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SUMMARY

Polycomb-repressive complex 1 (PRC1) has a central
role in the regulation of heritable gene silencing
during differentiation and development. PRC1 re-
cruitment is generally attributed to interaction of
the chromodomain of the core protein Polycomb
with trimethyl histone H3K27 (H3K27me3), catalyzed
by a second complex, PRC2. Unexpectedly we find
that RING1B, the catalytic subunit of PRC1, and
associated monoubiquitylation of histone H2A are
targeted to closely overlapping sites in wild-type
and PRC2-deficient mouse embryonic stem cells
(mESCs), demonstrating an H3K27me3-independent
pathway for recruitment of PRC1 activity. We show
that this pathway is mediated by RYBP-PRC1, a
complex comprising catalytic subunits of PRC1 and
the protein RYBP. RYBP-PRC1 is recruited to target
loci in mESCs and is also involved in Xist RNA-medi-
ated silencing, the latter suggesting a wider role in
Polycomb silencing. We discuss the implications of
these findings for understanding recruitment and
function of Polycomb repressors.

INTRODUCTION

Polycomb-group (PcG) repressor proteins play a key role in es-

tablishing and maintaining gene expression patterns during

cellular differentiation and development. There are two major

biochemical complexes, PRC1 and PRC2, that have inherent
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histone-modifying activity critical for their function in gene re-

pression, monoubiquitylation of histone H2AK119 (H2AK119u1),

and di- tri-methylation of histone H3K27, respectively (reviewed

in Müller and Verrijzer, 2009). Mechanisms other than H2A

ubiquitylation also contribute to PRC1-mediated gene repression

(Eskeland et al., 2010; Francis et al., 2001, 2004; King et al., 2002;

Shao et al., 1999). In mammals the catalytic RING1A/B subunit of

PRC1 is also found in the E2F6 (Ogawa et al., 2002; Sánchez

et al., 2007; Trimarchi et al., 2001) and BCOR (Gearhart et al.,

2006; Sánchez et al., 2007) complexes. An atypical PRC1

complex, dRAF, comprising the proteins dRING, PSC, and the

histone demethylase KDM2 has been identified in Drosophila

(Lagarou et al., 2008).

Genetic analyses have demonstrated that PcG target loci are

often coregulated by PRC1 and PRC2, and consistent with this,

genome mapping studies in Drosophila and mouse demonstrate

co-occupancy of PRC1 andPRC2atmanyPcG target loci (Boyer

et al., 2006; Ku et al., 2008; Schwartz et al., 2006). Co-occupancy

is thought to be a consequence of recruitment of PRC1 via inter-

action of the chromodomain in the PRC1 protein PC (mammalian

homologs CBX2/4/6/7/8) with PRC2-dependent H3K27me3.

This is based on biochemical studies demonstrating binding of

the PC chromodomain to H3K27me3 (Cao et al., 2002; Fischle

et al., 2003; Min et al., 2003) and on genetic analyses demon-

strating displacement of PRC1 proteins from chromatin in

PRC2 mutants (Boyer et al., 2006; Cao et al., 2002; Wang et al.,

2004). The idea has been further substantiated in studies demon-

strating a direct link between H3K27me3 and PRC1 recruitment

(Agger et al., 2007; Lee et al., 2007; Mujtaba et al., 2008).

Although the hierarchical model for PRC1 recruitment is

widely accepted, there are specific examples where PRC1/

H2AK119u1 targeting is independent of H3K27me3 (reviewed
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in Simon and Kingston, 2009). Notably, in PRC2-depleted

mouse embryonic stem cells (mESCs) (Leeb et al., 2010), and

differentiated cells (Pasini et al., 2007), PRC1 proteins have

been detected at selected target loci, and moreover, global

H2AK119u1 levels are similar to those of wild-type (WT) cells

(Schoeftner et al., 2006). Related observations also conflict

with hierarchical recruitment. In mESCs, targeting of PRC2 and

PRC1 to promoters of key regulators of embryonic lineages is

thought to restrain differentiation (Azuara et al., 2006; Boyer

et al., 2006; Mikkelsen et al., 2007; Stock et al., 2007). Arguing

against this, PRC2-deficient mESCs remain undifferentiated

and show only minimal upregulation of PcG target loci (Boyer

et al., 2006; Chamberlain et al., 2008; Leeb et al., 2010; Shen

et al., 2008). Conversely, PRC1-deficient mESCs strongly upre-

gulate PcG target loci and differentiate spontaneously (Endoh

et al., 2008; Stock et al., 2007).

In this study, we investigated PRC1 recruitment in PRC2 null

mESCs.We show that in the absence of H3K27me3, PRC1 cata-

lytic subunits occupy the majority of PcG target loci, albeit at

reduced levels. This recruitment confers near normal levels of

H2AK119u1. We further demonstrate that H3K27me3-indepen-

dent H2AK119u1 is mediated by a PRC1-related complex,

RYBP-PRC1, comprising PRC1 catalytic subunits and the

protein RYBP.

RESULTS

H2AK119u1 and PRC1 Subunits Localize to PcG Target
Genes in Eed�/� ESCs
To investigate the importance of H3K27me3 in PRC1 recruitment

in mESCs, we performed ChIP for selected PcG target loci

in Eed�/� mESCs that lack H3K27me3. In addition to loci

repressed by PcG proteins, we analyzed loci that are expressed

in mESCs, loci that are widely expressed, and a locus that is

repressed in mESCs independently of PcG activity. As shown

in Figure 1A, H3K27me3 was depleted in Eed�/� mESCs, and

there was a greatly reduced occupancy of the PRC1 core

proteins RING1B and MEL-18 compared to Eed+/+ mESCs.

