Total restrained domination in trees

Johannes H. Hattingha, Elizabeth Jonckb, Ernst J. Joubertb, Andrew R. Plummera

aDepartment of Mathematics and Statistics, University Plaza, Georgia State University, Atlanta, GA 30303, USA
bDepartment of Mathematics, University of Johannesburg, P.O. Box 524, Auckland Park, 2006 South Africa

Received 31 March 2006; received in revised form 7 June 2006; accepted 2 September 2006
Available online 9 November 2006

Abstract

Let $G = (V, E)$ be a graph. A set $S \subseteq V$ is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of $V - S$ is adjacent to a vertex in $V - S$. The total restrained domination number of G, denoted by $\gamma_{tr}(G)$, is the smallest cardinality of a total restrained dominating set of G. We show that if T is a tree of order n, then $\gamma_{tr}(T) \geq \lceil \frac{n+2}{2} \rceil$. Moreover, we show that if T is a tree of order $n \equiv 0 \mod 4$, then $\gamma_{tr}(T) \geq \lceil \frac{n+2}{2} \rceil + 1$. We then constructively characterize the extremal trees T of order n achieving these lower bounds.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Total restrained domination; Trees

1. Introduction

In this paper, we follow the notation of [1]. Specifically, let $G = (V, E)$ be a graph with vertex set V and edge set E. Moreover, the notation P_n will denote the path of order n. A set $S \subseteq V$ is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The recent book of Chartrand and Lesniak [1] includes a chapter on domination. A thorough study of domination appears in [3,4].

In this paper, we continue the study of a variation of the domination theme, namely that of total restrained domination. A set $S \subseteq V$ is a total restrained dominating set (denoted TRDS) if every vertex is adjacent to a vertex in S and every vertex in $V - S$ is also adjacent to a vertex in $V - S$. Every graph has a total restrained dominating set, since $S = V$ is such a set. The total restrained domination number of G, denoted by $\gamma_{tr}(G)$, is the minimum cardinality of a TRDS of G. A TRDS of cardinality $\gamma_{tr}(G)$ will be called a $\gamma_{tr}(G)$-set.

The concept of restrained domination was introduced by Chen et al. [2], and further studied by Zelinka in [6]. We may note that the concept of total restrained domination was also introduced by Telle and Proskurowski [5], albeit indirectly, as a vertex partitioning problem. Here conditions are imposed on a set S, the complementary set $V - S$ and on edges between the sets S and $V - S$. For example, if we require that every vertex in $V - S$ should be adjacent to some other vertex of $V - S$ (the condition on the set $V - S$) and to some vertex in S (the condition on edges between...
Theorem 3. If T is a tree of order n, then $\gamma_T(T) \geq \left\lceil \frac{n+2}{2} \right\rceil$. Moreover, we constructively characterize the extremal trees T of order n achieving this lower bound. Lastly, we show that if T is a tree of order $n \equiv 0 \pmod{4}$, then $\gamma_T(T) \geq \left\lceil \frac{n+2}{2} \right\rceil + 1$, and also constructively characterize the extremal trees T of order n achieving this lower bound.

2. The lower bound

The following result was established in [2], using a more cumbersome proof. As we shall see, this result will be useful in establishing a sharp lower bound on the total restrained domination number of a tree.

Proposition 1. If $n \geq 2$ is an integer, then $\gamma_{tr}(P_n) = n - 2\left\lfloor \frac{n-2}{4} \right\rfloor$.

Proof. Suppose S is a TRDS of P_n, whose vertex set is $V = \{v_1, \ldots, v_n\}$. Note that $v_1, v_2 \in S$. Moreover, any component of $V - S$ is of size exactly two. Each component is adjacent to a vertex of S, which, in turn, is adjacent to another vertex of S. Suppose there are m such components. Then $2m + 2m + 2 \leq n$ and so $m \leq \left\lfloor \frac{n-2}{4} \right\rfloor$. Thus $|S| = n - 2m \geq n - 2\left\lfloor \frac{n-2}{4} \right\rfloor$. On the other hand, $V - \{v_i \mid i \in \{3, 4, 7, 8, \ldots, 4\left\lceil \frac{n-2}{2} \right\rceil - 1, 4\left\lfloor \frac{n-2}{4} \right\rfloor\}$ is a TRDS of P_n, whence $\gamma_{tr}(P_n) = n - 2\left\lfloor \frac{n-2}{4} \right\rfloor$. \qed

Corollary 2. If $n \geq 2$ is an integer, then $\gamma_{tr}(P_n) \geq \left\lceil \frac{n+2}{2} \right\rceil$.

Proof. Since $n - 2\left\lfloor \frac{n-2}{4} \right\rfloor \geq \left\lceil \frac{n+2}{2} \right\rceil$, the result follows from Proposition 1. \qed

Let $T = (V, E)$ be a tree and $v, a, b \in V$ such that $\deg v \geq 3$ and $a, b \in N(v)$. Let ℓ_b be a leaf of the component of $T - v$ that contains b. Then the tree T' which arises from T by deleting the edge va and joining a to ℓ_b is called a (v, a, b)-pruning of T.

Theorem 3. If T is a tree of order $n \geq 2$, then $\gamma_{tr}(T) \geq \left\lceil \frac{n+2}{2} \right\rceil$.

