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Abstract-This paper is devoted to the study of fuzzy intervals. Topological classification theo- 
rems on L-fuzzy intervals and H(X)-intervals (both are generalizations of the ordinary intervals) are 
proved, and a series of properties of these fuzzy intervals are established. @ 2001 Elsevier Science 
Ltd. All rights reserved. 
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1. INTRODUCTION AND PRELIMINARIES 

In this paper we study fuzzy intervals, precisely, L-fuzzy interval and their weakly induced modi- 

fications [l], for two considerations: first, this kind of L-fuzzy topological spaces have some thing 

to do with classical probability theory. For example, the L-fuzzy real line (for L = [0, I]) R(L), 

a special L-fuzzy interval, exactly consists of all distribution functions on R (see [2]). Second, 

L-fuzzy intervals are of basic importance not only to topology, but probably also to many other 

fields. The L-fuzzy unit interval I(L) (respectively, the L-fuzzy real line R(L)) was defined by 

Hutton [3] (respectively, by HBhle [4] and Gantner et al. [5]). There has been a great deal of 

interest (see, e.g., [l-13]) in I(L) and R(L) for their skillful definitions and their similarities with 

1= [0, l] and R = (- m, +co), the L-fuzzy unit interval and the L-fuzzy real line for the case of 

L = (0, 1). In addition, I(L) has also been successfully applied to solving the compactification 

problem of weakly induced L-fuzzy topology spaces (see [12]). It is natural to regard L-fuzzy 

intervals (like ordinary intervals in a real line) to be the objects probably involved in many fields 

and used by researchers in these fields. 

In this paper, we first give the definition of L-fuzzy intervals, among which are I(L), R(L), 

and all intervals of ordinary real line R. Then we prove the topological classification theorems of 

L-fuzzy intervals and their weakly induced modification. Finally, we present a series of topological 

properties of these fuzzy intervals. 

Throughout this paper, L always stands for a fuzzy lattice, i.e., a completely distributive 
complete lattice with an order-reversing involution ’ on it, and with a smallest element 0 and a 

largest element 1 (0 # 1). Obviously, for every nonempty set X, Lx is also a fuzzy lattice under 
the pointwise order. We denote the smallest element and the largest element of Lx by OX and 
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lx respectively, and the set of all nonzero coprime elements [14] of L (respectively, of Lx) by 

M(L) (respectively, by M( Lx)). An L-fuzzy topology space is a pair (Lx, 6)) where S, called an 

L-fuzzy topology on Lx, is a subfamily of Lx closed under the operations of finite intersections 

and arbitrary unions. 

Let (L”, 6) be an L-fuzzy topology space. Then I,, = {L,,(A) 1 A E 6) is a topology 

on X, where Lo, = {z E X 1 A(z) rl: a’} (A E 6, QI E M(L)). Let LL(~) be the topology 

on X generated by the subbase U{&(d) 1 a E M(L)} and [6] = {A E 6 1 A is a crisp set}. 

Then (X, [b]) (respectively, (X, Q(S)) ) is called the background space (respectively, underlying 

space) of (Lx, 6). Furthermore, let 8 be the L-fuzzy topology on Lx generated by the subbase 

6 u LL(~): we will make no distinction between a set E and its characteristic function XE. Then 

(Lx, 8) is called the weakly induced modification [I] of (Lx, 6). (Lx, 6) is called induced if 

LL(~) u {[A] 1 X E L} c S, where [X] E L x is a constant mapping taking value X. 

A mapping F : Lx -+ Ly ’ IS said to be an L-valued Zadeh function induced by an ordinary 

mapping f : X + Y if F(A)(y) = V{A(z) I f(z) = y} for every A E Lx and every y E Y. 

For the sake of convenience, we denote a mapping and an L-valued Zadeh function induced by it 

by the lower case and the upper case of the same letter, respectively. Given an L-valued Zadeh 

function F : Lx + Ly, a mapping F-l : Ly + Lx will be defined by F-l(B) = B o f for all 

B E Ly. 
An L-valued Zadeh function F from an L-fuzzy topology space (Lx,6) to another L-fuzzy’ 

topology space (Ly , 77) is said to be continuous if, for each B E 7, F-‘(B) E 6; F is said to be a 

homeomorphism if it is a one-to-one correspondence and both F and F-l are continuous. 