These observations are broadly consistent with hierarchical

recruitment of PRC1 by H3K27me3. However, low levels of

RING1B/MEL-18 were detectable at PcG target loci in Eed�/�

cells, and moreover, significant levels of H2AK119u1 were also

present (Figure 1A, lower panel). Additionally, global levels of

H2AK119u1 were apparently unaffected (Figure 1B).

Similar results were obtained using a conditional knockout

(cKO) Eed�/� ESC line, Eed4, in which Eed is repressed when

doxycycline is added to the culture medium (Ura et al., 2008).

Treatment of Eed4 cells with doxycycline for 15 days did not

affect mESC pluripotency (Figures S1A and S1B available

online). Western blot analysis demonstrated that EED protein

and H3K27me3 were fully depleted (Figure S1C). Levels of

PRC2 core proteins EZH2 and SUZ12 were also strongly

reduced (Figure S1C), consistent with previous observations

(Pasini et al., 2007). In contrast, global levels of H2AK119u1

were broadly unchanged, aswere levels of RING1B (Figure S1C).

Analysis of defined PcG target genes by ChIP demonstrated

depletion of H3K27me3 and retention of H2AK119u1, albeit at

moderately reduced levels (Figure S1D). That lower levels of
H2AK119u1 occur at target loci relative to constitutive Eed�/�

cells (Figure 1A) may indicate that enhanced H2AK119u1 is

favored by cell selection during derivation and long-term culture.

These results confirm thatmaintenance of H2AK119u1 inmESCs

occurs independently of PRC2 and associated H3K27me3.

RING1B Is Retained at theMajority of PcG Targets in the
Absence of H3K27me3
Conventional ChIP analysis indicated that low levels of the core

PRC1 proteins RING1B andMEL-18 are present at selected PcG

targets following depletion of H3K27me3 in mESCs (Figure 1A).

To extend this we carried out RING1B ChIP-sequencing (ChIP-

seq) in Eed+/+ and Eed�/� ESCs. H3K27me3 ChIP-seq was

carried out as a control. Irx2, Msx1 (Figure 2A), and HoxD

(Figure S2A) are examples of defined PcG targets in mESCs

(Mikkelsen et al., 2007). RING1B binding is readily detectable

in Eed+/+ cells and also in Eed�/� cells, albeit at much lower

levels. To compensate for the reduced signal, we increased

the number of reads for the Eed�/� RING1B and input samples

by approximately 4-fold (Figures 2A and S2A, x4 tracks). This re-

vealed that the broad pattern of RING1B occupancy, mapping

to target loci-associated CpG islands, is retained in Eed�/�

mESCs. Non-PcG target loci, for example Oct3/4, a gene that

is expressed in ESCs, and Gata1, a gene that is silenced inde-

pendently of PcG, do not show RING1B occupancy either in

Eed+/+ or Eed�/� ESCs (Figure 2A).

Using model-based analysis of ChIP-Seq (MACS) to identify

peaks, we found 2,347 places where RING1B is enriched in

Eed+/+ cells, and in comparison 1,810 places in Eed�/� cells.

Fifty-three percent of regions bound by RING1B in the Eed+/+

ESCs are also targets in themutant cells (Figure 2B).We consider

this to be an underestimate as the thresholds used fail to detect

some RING1B peaks over background in Eed�/� cells. For

example, at the 30 end of the Wnt6 locus, MACS records a

RING1B peak only for Eed+/+ ESCs, but a similar peak pattern

centered on associated CpG islands is seen also in Eed�/�

ESCs (Figure S2B, left panel). In other cases, for example the

Tbkbp1 locus (Figure S2B, right panel), RING1B peaks recorded

in Eed+/+ ESCs are broad and detected only at a low level. In

Eed�/�, this pattern can be observed when comparing to input

sample but is not recognized as a peak due to increased

background relative to signal. Examples of peaks detected in

Eed�/� but not Eed+/+ cells are shown in Figure S2C. In some

cases, for example Sfmbt1, RING1B occupancy is similar in

Eed+/+ and Eed�/� samples, whereas in others, for example

Socs3, only very low levels of RING1B occupancy are apparent

in the Eed+/+ samples. It is probable that in these examples

H3K27me3 is less important for RING1B binding.

The distribution of peaks across transcription start sites (TSS)

is similar in Eed+/+ and Eed�/�, in both cases being within ± 1 Kb

from the TSS (Figure 2C). Gene ontology (GO) analysis demon-

strates no significant differences between target loci in Eed+/+

and Eed�/� samples (Figure 2D).

As noted previously for Eed+/+ cells (Ku et al., 2008) and above

(Figures 2 and S2), many of the PcG target regions are CpG

islands, with 99% of peaks shared between Eed+/+ and Eed�/�

cells overlapping with CpG islands (Figure 2E). The few excep-

tions that we found (13 peaks) are regions with high GC content
Cell 148, 664–678, February 17, 2012 ª2012 Elsevier Inc. 665



Figure 1. Retention of H2AK119u1 at PcG Target Loci in Eed�/� mESCs

(A) ChIP analysis of H3K27me3, RING1B, MEL-18, and H2AK119u1 in wild-type (Eed+/+) and Eed�/� mESCs. Bars show average + SD, n = 3.

(B) Western blot analysis of histone extracts showing absence of H3K27me3 and retention of H2AK119u1 in two independent Eed�/� mESC cell lines, B1.1 and

G8.1. CBB (Coomassie brilliant blue).

See also Figure S1.
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Figure 2. ChIP-Seq Demonstrates RING1B Occupancy at PcG Target Loci in Eed+/+ and Eed�/� mESCs

(A) Example screen shots for Eed+/+ IP (blue) and Eed�/� IP (red) and input (lilac). Irx2 and Msx1 are PcG targets. Oct3/4 and Gata1 are non-PcG targets.