Proof. We use induction on n. It is easy to check that the result is true for all trees T of order $n \leq 8$. Suppose, therefore, that the result is true for all trees of order less than n, where $n \geq 9$. Let $\gamma_{tr} = \min \{\gamma_{tr}(T) \mid T$ is a tree of order $n\}$. We will show that $\gamma_{tr} \geq \left\lceil \frac{n+2}{2} \right\rceil$.

Let $\mathcal{F} = \{T \mid T$ is a tree of order n such that $\gamma_{tr}(T) = \gamma_{tr}\}$. Among all trees in \mathcal{F}, let T be chosen so that the sum $s(T)$ of the degrees of its vertices of degree at least 3 is minimum. If $s(T) = 0$, then $T \cong P_n$, and so $\gamma_{tr} = \gamma_{tr}(P_n) \geq \left\lceil \frac{n+2}{2} \right\rceil$. Suppose, therefore, that $s(T) \geq 1$. Since $s(T) \geq 1$, there exists a vertex v such that $\deg(v) \geq 3$. Let S be a $\gamma_{tr}(T)$-set of T.

Claim 1. If v is a vertex of degree at least 3, then

(i) $v \notin S$,
(ii) v is adjacent to exactly one vertex of S,
(iii) $\deg(v) = 3$.

Proof. Suppose $v \in S$. Then there exist $a, b \in N(v)$ such that $b \in S$. Let T' be a (v, a, b)-pruning of T. Then S is a TRDS of T', and so, by definition of γ_{tr}, we have that $\gamma_{tr} \leq \gamma_{tr}(T') \leq |S| = \gamma_{tr}$. Hence, $T' \in \mathcal{F}$. However, as $s(T') < s(T)$, we obtain a contradiction.

Thus, assume $v \notin S$ and let $a, b \in N(v)$ such that $a \notin S$ and $b \in S$. If $c \in N(v) - \{a, b\}$ is in S, then, by considering the (v, b, c)-pruning of T, we obtain a contradiction as before. We therefore assume that b is the only vertex in S which is adjacent to v.
Suppose \(\deg(v) \geq 4 \), let \(\{c_1, \ldots, c_{\deg(v)}\} = N(v) - \{a, b\} \), let \(c = c_1 \) and let \(\ell_b \) be a leaf of the component of \(T - v \) that contains \(b \). Let \(T' \) be the tree which arises from \(T \) by deleting the edges \(uv_i \) for \(i = 1, \ldots, \deg(v) - 2 \) and joining \(c \) to \(\ell_b, c_2, \ldots, c_{\deg(v)} \). Note that \(\deg_{T'}(v) = \deg_T(\ell_b) = 2 \), \(\deg_T(c) = \deg(c) + \deg(v) - 3 \geq \deg(c) + 1 \geq 3 \), while all other vertices have the same degree in \(T' \) as in \(T \). On the one hand, if \(\deg(c) = 2 \), then \(s(T') = s(T) - \deg(v) + \deg_T(c) = s(T) - 1 \). On the other hand, if \(\deg(c) \geq 3 \), then \(s(T') = s(T) - \deg(v) + \deg_T(c) - 3 = s(T) - 3 \). Then \(S \) is a TRDS of \(T' \). As \(T' \in \mathcal{F} \) and \(s(T') < s(T) \), we obtain a contradiction in both cases. Thus, \(\deg(v) = 3 \). \(\square \)

Claim 2. No two vertices of degree 3 are adjacent.

Proof. Using the notation employed in Claim 1, \(b \) is the only neighbor of \(v \) in \(S \). By Claim 1, \(\deg(b) \leq 2 \). If \(\deg(c) = 3 \), then, by Claim 1, \(c \) is adjacent to a vertex in \(V - S \) (other than \(v \)). Let \(T' \) be the \((v, c, b)\)-pruning of \(T \). Then \(S \) is a TRDS of \(T' \), and so, by definition of \(\gamma_T \), we have that \(\gamma_T \leq \gamma_T(T') \leq |S| = \gamma_T \). Hence, \(T' \in \mathcal{F} \). However, as \(s(T') < s(T) \), we obtain a contradiction. \(\square \)

Using the notation employed in the proof of Claim 1, the vertex \(b \in S \) and, as it must be adjacent to another vertex in \(S \), \(\deg(b) = 2 \) (cf. Claim 1). Let \(b' \in S \) be the vertex adjacent to \(b \) and suppose \(b' \) is not a leaf. Then, by Claim 1, \(\deg(b') = 2 \). Let \(b'' \) be the neighbor of \(b' \) different from \(b \). Then \(S \) is a TRDS of a tree \(T' \) obtained from \(T \) by deleting the edge \(b'b'' \) and joining the vertex \(b'' \) to some leaf of the component of \(T - v \) containing \(c \). Thus \(T' \in \mathcal{F} \) and \(b' \) is a leaf of \(T' \). Hence we may assume that \(b' \) is a leaf of \(T \).

By Claim 2, \(\deg(a) = \deg(c) = 2 \). Let \(a', c' \in S \) be the neighbor of \(a \) (\(c \), respectively) which is different from \(v \). Necessarily, \(a', c' \in S \). Then \(\deg(a') = \deg(c') = 2 \) (cf. Claim 1). As each vertex in \(S \) is adjacent to another vertex of \(S \), there exist vertices \(a'' \) and \(c'' \) in \(S \) which are adjacent to \(a' \) and \(c' \), respectively. We may assume, as we did for \(b' \), that \(a'' \) is a leaf of \(T \).

