =3 u_{0}^{2} u_{4}+3 u_{1}^{2} u_{2}+3 u_{2}^{2} u_{0}+6 u_{0} u_{1} u_{3} \\
A_{5} & =3 u_{0}^{2} u_{5}+3 u_{1}^{2} u_{3}+3 u_{2}^{2} u_{1}+6 u_{0} u_{1} u_{4}+6 u_{0} u_{2} u_{3}
\end{aligned}
$$

The $f(u)$ is singular at the origin since the function is piecewise-differentiable there which is due to the modelling. We can use $\sum_{n=0}^{\infty} A_{n}$ for $f(u)$ as long as we avoid the origin. Thus, one can now write the m-term approximant $\varphi_{m}=\sum_{n=0}^{m-1} u_{n}$ using the above A_{n}. We can also retain this $f(u)$ but replace it with a smooth approximation as in [3] which avoids any problem at the origin.

REFERENCES

1. G. Adomian, Solving Frontier Problems of Physics—The Decomposition Method, Kluwer Acad. Publ., (1994).
2. G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, (1986).
3. G. Adomian and R. Rach, Smooth polynomial expansions of piecewise-differentiable functions, Appl. Math. Lett. 2 (4), 377-379 (1989).