(B) Venn diagram indicating overlap of RING1B peaks (genes) in Eed+/+and Eed�/� cells.

(C) Tag density in relation to TSS of 20 million reads randomly subsampled.

(D) Comparison showing similarity in gene ontology distribution for peaks in Eed+/+ and Eed�/� mESCs.

(E) Co-incidence of peaks with CpG islands for Eed+/+ and Eed�/� mESCs (above) and the proportion of peaks coinciding with CpG islands in overlapping and

nonoverlapping subgroups defined in (B).

See also Figure S2.
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that are not annotated as CpG islands. Interestingly, a high

proportion of the nonoverlapping peaks also coincide with

CpG islands (Figures 2E and S2C). Co-occurrence of RING1B

sites and CpG was shown to be significant (p < 0.001, co-occur-

rence of R test; Huen and Russell, 2010). Taken together these

results demonstrate extensive overlap of RINGB targets in

mESCs lacking H3K27me3 relative to WT cells.

Re-recruitment of PRC1 Activity to PcG Target Loci
following Depletion of H2AK119u1
PRC2 occupancy and H3K27me3 can be maintained at an

ectopic site following withdrawal of the primary recruitment

signal (Hansen et al., 2008), possibly via binding of an aromatic

cage in EED to H3K27me3 (Margueron et al., 2009). With this

in mind, we considered that although primary recruitment of

PRC1 may require PRC2-mediated H3K27me3, H2AK119u1,

once established, could function as a signal for maintenance of

PRC1 occupancy. To address this, we used the reversible pro-

teasome inhibitor MG132 (Dantuma et al., 2006) to deplete

H2AK119u1 in Eed4 cells in the presence or absence of PRC2

and then determined whether restoration of H2AK119u1 occurs

following withdrawal of the inhibitor. Secondary effects of

MG132 treatment on mESCs are negligible with the described

conditions (Szutorisz et al., 2006). As shown in Figure 3A, treat-

ment of cells with MG132 for 6 hr efficiently depleted global

H2AK119u1 (lanes 2 and 6). Allowing cells to recover for

3 days after withdrawal of the inhibitor resulted in restoration of

H2AK119u1 in both the presence and the absence of

H3K27me3 (lanes 4 and 8, respectively), and this was also the

case after only 1 day of recovery (Figure S3A). ChIP analysis

demonstrated that H2AK119u1 accumulates appropriately at

PcG target loci after recovery, with levels being slightly reduced

in the absence of H3K27me3 (Figure 3B). Recruitment of

RING1B and EZH2 was retained following MG132 treatment,

albeit at a slightly reduced level (Figure S3B).

Expression analysis (Figure 3C) demonstrated that treatment

with MG132 derepresses PcG target loci in both the presence

and the absence of H3K27me3, and that silencing is restored

following withdrawal of the inhibitor. No effect was seen at the

Gata1 locus at which repression is PcG independent. Initiation

of differentiation due to H2AK119u1 depletion (Endoh et al.,

2008; Stock et al., 2007) accounts for the reduced levels of

expression of pluripotency factors following MG132 treatment.

Derepression of PcG targets was enhanced in the absence of

H3K27me3, consistent with lower H2AK119u1 when MG132

treatment was begun (see Figure S1C). Taken together these

results demonstrate that de novo deposition of H2AK119u1 in

mESCs occurs appropriately at known PcG target loci in both

the presence and the absence of H3K27me3.

RYBP Is a Stoichiometric Component of PRC1 in ESCs
To explore the mechanism of H3K27me3-independent targeting

of H2AK119u1, we carried out a proteomic screen for PRC1-

associated proteins in mESCs. Because RING1B associates

with non-PRC1 complexes (Gearhart et al., 2006; Ogawa et al.,

2002; Sánchez et al., 2007; Trimarchi et al., 2001), we analyzed

the core PRC1 protein MEL-18, a close homolog of the

Drosophila PRC1 protein PSC that is highly expressed in mESCs
668 Cell 148, 664–678, February 17, 2012 ª2012 Elsevier Inc.
(Elderkin et al., 2007) and moreover localizes to PcG target loci,

albeit at low levels, in H3K27me3-deficient mESCs (Figure 1A).

We established ESC lines expressing epitope-tagged MEL-18

and purified associated proteins. In liquid chromatography-

tandem mass spectrometry (LC-MS/MS) experiments, we

identified core PRC1 proteins, specifically RING1A/RING1B,

MPH1/2/3, CBX2/7/8, and in addition, RYBP, a factor previously

shown to interact with RING1A/B (Czypionka et al., 2007; Endoh

et al., 2008; Garcı́a et al., 1999; Wang et al., 2010) and also with

the transcription factor YY1 (Garcı́a et al., 1999) (Figure S4A).

Identification of specific bands on silver-stained gels indicated

stoichiometric amounts of PRC1 proteins and RYBP (Figures

4A, panels 1 and 2 and 4B). These findings were further substan-

tiated by western analysis (Figure 4C, panels 1 and 2). Notably,

LC-MS/MS did not detect YY1 (Figure 4B). This was confirmed

by western analysis (Figure 4C and see below).

To determine whether association of MEL-18 with RYBP

occurs in cells other than mESCs, we expressed MEL-18-

FLAG in neural stem cells (NSCs) and again purified associated

proteins (Figure S4B). LC-MS/MS/western analysis identified

the major PRC1 proteins RING1A/B, CBX2/4/7/8, and MPH1

and, additionally, high levels of RYBP. Thus, association of

RYBP with MEL-18 complexes is not cell type specific.