If \(n = 9 \), then \(\gamma_T(T) = 6 = \left\lfloor \frac{n+2}{2} \right\rfloor \). Suppose, therefore, that \(n \geq 10 \). Let \(T' \) be the component of \(T - cc' \) containing \(c' \). Then \(S \cap V(T') \) is a TRDS of \(T' \), so that \(|S \cap V(T')| \geq \gamma_T(T') \). Hence, \(|S| \geq 4 + \gamma_T(T') \). Applying the inductive hypothesis to the tree \(T' \) of order \(n - 7 \), we have \(\gamma_T(T') \geq \left\lfloor \frac{n-5}{2} \right\rfloor \), and so \(\gamma_T(T) = |S| \geq \left\lceil \frac{n+3}{2} \right\rceil \geq \left\lceil \frac{n+2}{2} \right\rceil \). \(\square \)

3. Extremal trees \(T \) with \(\gamma_T(T) = \left\lfloor \frac{n(T)+2}{2} \right\rfloor \)

Let \(\mathcal{F} \) be the class of all trees \(T \) of order \(n(T) \) such that \(\gamma_T(T) = \left\lfloor \frac{n(T)+2}{2} \right\rfloor \). We will constructively characterize the trees in \(\mathcal{F} \). In order to state the characterization, we define four simple operations on a tree \(T \).

O1. Join a leaf or a remote vertex of \(T \) to a vertex of \(K_1 \), where \(n(T) \) is even.

O2. Join a vertex \(v \) of \(T \) which lies on an endpath \(vxz \) to a leaf of \(P_3 \), where \(n(T) \) is even.

O3. Join a vertex \(v \) of \(T \) which lies on an endpath \(vxy_1y_2z \) to a leaf of \(P_3 \), where \(n(T) \) is even.

O4. Join a remote vertex or a leaf of \(T \) to a leaf of each of \(\ell \) disjoint copies of \(P_4 \) for some \(\ell \geq 1 \).

Let \(\mathcal{G} \) be the class of all trees obtained from \(P_2 \) by a finite sequence of Operations O1–O4.

We will show that \(T \in \mathcal{F} \) if and only if \(T \in \mathcal{G} \).

Lemma 4. Let \(T' \in \mathcal{F} \) be a tree of even order \(n(T') \). If \(T \) is obtained from \(T' \) by one of the Operations O1–O3, then \(T \in \mathcal{F} \).

Proof. Let \(S \) be a \(\gamma_T(T') \)-set of \(T' \) throughout the proof of this result.

Case 1: \(T \) is obtained from \(T' \) by Operation O1.

Let \(u \) be a leaf or a remote vertex of \(T' \), and suppose \(T \) is formed by attaching the singleton \(v \) to \(u \). Then \(S \cup \{v\} \) is a TRDS set of \(T \), and so \(\left\lfloor \frac{n(T)+3}{2} \right\rfloor \leq \gamma_T(T) \leq \left\lfloor \frac{n(T)+2}{2} \right\rfloor + 1 \). Since \(n(T') \) is even, we have \(\gamma_T(T) = \left\lfloor \frac{n(T)+2}{2} \right\rfloor \). Thus, \(T \in \mathcal{F} \).

Case 2: \(T \) is obtained from \(T' \) by Operation O2 or Operation O3.
Suppose v lies on the endpath vzx or $v|x_1x_2z$ and T is obtained from T' by adding the path y_1y_2z' to T' and joining y_1 to v.

We show that $v \notin S$. First consider the case when v lies on the endpath vzx. Suppose $v \in S$. Then $S' = S \setminus \{z\}$ is a TRDS of $T'' = T' \setminus \{z\}$, and so $\left\lceil \frac{n(T')+1}{2} \right\rceil \leq \gamma_{tr}(T'') \leq \left\lceil \frac{n(T')+2}{2} \right\rceil - 1$. However, as $n(T')$ is even, we have $\frac{n(T')+2}{2} < \gamma_{tr}(T'') \leq \frac{n(T')+2}{2} - 1$, which is a contradiction. Thus, $v \notin S$.

In the case when v lies on the endpath $v|x_1x_2z$, one may show, as in the previous paragraph, that $x_1 \notin S$. But then $v \notin S$, as required.

In both cases, the set $S \cup \{y_2, z'\}$ is a TRDS of T, and so $\left\lceil \frac{n(T')}{2} + 1 \right\rceil \leq \gamma_{tr}(T) \leq \left\lceil \frac{n(T')+2}{2} \right\rceil + 2$. However, as $n(T')$ is even, we have $\gamma_{tr}(T) = \left\lceil \frac{n(T')+2}{2} \right\rceil$, and so $T \in \mathcal{F}$.

The proof is complete. \qed

Lemma 5. Let $T' \in \mathcal{F}$ be a tree of order $n(T')$. If T is obtained from T' by the Operation O4, then $T \in \mathcal{F}$.