The support of an L-fuzzy set A E Lx (respectively, an L-fuzzy topology space (Lx, 6)) is 

defined as the set supp A = {x E X I A(z) > 0) (respectively, X). The definitions of I(L) and 

R(L) can be found in [5]. For other undefined notions and symbols, such as H(X)-unit interval (the 

weakly induced modification of I(L)), H(X)-real line (the weakly induced modification of R(L)), 

completely regular L-fuzzy topology spaces, H(X)-completely regular L-fuzzy topology spaces, 

W(L”, S), etc., please refer to [7]. 

2. DEFINITIONS AND CLASSIFICATION THEOREMS 

DEFINITION 2.1. Let J c R be an ordinary interval with left-hand member a and right-hand 

member b, (a, b E R U {-co, +oo}, a < b), and H(J) be the set of all monotonic decreasing 

mappings X : R --+ L satisfying the following conditions: 

(i) if a E J, x(t) = 1 for all t E (-co, a); 

(ii) ifa 6 J, V{x(t) I t > a, t E R} = 1; 

(iii) if b E J, X(t) = 0 for a21 t E (b, fm); 

(iv) ifa $ J, r\{x(t) I t < b, t E R} = 0. 

For each t E R and each X E H(J), write A(t+) = V{X(T) / 1‘ E R, T > t} and A(t-) = r\{X(l) I 

1 E R, 1 < t}. We define an equivalence relation N on H(J) as follows: 

X1 N X2 iff Xl(t+) = Xz(t+) and AI = Xz(t-), (V/t E R). 

Let H(J)/ N be the quotient set, and S be the L-fuzzy topology on LHcJ)l”, which has {L,, Rt 1 

t E R} as a subbase, where Lt([X]) = (x(t-))’ and Rt([X]) = X(t+) (t E R,X E H(J)), [X] is 
the equivalence class containing X. The L-fuzzy topology space (LHcJ)/“,b) is called L-fuzzy 

interval, and is briefly denoted by J(L). The weakly induced modification of J(L), denoted by 

J(L), is called an H(X)-interval. 

Similar to Theorem 3.10 in [7], we may show the following. 

LEMMA 2.2. Neither R(L) nor (0,1](L) is N-compact L-151. 

THEOREM 2.3. For a given L, there are exactly three nonhomeomorphic L-fuzzy intervals: 

I(L), R(L), and (0,11(L). 
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PROOF. Analogous to Proposition 3.1 in [7], we may show that every L-fuzzy interval J(L) is 

homeomorphic with I(L), R(L), or (0,1](L). Since I(L) is N-compact [l] and N-compactness is 

an invariant of homeomorphic L-valued Zadeh functions, by Lemma 2.2, I(L) is homeomorphic 

with neither R(L) nor (0, 11. Therefore, we only need to show that R(L) is not homeomorphic 

with (0,1](L). 

Suppose that F : (Lx, 6) ---+ (Ly , 77) is a homeomorphism, where (Lx, 6) = R(L) and 

(Ly, 77) = (0,1](L). We say that [X] E X is a crisp element of X if X(R) c {O,l}. We may 

show that both f and f-l preserve crisp elements. Indeed, if [X] E X is a crisp element, then 

&([A]) E {O,l} and Lt([X]) E {O,l} (Vt E R), and so A([X]) E (0, 1) (VA E 6). Since f 
is a one-t&one correspondence, we have F(A)(f([X])) = A([X]) E {O,l} (VA E S), and thus, 

B(f([Xl)) E {O,I) (VJB E rl), particularly, Mf(N)) E {O,l) and L(f([W) E i&l) (vt E R), 
which implies that f([x]) E Y is a crisp element. Similarly, f-l preserves crisp elements. It 
follows that R is homeomorphic with its subspace (0, 11. This is a contradiction. 

Analogously, we may show the following theorem. 

THEOREM 2.4. For a given L, there are exactly three nonhomeomorphic H(X)-intervals: f(L), 

h(L), and m(L). 