We used size-exclusion chromatography to further analyze

mESC MEL-18-associated complexes (Figure S4C). Peaks for

MEL-18, RING1B, RYBP, and CBX7 were centered over frac-

tions corresponding to 150–200 kDa. A similar elution profile

was observed for RING1B, RYBP, and CBX7 following size-

exclusion chromatography of nuclear extracts, both from

Eed+/+ and Eed �/� mESCs (Figure S4D). These observations

point to involvement of RYBP in a multiprotein complex(es)

with core PRC1 proteins.

Distinct PRC1Complexes Defined byMutually Exclusive
Binding of RYBP or CBX7 to RING1B
Although RYBP has been identified as a component of E2F6

(Ogawa et al., 2002; Sánchez et al., 2007; Trimarchi et al.,

2001) and BCOR (Gearhart et al., 2006; Sánchez et al., 2007),

complexes that both also include RING1A/B proteins, it was

not previously recognized as a component of conventional

PRC1 complexes. Indeed this result is unexpected in light of

structural studies that demonstrate that both RYBP and CBX

proteins interact with the same surface on the RING1B protein,

and that their binding is therefore mutually exclusive (Garcı́a

et al., 1999; Wang et al., 2010). To examine this further, and to

confirm these interactions in native complexes from WT and

Eed-deficient (Eed4 cKO) mESCs, we carried out coimmunopre-

cipitation (coIP) experiments with antisera to RING1B, MEL-18,

RYBP, and CBX7 (Figures 5A and S5A). Immunoprecipitates

were treated with either benzonase or ethidium bromide (EtBr)

to confirm that interactions are not mediated by nucleic acid

binding. Both RING1B and MEL-18 coIP core PRC1 proteins,

i.e., RING1B, MEL-18, MPH1, CBX7, and additionally RYBP,

consistent with analysis of MEL-18-Flag affinity purifications

(Figure 5A, panels 1 and 2). RING1B, MEL-18, low levels of

MPH1, but not CBX7 coIP with RYBP (Figure 5A, panel 3).

Conversely, RING1B, MEL-18, and MPH1 but not RYBP coIP

with CBX7 (Figure 5A, panel 4). No differences were observed



Figure 3. H2AK119u1 Is Re-established following Depletion in Eed4 WT and Eed4 cKO mESCs

(A) Western blot for H2AK119u1 and H3K27me3 in histone extracts. CBB: Coomassie brilliant blue. H2AK119u1 is completely depleted after 6 hr with 10 mM

MG132 and is then restored when cells are left to recover (recov) for 3 days after inhibitor removal, irrespective of presence of H3K27me3.

(B) ChIP for H2AK119u1 and H3K27me3 in Eed4 WT and Eed4 cKO cells. H3 is shown as a control. Bars show average + SD, n = 3.

(C) Expression analysis (Rel. expr.) of selected loci. For RT-PCR analysis, values were normalized against the average of three housekeeping genes, Hmbs,

Gapdh, and Idh1. Bars show average + SD, n = 3.

See also Figure S3.
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Figure 4. Proteomic Analysis of MEL-18, RYBP, and CBX7 Complexes in mESCs

(A) Silver-stained SDS polyacrylamide gel of control, MEL-18-Flag, RYBP-Flag, and CBX7-Flag purifications. PRC1 subunits identified by mass spectrometry

of excised bands are indicated.

(B) Table showing the PRC1 core subunits copurifying with MEL-18-Flag, RYBP-Flag, and CBX7-Flag, as identified by mass spectrometry analysis. 1Mascot

score for specified proteins, 2number of unique peptides identified. *The two peptides matched to RING1A are also present in RING1B.

(C) MEL-18-Flag, RYBP-Flag, and CBX7-Flag purifications analyzed by western blot with the indicated antibodies.

See also Figure S4.
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Figure 5. MEL-18 Interacts with RYBP and CBX7 in Mutually Exclusive Catalytically Active Complexes

(A) CoIP of endogenous RING1B, MEL-18, RYBP, and CBX7 from Eed4 WT mESC nuclear extracts, analyzed by western blot with the indicated antibodies and

the appropriate IgG control. Benzonase (Benzo) and ethidium bromide (EtBr) were added where indicated. 10% input and 15% of RING1B, MEL-18, RYBP,

CBX7, and the appropriate control CoIP are shown.

(B) Left panel: RING1B/MEL-18, RING1B/MEL-18/RYBP, and RING1B/MEL-18/CBX7 protein complexes analyzed bywestern blot using antibodies as indicated,

or by Simply Blue Safe staining (SBS). Right panel: Ubiquitylation assays performed using indicated concentrations of RING1B/MEL-18 (lanes 3–7), RING1B/

MEL-18/RYBP (lanes 8–12), and RING1B/MEL-18/CBX7 (lanes 13–17) complexes. Control assays are with substrate omitted or E3 ligase omitted. I125-ubiquitin-

labeled products are shown.

(C) Quantitation of H2AK119u1 from three independent assays as shown in (B).

See also Figure S5.
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between Eed4 WT (Figure 5A), and Eed4 cKO mESCs (Fig-

ure S5A). These results demonstrate mutually exclusive binding

of CBX7 and RYBP subunits and define the existence of two

distinct PRC1-like complexes comprising, on the one hand,

RING1B, MEL-18, CBX7, and MPH1 and, on the other, RING1B,

MEL-18, and RYBP. We refer to these complexes henceforth

as CBX-PRC1 and RYBP-PRC1. CoIP experiments in a mouse

fibroblast cell line also revealed mutually exclusive interaction

of CBX7 and RYBP with RING1B/MEL-18 (Figure S5B), indi-

cating that RYBP-PRC1 and CBX-PRC1 coexist in different cell

types.