Proof. Let S be a $\gamma_{tr}(T')$-set of T', and suppose v is a remote vertex or a leaf of T'. Then $v \in S$. Let T be the tree which is obtained from T' by adding the paths $u_iy_i\overline{y}_iz_i$ to T' and joining u_i to v for $i = 1, \ldots, \ell$. Then $S' = S \setminus \{y_2, z'\}$ is a TRDS of T, and so $\left\lceil \frac{n(T')}{2} + 4\ell + 2 \right\rceil \leq \gamma_{tr}(T) \leq \left\lceil \frac{n(T')+2}{2} \right\rceil + 2\ell$. Consequently, $\gamma_{tr}(T) = \left\lceil \frac{n(T')+2}{2} \right\rceil$, and so $T \in \mathcal{F}$. \qed

We are now in a position to prove the main result of this section.

Theorem 6. T is in \mathcal{G} if and only if T is in \mathcal{F}.

Proof. Assume $T \in \mathcal{G}$. We show that $T \in \mathcal{F}$, by using induction on $c(T)$, the number of operations required to construct the tree T. If $c(T) = 0$, then $T = P_2$, which is in \mathcal{F}. Assume, then, for all trees $T' \in \mathcal{G}$ with $c(T') < k$, where $k \geq 1$ is an integer, that T' is in \mathcal{F}. Let $T \in \mathcal{G}$ be a tree with $c(T) = k$. Then T is obtained from some tree T' by one of the Operations O1–O4. But then $T' \in \mathcal{G}$ and $c(T') < k$. Applying the inductive hypothesis to T', T' is in \mathcal{F}. Hence, by Lemma 4 or Lemma 5, T is in \mathcal{F}.

To show that $T \in \mathcal{G}$ for a nontrivial $T \in \mathcal{F}$, we use induction on n, the order of the tree T. If $n = 2$, then $T = P_2 \in \mathcal{G}$. Let $T \in \mathcal{F}$ be a tree of order $n \geq 3$, and assume for all trees $T' \in \mathcal{F}$ of order $2 \leq n(T') < n$, that $T' \in \mathcal{G}$. Since $n(T) \geq 3$, $\text{diam}(T) \geq 2$.

If $\text{diam}(T) = 2$, then T is a star with exactly two leaves, which can be constructed from P_2 by applying Operation O1. Thus, $T \in \mathcal{G}$.

Since no double star is in \mathcal{F}, we may assume $\text{diam}(T) \geq 4$. Throughout S will be used to denote a $\gamma_{tr}(T)$-set of T.

Claim 3. Let z be a leaf of T. If $S \setminus \{z\}$ is a TRDS of $T' = T - z$, then $T \in \mathcal{G}$.

Proof. Assume $S \setminus \{z\}$ is a TRDS of T'. Then $\left\lceil \frac{n(T')}{2} + 2 \right\rceil \leq \gamma_{tr}(T') \leq \left\lceil \frac{n(T')+2}{2} \right\rceil - 1$. This yields a contradiction when n is even. Hence, n is odd, and $\gamma_{tr}(T') = \frac{n+1}{2} = \left\lceil \frac{n(T')+2}{2} \right\rceil$. Thus, $T' \in \mathcal{F}$, with $n(T') = n - 1$ even. By the induction assumption, $T' \in \mathcal{G}$. The tree T can now be constructed from T' by applying Operation O1, whence $T \in \mathcal{G}$. \qed

Claim 3 implies that if vzx is an endpath of T, then we may assume $v \notin S$, since otherwise the tree is constructible.

Claim 3 also implies that every remote vertex of T is adjacent to exactly one leaf, since otherwise it is constructible.

Claim 4. If u is a leaf of T and v is either another leaf of T or the remote vertex adjacent to u, then $S' = S \setminus \{u, v\}$ is not a TRDS of $T' = T - u - v$.

Proof. Suppose, to the contrary, that S' is a TRDS of T'. Then $\left\lceil \frac{n(T')}{2} + 2 \right\rceil \leq \gamma_{tr}(T') \leq \left\lceil \frac{n(T')+2}{2} \right\rceil - 2$. Thus, $\left\lceil \frac{n}{2} \right\rceil + 2 \leq \left\lceil \frac{n(T')+2}{2} \right\rceil$, which yields a contradiction. \qed
Let T be rooted at a leaf r of a longest path.

Let v be any vertex on a longest path at distance $\text{diam}(T) - 2$ from r. Suppose v lies on the endpath vyz'. Then, by the remark above, $v \notin S$, which implies that v is not adjacent to a leaf. If v also lies on the endpath vzx, then $S - \{x, z\}$ is a TRDS of $T - x - z$, which is a contradiction by Claim 4.

Thus, we assume each vertex on a longest path at distance $\text{diam}(T) - 2$ or $\text{diam}(T) - 1$ from r has degree 2.

Let v be any vertex on a longest path at distance $\text{diam}(T) - 3$ from r. Let vy_1y_2z' be an endpath of T. Then $y_1 \notin S$, and so $v \notin S$, which means all neighbors of v have degree at least 2.

Assume v also lies on the path vzx, where z is a leaf. Then, since each remote vertex is adjacent to exactly one leaf, vzx is an endpath. If v is dominated by a vertex other than x, then $S - \{x, z\}$ is a TRDS of $T' = T - x - z$, which is a contradiction (cf. Claim 4). Hence, v is dominated only by x. Then $S' = S - \{y_2, z'\}$ is a TRDS of $T' = T - y_1 - y_2 - z'$ and so $\frac{n+3+2}{2} \leq \gamma_{tv}(T') \leq \frac{n}{2} - 2$. This yields a contradiction when n is even. Hence, n is odd and $\gamma_{tv}(T') = \frac{n-1}{2} = \left\lceil\frac{n(T') + 2}{2}\right\rceil$. Thus, $T' \in \mathcal{F}$, with $n(T') = n - 3$ even. By the induction assumption, $T' \in \mathcal{G}$.

