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Abstract—The decomposition method is applied to the Ginzburg-Landau equation.
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The general equation is

u(z,0) = f(z), u(0,t) =g(2),

up = (U + i0)ugg — (k + i8)ul?u + yu,
¢ = ( Yuzz — (k +iB8)ul“u + v 0<z<oo, 0<<oo,

where a,3,v,v,k are real, v > 0,k > 0. Let’s consider first the real G-L equation where
a = =0. Then
ug + Vizg — kjul?u + yu = 0.

Let Ly = 'aa‘t’Lt_l = fol(') dt,u = Z?:o Un, f(u) = |u|2u = 2?:0 An,

[o.<] 62 o0 o0
u=u(0)—Lt_1'yZun—L{1v (6_335) Z“"+kZA"’
n=0

n=0 n=0

Uo =u(t=0) = f(l'),

2
Uy = —-L;’l'yuo - Lt_l'u (b%) ug + kAo,

2

ug = —L7'yuy — LMo uy + kA4,

8z

When the A, polynomials [1,2] are evaluated, we can determine u as closely as necessary by
computing an m-term approximant ¢, = 22:01 u, which converges to u.

For the general case, proceeding in the same manner,

32 o0 o0 o0
=t =0)+ L7 (v+ia) 55 St — L7k +i8) D An+ L7 D un.

n=0 n=0 n=0
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Hence, the decomposition components are: [1]

uo = u(t = 0),
82
uy = L7Nw +ia)6 5 U0 — L7 (k+iB) A0 + L7 Yy uo,
2

5;31“ —Lt—l(k+i,3)A1 +L;1’)"U,1,

ug = L7 (v + ia)

2

57 Un1~ LYk +iB)An—1+ L7 Yy un_s.

up = L7 v +i0) ==

To evaluate the f(u) in terms of the A, polynomials, we write

f(u) = ulul?,
lul = un(u);  n(u) = H(u) - H(-u),

where H is the Heaviside (step) function of the first kind and 7 is the Heaviside (step) function

of the second kind
H(u) = +1, for © > 0 and 0 for u < 0,

n(u) = +1, foru>0and —1 for u <O0.

Thus,
[uf? = unP(u),
= u?[H?(u) — 2H (u)H(~u) + H*(-u)],
Fw) = (w)(u’n’u) = u?n’(u).
Hence,

00
= 2 A,

AO = gv

Al = 3UO1.L1,

Ay = 311.3’6@ + 3ufu0,

Az = u? + 3u(2)ue, + Buguius,

Ay = 3u[2)u4 + 3u%uz + 3u%uo + Buguyusg,

As = 3u(2)u5 + 3ufu3 + 3u§u1 + Buguiug + 6ugusus,

The f(u) is singular at the origin since the function is piecewise-differentiable there which is due
to the modelling. We can use Y oo An for f(u) as long as we avoid the origin. Thus, one can
now write the m-term approximant ¢, = ZZ:Ol uy, using the above A4,,. We can also retain this
f(u) but replace it with a smooth approximation as in [3] which avoids any problem at the origin.
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