To further investigate the composition of CBX-PRC1 and

RYBP-PRC1, we established mESC lines expressing epitope-

tagged RYBP or CBX7 and then purified the associated proteins.

For RYBP (Figures 4A, panel 3 and 4B), we copurified RING1A/B

and MEL-18. CBX proteins, including CBX7, were not detected

at all. We did, however, copurify NSPC1 and MBLR, homologs

of MEL-18 that are components of the BCOR and E2F6

complexes, respectively. This finding is consistent with the

previously reported association of RYBP with these complexes

(Gearhart et al., 2006; Ogawa et al., 2002; Sánchez et al.,

2007; Trimarchi et al., 2001). Western analysis confirmed the

presence of the major components RING1A/B and MEL-18

(Figure 4C, panel 3). YY1 was not identified in RYBP-Flag

immunoprecipitates, either by proteomic or bywestern blot anal-

ysis. Purification of epitope-tagged CBX7 identified RING1A/B

and MEL-18 as major components (Figures 4A, panel 4 and

4B). Western blot analysis confirmed these associations and

demonstrated presence of MPH1 (Figure 4C, panel 4). RYBP

was not detected. Taken together these results substantiate

that RYBP-PRC1 and CBX-PRC1 are distinct multiprotein

complexes.

The activity of PRC1 complexes in H2AK119 ubiquitylation

requires a minimal catalytic core comprising RING1A/B together

with MEL-18/BMI-1 (Cao et al., 2005; Elderkin et al., 2007).

To determine whether RYBP-PRC1, which includes both

RING1B and MEL-18 subunits, functions as an E3 ligase for

H2AK119u1, we reconstituted RYBP-PRC1 (RING1B, MEL-18,

and RYBP) and CBX-PRC1 (RING1B, MEL-18, and CBX7) using

recombinant subunits (Figure 5B, left panel) and then carried out

H2A ubiquitylation assays on oligonucleosome substrate (Fig-

ure 5B, right panel). As a control, we assayed the two-compo-

nent complex comprising RING1B and MEL18 that in previous

studies was shown to specifically monoubiquitylate H2AK119

(Elderkin et al., 2007). All three complexes efficiently monoubi-

quitylated H2A (Figure 5B, right panel), and quantitative analysis

demonstrated equivalent activity in all cases (Figure 5C). Thus,

RYBP and CBX proteins neither stimulate nor block H2A ubiqui-

tylation activity of PRC1 complexes in vitro.

RYBP-PRC1 Mediates H2AK119u1 Independently
of H3K27me3
To determine whether RYBP-PRC1 could account for

H3K27me3-independent H2AK119u1, we carried out ChIP anal-

ysis for RYBP in Eed4 WT and Eed4 cKO mESCs. As shown

in Figure 6A, RYBP enrichment relative to control loci was

observed at several PcG target loci and, importantly, was unaf-

fected following conditional depletion of H3K27me3 (Figure 6A).
672 Cell 148, 664–678, February 17, 2012 ª2012 Elsevier Inc.
This mirrors results obtained for H2AK119u1 and contrasts with

the effect on occupancy of RING1B and MEL-18 (Figure 1A).

Similar results were obtained comparing constitutive Eed�/�

mESCs relative to Eed+/+ controls (Figure S6A) and in MG132-

treated cells (Figure S6B), the latter demonstrating that

H2AK119u1 is not required for RYBP occupancy.

To confirm these findings, we carried out ChIP-seq analysis

of RYBP and CBX7 occupancy in Eed+/+ and Eed�/� mESCs.

Consistent with conventional ChIP analysis, we observed enrich-

ment of RYBP over TSS of RING1B target loci, in both Eed+/+ and

Eed�/� mESCs (Figure 6B, panel 1). CBX7 occupancy on the

other hand was only observed in Eed+/+ cells (Figures 6B, panel

1 and S6C). There was no enrichment for RYBP or CBX7 at

TSS associated with non-RING1B target loci (Figure 6B, panel

2). We conclude that RYBP-PRC1 occupancy at PcG target

loci is independent of H3K27me3, providing an explanation for

the maintenance of H2A119u1 levels and associated target

gene silencing in PRC2-deficient mESCs.

PRC1-mediated H2AK119u1 is a marker of the inactive X

chromosome (Xi) (de Napoles et al., 2004) and occurs in both

the presence and the absence of H3K27me3 (Schoeftner et al.,

2006). Moreover, a previous study observed RYBP localization

to Xi in XX trophoblast stem cells (Arrigoni et al., 2006). To inves-

tigate whether RYBP-PRC1 could account for H3K27me3-

independent H2AK119u1 on Xi, we performed RYBP immunoflu-

orescence (IF) in mESCs that carry an autosomally located

inducible Xist transgene on an Eed�/� background (36Eed�/�)
or rescued with an Eed transgene (36EedTg) (Schoeftner et al.,

2006). Xist RNA territories were counterstained with antisera

specific for H2AK119u1. RYBP enrichment over the Xist RNA

territory was observed in both rescued and Eed�/� mESCs (Fig-

ure 7A, left), and scoring data indicate that the levels are equiv-

alent (Figure 7A, right). These observations suggest that RYBP-

PRC1 is recruited in response to Xist RNA expression and that

this accounts for H3K27me3-independent H2AK119u1 on Xi.

To directly test the role of RYBP in maintaining levels of

H2AK119u1, we analyzed Eed+/+ and Eed�/� mESCs in which

we expressed one of two different shRNA hairpins to deplete

RYBP levels (Figure 7B). In Eed+/+ mESCs, RYBP knockdown

led to substantially reduced levels of H2AK119u1 (Figure 7B,

left). A smaller effect was observed with Eed�/� mESCs (Fig-

ure 7B, right), although it was difficult to derive stable undifferen-

tiated mESCs in this case, indicating selection for mESCs in

which RYBP depletion is ineffective. Interestingly, we observed

a marked reduction in the levels of RING1B in RYBP knockdown

cells (Figure 7B), suggesting that RYBP is important for the stabi-

lization of RING1B. A similar effect is seen in cells depleted for

PRC2 core components (Pasini et al., 2007; Silva et al., 2003).