The tree T can now be constructed from T' by applying Operation O2, whence $T \in \mathcal{G}$.

Assume v lies on the path vx_1x_2z. Since x_1 (x_2, respectively) is on a longest path at distance $\text{diam}(T) - 2$ (diam $(T) - 1$, respectively) from r, we have $\deg(x_1) = 2$ ($\deg(x_2) = 2$, respectively). This implies that vx_1x_2 is an endpath, and so $x_1 \notin S$. But then $S' = S - \{x_2, z\}$ is a TRDS of $T' = T - x_1 - x_2 - z$. Thus, $\frac{n-3+2}{2} \leq \gamma_{tv}(T') \leq \frac{n+2}{2} - 2$. This yields a contradiction when n is even. Hence, n is odd and $\gamma_{tv}(T') = \frac{n(T') + 2}{2}$. Thus, $T' \in \mathcal{F}$, with $n(T') = n - 3$ even. By the induction assumption, $T' \in \mathcal{G}$ and T can now be constructed from T' by applying Operation O3, whence $T \in \mathcal{G}$.

Thus, we assume each vertex on a longest path at distance $\text{diam}(T) - 3$ from r has degree 2.

Let v be any vertex on a longest path at distance $\text{diam}(T) - 4$ from r. As $P_5 \notin \mathcal{F}$, $v \notin r$ and $\text{diam}(T) \geq 5$.

Assume $\deg_T(v) \geq 3$. Let $vy_1y_2y_3z'$ be an endpath of T. Then, as y_2y_3z' is an endpath of T, it follows that $y_2 \notin S$, which implies $y_1 \notin S$ and $v \in S$. Moreover, $S' = S - \{y_3, z'\}$ is a TRDS of $T' = T - y_1 - y_2 - y_3 - z'$. Thus, $\frac{n-4+2}{2} \leq \gamma_{tv}(T') \leq \frac{n+2}{2} - 2$, whence $\gamma_{tv}(T') = \frac{n(T') + 2}{2}$. We conclude that $T' \in \mathcal{F}$, and by the induction assumption, $T' \in \mathcal{G}$. If $\deg_T(v) = 2$ or when v is a remote vertex, then T can be constructed from T' by applying Operation O4.

We therefore assume that $\deg_T(v) \geq 3$ and that v is not adjacent to a leaf.

If v also lies on the path vzx, where z is a leaf, then $v \notin S$, which is a contradiction.

We now suppose v lies on the path vx_1x_2z, where z is a leaf. Then, since x_2 is a remote vertex, we have $\deg(x_2) = 2$. As x_1x_2 is an endpath of T, it follows that $x_1 \notin S$. As x_1 must be adjacent to another vertex in $V - S$, vertex x_1 lies on a path x_1, u_1, u_2, z''. But then x_1, with $\deg(x_1) \geq 3$, is a vertex at distance $\text{diam}(T) - 3$ on a longest path from r, which is a contradiction.

Let e be the edge that joins v with its parent, and let $T(v)$ be the component of $T - e$ that contains v. Then $T(v)$ consists of ℓ disjoint paths $u_i x_i y_i z_i (i = 1, \ldots, \ell)$ with v joined to u_i for $i = 1, \ldots, \ell$. Let $i \in \{1, \ldots, \ell\}$. Since $x_i y_i z_i$ is an endpath of T, we have $x_i \notin S$, $u_i \notin S$ and $v \in S$. Then $S - \bigcup_{i=1}^{\ell}(y_i, z_i)$ is a TRDS of $T' = T - (T(v) - v)$, and so $\frac{n-4\ell+2}{2} \leq \gamma_{tv}(T') \leq \frac{n+2}{2} - \ell$, whence $\gamma_{tv}(T') = \frac{n(T') + 2}{2}$. Thus, $T' \in \mathcal{F}$, and by the induction assumption, $T' \in \mathcal{G}$. Note that v is a leaf of T'. The tree T can now be constructed from T' by applying Operation O4, whence $T \in \mathcal{G}$. \qed

Theorem 7. Let T be a tree of order $n(T)$. If $n(T) \equiv 0 \mod 4$, then $\gamma_{tv}(T) \geq \left\lceil\frac{n(T) + 2}{2}\right\rceil + 1$.