THEOREM 2.5. For a given L (L # {O,l}), th ere are exactly six nonhomeomorphic L-fuzzy 

intervals and H(X)-intervals: I(L), R(L), (0,1](L), i(L), fi(L), and G](L). 

PROOF. Suppose that L # {O,l}. Then, the background space of I(L), as shown in [13], is 

antidiscrete [16]. This is also true for every L-fuzzy interval J(L). On the other hand, for every 

L-fuzzy interval J(L), the background space of J(L) is Hausdorff (see [12, Coroll&y l]), which 

implies that there is no pair (51 (L), Jz(L)) of L-fuzzy intervals such that J1 (L) is homeomorphic 

with j.(L). Thus, Theorem 2.5 follows from Theorem 2.3 and Theorem 2.4. 

COROLLARY 2.6. For any intervals J1, J2 c R, the following statements are equivalent: 

(1) J1 (L) is homeomorphic with Jz( L); 

(2) J1 (L) is homeomorphic with &(L); 

(3) J1 is homeomorphic with Jz. 

3. PROPERTIES OF FUZZY INTERVALS 

An L-fuzzy topology space (Lx,&) is said to be Tk if (X, [6]) iS a Tk topological space (k = 

0, 1,2,3,3 l/2,4). Obviously, T4 ==+ T3 112 + T3 - Tz + TI + TO. 

The main results of this section are as follows. 

THEOREM 3.1. J(L) and its weakly induced modification J(L) have the following properties: 

(1) 
(2) 

(3) 

(4) 
(5) 

(6) 

(7) 

J(L) is completely regular; it is not TO when L # (0, 1). 

J(L) is H(X)-completely regular and T3 l/2; it is T4 when W(L) 5 No, where W(L) is the 

weight of L (see [14, Definition 4.5, p. 1701). 

Neither J(L) nor J(L) is induced [I] when L # (0, 1). 

The closure of a crisp set in J(L) is still a crisp set. 
W(J(L)) = No, W(j(L)) = W(L)+40. 
J(L) is N-compact _ J(L) is N-compact _ J is compact. 

J(L) is Eparacompact (see /7]) if L satisfies 

(i) W(L) I NO; 

(ii) L is a chain or L - (1) = U{l e 1 e E P} for some finite subset P c L. 

PROOF. 

(1) Since I(L) is completely regular, complete regularity is hereditary (see [I]) and the back- 

ground space of I(L) is antidiscrete [13], (1) follows from Theorem 2.3. 
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(2) As f(L) is H(X) -completely regular, H(X)-complete regularity is hereditary and the under- 

lying space of I(L) is Hausdorff (see [12, Theorem 9 and Corollary 2]), the first half of (2) 

follows from Theorem 2.3; the second half of (2) follows from (5). 

(3) As i(L) is not induced when L # {O,l} (see [12, Theorem 3]), (3) follows from Theo- 

rems 2.3-2.5. (4) follows from Theorem 2.4 and [12, Theorem 31, (5) follows from Theo- 

rems 2.3-2.5 and [7, Proposition 3.2, Theorem 3.31, (6) follows from Corollary 2.6, and (7) 

follows from Theorem 2.4 and [7, Theorem 3.141. This completes the proof of Theorem 3.1. 

REMARK 3.2. Connectedness and local connectedncss of fuzzy intervals will be studied in a 

different paper. 

Finally, let 31 and c7i be the topologies on XL (the support of R(L)) generated by the bask 

{supp(a, b)(L) 1 a, b E R, a < b} U {XL} and {supp[a, b)(L) 1 a, b E R, a < b} U {XL} respectively, 

RL = (XL, Jl) and SL = (XL, &). Obviously, RL (respectively, SL) is homeomorphic with 

R (respectively, Sorgenfrey line [16]) when L = (0, 1). It is easy to verify the following proposi- 

tion (where I, I and W(S L are the density, character and weight of SL, respectively, ) 

see [16]). 

PROPOSITION 3.3. I = I = W(RL) = Ho, W(SL) = N. Therefore, 5’~ is not homeo- 

morphic with RL. 
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