In line with reduced global levels of RING1B, we observed

reduced occupancy of RING1B at PcG target loci (Figure S7B).

In sum, these data demonstrate a central role for RYBP in medi-

ating H2AK119u1.

DISCUSSION

RYBP-PRC1 Polycomb-Repressive Complex
RYBP was first identified in a yeast two-hybrid screen for

RING1A and was further shown to interact with the transcription



Figure 6. RYBP-PRC1 Is Recruited to PcG Target Genes Independently of PRC2

(A) ChIP analysis of RYBP in Eed4 WT and Eed4 cKO mESCs, showing average values + SD (n = 3).

(B) Tag density across the TSS of 20 million reads randomly subsampled. RYBP, CBX7, and input tags were clustered in two different subgroups, RING1B TSS

and non-RING1B TSS (see Figure 2B). Data are shown for both Eed+/+ and Eed�/� mESCs.

See also Figure S6.
factor YY1 (Garcı́a et al., 1999). The latter finding is consistent

with a previous study that identified YAF2, a close homolog of

RYBP, as a YY1 interactor (Kalenik et al., 1997). Subsequent

studies identified RYBP as having a role in apoptosis (Zheng

et al., 2001). At present it is not clear whether these different

ascribed functions and associations can be reconciled or

whether RYBP is in fact multifunctional and participates in

distinct pathways, interacting with different factors. Genetic

studies in mouse demonstrate that RYBP is essential for early

embryogenesis (Pirity et al., 2005), and close homologs are

found in many species. Interestingly, RYBP mutations in

Drosophila do not give a Polycomb phenotype (Bejarano et al.,

2005). The presence in vertebrates of YAF2 adds further

complexity to considerations of function.

Given the known interaction of RYBP with RING1A/B, copuri-

fication with PRC1 proteins was on one level unsurprising.

Indeed RYBP/YAF2 has been identified as a component of

BCOR (Gearhart et al., 2006; Sánchez et al., 2007) and E2F6

complexes (Sánchez et al., 2007; Trimarchi et al., 2001), together

with RING1B and the mammalian PSC homologs NSPC1 and

MBLR, respectively (Ogawa et al., 2002; Sánchez et al., 2007).

However, homologs of other Drosophila PRC1 core subunits,

PH and PC, were absent in these purifications, and moreover

a number of independent analyses of PRC1 have not identified

RYBP (Cao et al., 2005; Eskeland et al., 2010; Maertens et al.,

2009; Saurin et al., 2001; Shao et al., 1999; Wang et al., 2004).
In some cases this can be attributed retrospectively to the use

of strategies based on epitope tagging of CBX proteins (Maert-

ens et al., 2009; Ren and Kerppola, 2011; Saurin et al., 2001).

In other instances, however, purifications were based on an

H2A ubiquitylation activity assay (Wang et al., 2004) or epitope

tagging of other PRC1 components (Cao et al., 2005; Eskeland

et al., 2010; Maertens et al., 2009; Saurin et al., 2001; Shao

et al., 1999; Wang et al., 2004). Notably, RYBPwas not identified

in previous purifications of PRC1 via epitope-tagged MEL-18

(Elderkin et al., 2007; Maertens et al., 2009). We assume this is

attributable to technical factors as our analysis demonstrates

that RYBP-PRC1 is present in mESCs and in different cell types.

BMI-1, a second PSC homolog present in conventional PRC1

complexes, also copurifies stoichiometric levels of RYBP in

mESCs and mouse NSCs (mNSCs) (data not shown), supporting

a wider significance of RYBP-PRC1 complexes.

The fact that we see reciprocal immunoprecipitation of

RYBP and MEL-18 in native extracts confirms that this interac-

tion is physiologically relevant. Importantly, we show that the

RYBP-PRC1 complex comprising RING1B, MEL-18, and

RYBP can monoubiquitylate H2A on nucleosome substrates

in vitro and that the activity of the complex is equivalent to that

of CBX-PRC1.

In line with prior evidence (Garcı́a et al., 1999; Wang et al.,

2010), we find that interaction of RYBP and CBX7 with RING1B

is mutually exclusive. We assume that the same is true for other
Cell 148, 664–678, February 17, 2012 ª2012 Elsevier Inc. 673



Figure 7. RYBP-PRC1 Is Recruited to Xist RNA Territories Independently of H3K27me3 and Is Required for H2AK119 Ubiquitylation in Eed+/+

and Eed�/� mESCs

(A) Immunofluorescence analysis of RYBP (green) and H2AK119u1 (red) in 36EedTg and 36Eed�/� mESCs induced to express transgenic Xist RNA. DNA was

counterstainedwith DAPI (blue). Graphs illustrate the proportion of cells in which H2AK119u1 foci and RYBP foci colocalize, based on scoring 100 cells on each of

three separate slides.

(B) Stable cell lines were established following transduction of Eed+/+ and Eed�/� mESCs with scrambled or either of two independent RYBP shRNAs (sh2 and

sh3). Acid extracted histones (H2AK119u1 and H3) or nuclear extracts (RYBP, RING1B, and LAMIN B), were prepared and analyzed by western blot.

(C) Model as discussed in text. Key: DNA (black line); nucleosomes with single N terminus of H3 and C terminus of H2A (cylinders); H3K27 trimethylation (Me);

H2AK119u1 (Ub); recruitment factors (gray shape with ?).