Proof. We will show that every tree T in $\mathcal{F} = C$ has $n(T) \not\equiv 0 \mod 4$, by using induction on $s(T)$, the number of operations required to construct the tree T. If $s(T) = 0$, then $T = P_2$, and $2 \not\equiv 0 \mod 4$. Assume, then, for all trees $T' \in \mathcal{G}$ with $s(T') < k$, where $k \geq 1$ is an integer, that $n(T') \not\equiv 0 \mod 4$. Let $T \in \mathcal{G}$ be a tree with $s(T) = k$. Then T is obtained from some tree T' by one of the Operations O1–O4. Then $T' \in \mathcal{G}$, and by the induction hypothesis, $n(T') \not\equiv 0 \mod 4$. If T is obtained from T' by one of the Operations O1–O3, then $n(T') \equiv 2 \mod 4$, and, since either a path of order 1 or a path of order 3 is attached to T' to form T, $n(T) \not\equiv 0 \mod 4$. Moreover, $n(T) = n(T') + 4$ if T is obtained from T' by Operation O4, whence $n(T) \not\equiv 0 \mod 4$. The result now follows. \qed
4. Extremal trees T of order $n(T) \equiv 0 \mod 4$ with $\gamma_{tr}(T) = \left\lceil \frac{n(T)+2}{2} \right\rceil + 1$

Let $\mathcal{F}^* = \{ T \mid T$ is a tree of order $n(T) \equiv 0 \mod 4$ such that $\gamma_{tr}(T) = \left\lceil \frac{n+2}{2} \right\rceil + 1 \}$. In order to constructively characterize the trees in \mathcal{F}^*, we define the following operations on a tree T:

O5. Join a leaf or a remote vertex v of T to a vertex of K_1, where $n(T) \equiv 3 \mod 4$.
O6. Join a vertex v of T which lies on an endpath vxz to a vertex of K_2, where $n(T) \equiv 2 \mod 4$.
O7. Join a vertex v of T which lies on an endpath vx_1x_2z to a vertex of K_2, where $n(T) \equiv 2 \mod 4$.
O8. Join a vertex v of T which lies on an endpath vx_1x_2z to a leaf of P_3, where $n(T) \equiv 1 \mod 4$.
O9. Join a vertex v of T which lies on an endpath vx_1x_2z to a leaf of P_3, where $n(T) \equiv 1 \mod 4$.

Let $\mathcal{F} = \{ T \mid T$ is a tree obtained by applying one of the Operations O5–O9 to a tree $T' \in \mathcal{C}$ exactly once $\}$. Let $\mathcal{C}^* = \{ T \mid T$ is a tree obtained from a tree $T' \in \mathcal{F}$ by applying Operation O4 to T' zero or more times $\}$. We will show that $\mathcal{F}^* = \mathcal{C}^*$.

Lemma 8. Let $T' \in \mathcal{C}$ be a tree of order $n(T') \equiv 3 \mod 4$. If T is obtained from T' by Operation O5, then $T \in \mathcal{F}^*$.

Proof. Let u be a leaf or a remote vertex of T', and suppose T is formed by attaching the singleton v to u. Let S be a $\gamma_{tr}(T')$-set of T'. Then $S \cup \{v\}$ is a TRDS set of T, and so, since $n(T) \equiv 0 \mod 4$, $\left\lceil \frac{n(T)+2}{2} \right\rceil + 1 \leq \gamma_{tr}(T) \leq |S| + 1 = \left\lceil \frac{n(T)+2}{2} \right\rceil + 1 = \left\lceil \frac{n(T)+1}{2} \right\rceil + 1$. Hence, $\gamma_{tr}(T) = \left\lceil \frac{n(T)+2}{2} \right\rceil + 1$, and so $T \in \mathcal{F}^*$. □

Lemma 9. Let $T' \in \mathcal{C}$ be a tree of order $n(T') \equiv 2 \mod 4$. If T is obtained from T' by either Operation O6 or Operation O7, then $T \in \mathcal{F}^*$.

Proof. Let $\{u, v\}$ be the vertex set of K_2 and let S be a $\gamma_{tr}(T')$-set. The set $S \cup \{u, v\}$ is a TRDS of T, and so, since $n(T) \equiv 0 \mod 4$, $\left\lceil \frac{n(T)+2}{2} \right\rceil + 1 \leq \gamma_{tr}(T) \leq |S| + 2 = \left\lceil \frac{n(T)+2}{2} \right\rceil + 2 = \left\lceil \frac{n(T)+1}{2} \right\rceil + 2$. Hence, $\gamma_{tr}(T) = \left\lceil \frac{n(T)+2}{2} \right\rceil + 1$, and so $T \in \mathcal{F}^*$. □

Lemma 10. Let $T' \in \mathcal{C}$ be a tree of order $n(T') \equiv 1 \mod 4$. If T is obtained from T' by either Operation O8 or Operation O9, then $T \in \mathcal{F}^*$.

Proof. Let S be a $\gamma_{tr}(T')$-set of T'. Assume v lies on the endpath vxz or vx_1x_2z and T is obtained from T' by adding the path y_1y_2z' to T' and joining y_1 to v. We show that $v \notin S$.

First consider the case when v lies on the endpath vxz. Suppose $v \in S$. Then $x, z \in S$, and $S - \{z\}$ is TRDS of $T'' = T' - z$. Since $n(T'') \equiv 0 \mod 4$, $\left\lceil \frac{n(T'+2)}{2} \right\rceil + 1 \leq \gamma_{tr}(T'') \leq |S| - 1 = \left\lceil \frac{n(T)+2}{2} \right\rceil - 1 = \left\lceil \frac{n(T)+1}{2} \right\rceil - 1$, and so $n(T') + 4 \leq n(T'') + 2$, which is a contradiction. Thus, $v \notin S$.

In the case when v lies on the endpath vx_1x_2z, one may show, as in the previous paragraph, that $x_1 \notin S$. But then $v \notin S$, as required.

In both cases, the set $S \cup \{y_2, z'\}$ forms a TRDS of T, so that $\left\lceil \frac{n(T)+2}{2} \right\rceil + 1 \leq \gamma_{tr}(T) \leq |S| + 2 = \left\lceil \frac{n(T)+2}{2} \right\rceil + 2 = \left\lceil \frac{n(T)+1}{2} \right\rceil + 2$. Hence, $\gamma_{tr}(T) = \left\lceil \frac{n(T)+2}{2} \right\rceil + 1$, and so $T \in \mathcal{F}^*$. □

The proof of the following result is similar to that of Lemma 5.

Lemma 11. If T is obtained from $T' \in \mathcal{F}^*$ by Operation O4, then $T \in \mathcal{F}^*$.

Lemma 12. If T is in \mathcal{F}, then T is in \mathcal{F}^*.

Proof. Assume $T \in \mathcal{F}$. Then T is obtained from $T' \in \mathcal{C}$ by applying one of the Operations O5–O9 exactly once. Then, by Lemmas 8–10, $T \in \mathcal{F}^*$. □
Theorem 13. T is in \mathcal{G}^* if and only if T is in \mathcal{F}^*.

Proof. Assume $T \in \mathcal{G}^*$. We show that $T \in \mathcal{F}^*$, by using induction on $c(T)$, the number of operations required to construct the tree T. If $c(T) = 0$, then $T \in \mathcal{A}$, and the result follows from Lemma 12. Assume, then, for all trees $T' \in \mathcal{G}^*$ with $c(T') < k$, where $k \geq 1$ is an integer, that T' is in \mathcal{F}^*. Let $T \in \mathcal{G}^*$ be a tree with $c(T) = k$. Then T is obtained from some tree T' by applying Operation O4. But then $T' \in \mathcal{G}^*$ and $c(T') < k$. Applying the inductive hypothesis to T', T' is in \mathcal{F}^*. Hence, by Lemma 11, T is in \mathcal{F}^*.

To show that $T \in \mathcal{G}^*$ for a nontrivial $T \in \mathcal{F}^*$, we employ induction on $4n$, the order of the tree T. Suppose $n = 1$. Then $T \cong K_{1,3}$ or $T \cong P_4$, and T can be constructed from $P_3 \in \mathcal{G}$ by applying Operation O5.

Let $T \in \mathcal{F}^*$ be a tree of order $4n$, where $n \geq 2$, and suppose $T' \in \mathcal{G}^*$ for all trees $T' \in \mathcal{F}^*$ of order $4n'$ where $n' < n$.

The only trees T with $diam(T) \leq 3$ which are in \mathcal{F}^* are $K_{1,3}$ and P_4. As $4n \geq 8$, it follows that $diam(T) \geq 4$. Throughout S will be used to denote a γ_{tr}-set of T, i.e. $|S| = \left\lceil \frac{n+2}{2} \right\rceil + 1$.

Claim 5. If u and v are vertices of T such that $T' = T - u - v$ is a tree and $S' = S - \{u, v\}$ is a TRDS of T', then $n(T') \equiv 2 \mod 4$ and $T' \in \mathcal{G}$.

Proof. As $\left\lceil \frac{n+2}{2} \right\rceil \leq \gamma_{tr}(T') \leq \left\lceil \frac{n+2}{2} \right\rceil + 1$, we have $\gamma_{tr}(T') = \left\lceil \frac{n-2+2}{2} \right\rceil = \left\lceil \frac{n(T)+2}{2} \right\rceil$, and so $T' \in \mathcal{G}$. □

Claim 6. Let z be a leaf of T. If $S - \{z\}$ is a TRDS of $T' = T - z$, then $T \in \mathcal{G}^*$.

Proof. Assume $S - \{z\}$ is a TRDS of T'. Then $\left\lceil \frac{n-1+2}{2} \right\rceil \leq \gamma_{tr}(T') \leq \left\lceil \frac{n+2}{2} \right\rceil + 1 - 1 = \left\lceil \frac{n+2}{2} \right\rceil$. Hence, $n - 1 \equiv 3 \mod 4$ and $\gamma_{tr}(T') = \left\lceil \frac{n+1}{2} \right\rceil = \left\lceil \frac{n(T)+2}{2} \right\rceil$. Thus, $T' \in \mathcal{G}$. The tree T can now be constructed from T' by applying Operation O5, whence $T \in \mathcal{G}^*$. □

Claim 6 implies that if vzx is an endpath of T, then we may assume $v \notin S$, since otherwise the tree is constructible. Claim 6 also implies that every remote vertex of T is adjacent to exactly one leaf, since otherwise it is constructible.

Let T be rooted at a leaf r of a longest path.

Let v be any vertex on a longest path at distance $diam(T) - 2$ from r. Suppose v lies on the endpath $vyy'z'$. Then, by the remark above, $v \notin S$, which implies v is not adjacent to a leaf. If v also lies on the endpath vzx, then $S - \{x, z\}$ is a TRDS of $T - x - z$ and so $T' \in \mathcal{G}$ (cf. Claim 5), whence $T \in \mathcal{G}^*$ (as it can be constructed from T' by applying Operation O6).

Thus, we assume each vertex on a longest path at distance $diam(T) - 2$ or $diam(T) - 1$ from r has degree 2.