See also Figure S7.
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mammalian homologs of Drosophila PC, specifically CBX2, 4, 6,

and 8, but this has not been tested. We also observed that

RYBP-PRC1 has a reduced association with MPH1. Consistent

with this, RING1B but not MPH1/2 localizes to Xist RNA territo-

ries in Eed-deficient mESCs (Schoeftner et al., 2006). We

assume that RYBP-PRC1 excludes other mammalian homologs

ofDrosophila PH, MPH2 andMPH3, but this also is untested. PH

has been reported to interact with PSC (Kyba and Brock, 1998),

and therefore to explain near exclusion of MPH1 from RYBP-

PRC1, we speculate that RYBP occludes the required interac-

tion surface on MEL-18.

Collectively our observations indicate that RYBP-PRC1 is

comprised of three core components, RYBP, RING1B, and

MEL-18/BMI-1. Our proteomic studies using epitope-tagged

MEL-18 (this study) and BMI-1 (not shown) did not reveal other

stoichiometric components, although we cannot rule out the

presence of other key components at substoichiometric levels.

Additionally, although in mESCs MEL-18 is an abundant PSC

homolog, we cannot rule out a significant contribution of BMI-1

or other PSC homologs to RYBP-PRC1. Indeed, mESC RYBP

complexes included the PSC homologs NSPC1 and MBLR,

associated with BCOR and E2F6 complexes, respectively

(Gearhart et al., 2006; Ogawa et al., 2002; Sánchez et al.,

2007; Trimarchi et al., 2001). Studies in Drosophila have shown

that the PRC1-related complex dRAF, comprised of RING1,

PSC, and KDM2, plays a central role in global H2AK119u1 (La-

garou et al., 2008). This provides an interesting parallel with

mESCs in which the BCOR complex includes a mammalian

homolog of KDM2, KDM2B (Gearhart et al., 2006; Sánchez

et al., 2007). However, there is no evidence that RYBP in

Drosophila participates in PRC1-related complexes.

Recruitment of RYBP-PRC1
Genome-wide analysis of RING1B binding in the absence of

H3K27me3 indicates that RYBP-PRC1 and PRC2 are recruited

to many of the same target genes. It is intriguing that distribution

of RING1B, localizing across CpG islands, resembles that of

PRC2, even in the absence of H3K27me3. Indeed a recent

study has suggested that unmethylated CpG domains may be

sufficient to recruit PRC2 (Mendenhall et al., 2010). Although it

is possible that the same signature recruits RYBP-PRC1, our

analysis demonstrates sites bound by RING1B only in the pres-

ence of H3K27me3 and other sites where H3K27me3 is less

important for RING1B targeting. Collectively, these observations

suggest some differences in the targeting mechanisms of PRC2

andRYBP-PRC1, or at least in the relative contribution of the two

pathways at specific loci.

Given that RYBP-PRC1 and PRC2 have significantly over-

lapping targets, can RYBP provide clues as to how targeting

is mediated? As discussed above, RYBP was previously

shown to interact with the transcription factor YY1 (Garcı́a

et al., 1999). Interestingly YY1 is the mammalian homolog of

Drosophila PHO, which in the context of the PHO-RC complex

plays a central role in PcG targeting (Klymenko et al., 2006).

However, we did not find YY1 together with PRC1 in proteomic

or native immunoprecipitation analyses. Moreover mapping of

YY1-binding sites in mESCs reveals no significant overlap with

PRC2 binding (Squazzo et al., 2006). We therefore conclude
that interaction of RYBP with YY1 is unlikely to be relevant, at

least in mESCs.

RYBP has a single conserved domain, a Ranbp2 zinc finger

(Ranbp2-ZnF). A subset of proteins with this domain are associ-

ated with RNA metabolism, and moreover, nuclear magnetic

resonance (NMR) studies have demonstrated that the Ranbp2-

ZnF in these proteins binds RNA (Nguyen et al., 2011). This is

potentially interesting in light of recruitment of RYBP in response

to Xist RNA expression and also a series of recent studies

suggesting a wider role for noncoding RNA in PcG recruitment

(reviewed in Pauli et al., 2011). Arguing against this, comparative

analysis indicates that the RYBP Ranbp2-ZnF belongs to

a different class and that none of the contact residues for RNA

binding are conserved or similar (not shown). A further subset

of Ranbp2-ZnF proteins interact with ubiquitin, also character-

ized at the structural level (Wang et al., 2003), and here RYBP

does show greater similarity. Indeed, it has been suggested

that RYBP interacts with H2AK119u1 and additionally is subject

to self-monoubiquitylation as a consequence of being in com-

plex with RING1B (Arrigoni et al., 2006). This could be argued

to point to a role for RYBP-PRC1 in maintaining H2AK119u1 by

interacting with pre-existing marks on neighboring nucleo-

somes. However, our observation that RYBP is not displaced

and that H2AK119u1 can be re-established following depletion

by MG132 treatment, in both the presence and the absence of

H3K27me3, appears to discount this idea. In sum, involvement

of RYBP provides some intriguing clues that may help to under-

stand PcG targeting, but further studies are needed to determine

which, if any, are relevant.

Interplay of PRCs
Our data suggest that parallel pathways target H2A ubiquityla-

tion to PcG targets inmESCs and on the inactive X chromosome.

A model illustrating this is shown in Figure 7C. As discussed, the

primary signal that recruits PRC2 and RYBP-PRC1 is unknown.

CBX-PRC1 recruitment, on the other hand, is linked to PRC2-

mediated H3K27me3. Although RYBP-PRC1 recruitment can

occur in the absence of H3K27me3, we cannot rule out that

CBX-PRC1 binding is at least partially dependent on RYBP-

PRC1. In support of this view, we observed significant reduction

of H2AK119u1 following RYBP knockdown in Eed+/+ mESCs.