Let v be any vertex on a longest path at distance $diam(T) - 3$ from r. Let $vy_1y_2y_3'$ be an endpath of T. Then $y_1 \notin S$, and so $v \notin S$, which means all neighbors of v have degree at least 2.

Assume v also lies on the path vxz, where z is a leaf. Then, since each remote vertex is adjacent to exactly one leaf, vzx is an endpath. If v is dominated by a vertex other than x, then $S - \{x, z\}$ is a TRDS of $T' = T - x - z$ and so $T' \in \mathcal{G}$ (cf. Claim 5), whence $T \in \mathcal{G}^*$ (as it can be constructed from T' by applying Operation O7). Hence, v is dominated only by x. Then $S' = S - \{y_2, z\}$ is a TRDS of $T' = T - y_1 - y_2 - z'$ and so $\left\lceil \frac{n-3+2}{2} \right\rceil \leq \gamma_{tr}(T') \leq \left\lceil \frac{n+2}{2} \right\rceil - 1$.

But then $\gamma_{tr}(T') = \left\lceil \frac{n-1}{2} \right\rceil = \left\lceil \frac{n(T)+2}{2} \right\rceil$. Thus, $T' \in \mathcal{G}$. The tree T can now be constructed from T' by applying Operation O8.

Assume v lies on the path $vx_1x_2x_3z$. Since x_1 (x_2, respectively) is on a longest path at distance $diam(T) - 2$ ($diam(T) - 1$, respectively) from r, we have $deg(x_1) = 2$ ($deg(x_2) = 2$, respectively). This implies that $vx_1x_2x_3z$ is an endpath, and so $x_1 \notin S$. But then $S' = S - \{x_2, z\}$ is a TRDS of $T' = T - x_1 - x_2 - z$. Thus, $\left\lceil \frac{n-3+2}{2} \right\rceil \leq \gamma_{tr}(T') \leq \left\lceil \frac{n+2}{2} \right\rceil - 1$. But then $\gamma_{tr}(T') = \left\lceil \frac{n-1}{2} \right\rceil = \left\lceil \frac{n(T)+2}{2} \right\rceil$. Thus, $T' \in \mathcal{G}$ and so T can now be constructed from T' by applying Operation O9.

Thus, we assume each vertex on a longest path at distance $diam(T) - 3$ from r has degree 2.

Let v be any vertex on a longest path at distance $diam(T) - 4$ from r. As $P_3 \notin \mathcal{F}^*$, $v \neq r$ and $diam(T) \geq 5$.

Assume $deg_T(v) \geq 3$. Let $y_1y_2y_3z'$ be an endpath of T. But then, as y_2y_3z' is an endpath of T, it follows that $y_2 \notin S$, which implies $y_1 \notin S$ and $v \in S$. Moreover, $S' = S - \{y_3, z\}$ is a TRDS of $T' = T - y_1 - y_2 - y_3 - z'$. Thus, $\left\lceil \frac{n-4+2}{2} \right\rceil + 1 \leq \gamma_{tr}(T') \leq \left\lceil \frac{n+2}{2} \right\rceil - 1$, whence $\gamma_{tr}(T') = \left\lceil \frac{n(T)+2}{2} \right\rceil + 1$. We conclude that $T' \in \mathcal{F}^*$, and by the induction
assumption, $T' \in \mathcal{C}^*$. If $\deg_T(v) = 2$ or when v is a remote vertex, then T can be constructed from T' by applying Operation O4, whence $T \in \mathcal{C}^*$.

We therefore assume that $\deg_T(v) \geq 3$ and that v is not adjacent to a leaf.

If v also lies on the path vzx, where z is a leaf, then $v \notin S$, which is a contradiction.

We now suppose v lies on the path vx_1x_2z, where z is a leaf. Then, since x_2 is a remote vertex, we have $\deg(x_2) = 2$. As x_1x_2z is an endpath of T, it follows that $x_1 \notin S$. As x_1 must be adjacent to another vertex in $V - S$, vertex x_1 lies on a path x_1, u_1, u_2, z''. But then x_1, with $\deg(x_1) \geq 3$, is a vertex at distance $\text{diam}(T) - 3$ on a longest path from r, which is a contradiction.

Let e be the edge that joins v with its parent, and let $T(v)$ be the component of $T - e$ that contains v. Then $T(v)$ consists of ℓ disjoint paths $u_ix_iy_iz_i$ ($i = 1, \ldots, \ell$) with v joined to u_i for $i = 1, \ldots, \ell$. Let $i \in \{1, \ldots, \ell\}$. Since $x_iy_iz_i$ is an endpath of T, we have $x_i \notin S$, $u_i \notin S$ and $v \in S$. Then $S - \bigcup_{i=1}^{\ell} \{y_i, z_i\}$ is a TRDS of $T' = T - (T(v) - v)$, and so $\left\lceil \frac{n - 4\ell + 2}{2} \right\rceil + 1 \leq \gamma_{tr}(T') \leq \left\lceil \frac{n + 2}{2} \right\rceil - 2\ell + 1$, whence $\gamma_{tr}(T') = \left\lceil \frac{n(T') + 2}{2} \right\rceil + 1$. Thus, $T' \in \mathcal{F}^*$, and by the induction assumption, $T' \in \mathcal{C}^*$. Note that v is a leaf of T'. The tree T can now be constructed from T' by applying Operation O4, whence $T \in \mathcal{C}^*$. □

References