Linked to this point, it is notable that reduced occupancy of

RING1B and MEL-18 in PRC2-deficient mESCs is not mirrored

by a greater reduction in global and local H2AK119u1 levels.

One possible explanation is that RYBP-PRC1 has a short resi-

dence time on chromatin (relative to CBX-PRC1), sufficient for

catalysis but not for efficient formaldehyde crosslinking, as has

been observed for the interaction of themethylated DNA-binding

protein MeCp2 with meCpG (Schmiedeberg et al., 2009).

Parallel targeting of RYBP-PRC1 and CBX-PRC1 provides an

explanation for the fact that PRC2 null mESCs self-renew and

retain pluripotency (Faust et al., 1998; O’Carroll et al., 2001; Pa-

sini et al., 2004), whereas RING1A/B double-knockout cells

(PRC1 null) cannot self-renew and therefore differentiate (Endoh

et al., 2008). This may be a somewhat simplistic interpretation

as mESCs lacking the PRC2 subunit SUZ12 (Pasini et al.,

2004), and also cells in which both RING1B and EED are deleted

(Leeb et al., 2010), show aberrant differentiation phenotypes.
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Moreover, recent studies have shown that depletion of JARID2,

a PRC2-associated cofactor, blocks differentiation of mESCs

(reviewed in Herz and Shilatifard, 2010), as does Jarid2 deletion

(Landeira et al., 2010).

The fact that we see involvement of RYBP-PRC1 in Xist

RNA-mediated silencing suggests a wider role for this complex.

In future studies it will be interesting to determine whether

RYBP has a role in other instances of H3K27me3-independent

recruitment of PRC1 complexes, for example on paternal chro-

mosomes in early preimplantationmouse embryos (Puschendorf

et al., 2008).

EXPERIMENTAL PROCEDURES

Cell Culture

mESCs, FSPE fibroblasts, and NSCs were cultivated using established

methods. Stable lines expressing Flag-tagged proteins were produced by

lipofection followed by selection for antibiotic resistance. Full details are

provided in the Extended Experimental Procedures. Pluripotency assays

were performed using the alkaline phosphatase detection kit (Millipore).

ChIP and ChIP-Seq

ChIP was performed essentially as described (Stock et al., 2007) with some

modifications used for specific antibodies, as detailed in the Extended Exper-

imental Procedures. Results were analyzed either by qPCR or ChIP-seq as

indicated. ChIP-seq was either by single- or paired-end methods as detailed

in the Extended Experimental Procedures. Tags were mapped using bowtie

(Langmead et al., 2009) excluding nonunique mappings (-m 1). Following

alignment to the mouse genome (mm9), data were visualized on UCSC

(Kent et al., 2002) and GBrowse (Stein et al., 2002). Single and paired-end

tags were mapped on GBrowse, and peak identification was performed with

MACS (Zhang et al., 2008) with a false discovery rate (FDR) < 2% and

number of tags in the peak > 100. Nearest gene and overlaps to location

usedCisgenome (Ji et al., 2008) and custom scripts. Peak intersection analysis

used intersectBed (Quinlan and Hall, 2010) with CpG island data downloaded

from UCSC mm9 table browser. Average profile across TSS used CEAS

(Shin et al., 2009) after normalizing by random subsampling. For RYBP and

CBX7 datasets, random subsampling was applied to RING1B and non-

RING1B peaks selected fromRING1BChIP-seq peak list in the Eed+/+ sample.

Tag density analysis was performed with sitepro, part of the CEAS package,

(Shin et al., 2009). Full details are provided in the Extended Experimental

Procedures.

Western Blot Analysis

Levels of histone modifications and nonhistone protein were determined by

western blot analysis of acid-extracted proteins or nuclear extracts, respec-

tively, using appropriate primary and secondary antibodies as detailed in the

Extended Experimental Procedures.

Gene Expression Analysis

Expression levels of PcG target genes were determined by qRT-PCR using

standard methods.

Biochemical Analysis

Purifications from nuclear extract were carried out as described previously

(van den Berg et al., 2010). Protein identification was by LC-MS/MS on an

LTQ Orbitrap Velos Mass spectrometer. Data were searched against Uniprot

2011.03 using Mascot software.

Size-exclusion chromatography was carried out on a Superose 6 gel filtra-

tion column as detailed in the Extended Experimental Procedures. Recombi-

nant complexes comprising combinations of full-length MEL-18, RING1B,

RYBP, and CBX7 were purified from Sf9 cells essentially as described

(Elderkin et al., 2007), using the Bac-to-Bac system (Invitrogen). Full details

are provided in the Extended Experimental Procedures. Ubiquitylation assays

were performed as described previously (Elderkin et al., 2007) and as detailed
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in the Extended Experimental Procedures. Immunoprecipitations were from

nuclear extracts (Dignam et al., 1983) using appropriate primary and

secondary antibodies either without treatment or in the presence of benzonase

or EtBr as described previously (van den Berg et al., 2010).

Immunofluorescence

Immunofluorescence (IF) was performed as described (de Napoles et al.,

2004; Fang et al., 2004) with antibody dilutions, as detailed in the Extended

Experimental Procedures. Images were acquired on a Zeiss AX10microscope

equipped with AxioCam MRm CCD camera using AxioVision software.

ACCESSION NUMBERS

ChIP sequencing data are available at GEO under accession number

GSE23716. Primers used in this study are in Table S1.
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Supplemental Information includes Extended Experimental Procedures and

seven figures and can be found with this article online at doi:10.1016/j.cell.
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