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Let Fn be a free group with rank n, and denote by OutFn its outer automorphism
group. For arbitrary n, consider the orders of periodic elements in OutFn or, equiv-
alently, the orders of finite cyclic subgroups of OutFn. By considering group actions
on finite connected graphs, we obtained the number-theoretical characterization of
these orders. Comparing the results with those for cyclic subgroups of finite sym-
metric groups asymptotic estimation for the maximum order cn is derived. © 2000
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1. INTRODUCTION

Denote by Fn a free group with rank n. Its inner automorphism group is
defined by

InnFn = �f ∈ AutFny ∃x ∈ Fn; s.t. ∀y ∈ Fn; f �y� ≡ x−1yx�:
And its outer automorphism group is the group of automorphisms modulo
the inner automorphism group. Namely,

OutFn = AutFn/InnFn: (1.1)

The study of finite subgroups of OutFn has a close relationship with the
study of group actions on finite connected graphs.

1 Email: bzq@sxx0.math.pku.edu.cn. The author thanks Professor Shicheng Wang for valu-
able comments.
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Definition. An abstract graph consists of vertices and edges. For a fi-
nite connected graph 0, as a topological space, its fundamental group π1�0�
must be a free group with rank

n = 1− χ�0�;
in which χ�0� is the Euler number of 0. We call n the graph’s rank. The
valence of a vertex p is the number of edges connecting to p, in which the
edges with both ends coincide with p will be counted twice. If there is an
edge in 0 connecting two vertices x and y, we say that x and y are adjacent.

An automorphism of a graph 0 is a bijection of its vertices and edges
that preserves the graph structure (here the reversal of edges is also taken
into consideration). Denote by Aut0 the group of all such automorphisms
on 0, and call it the total automorphism group. For any element g ∈ Aut0,
it induces an algebraic outer automorphism g∗ on π1�0�, the fundamental
group of 0. Noticing that π1�0� ∼= Fn, in which n is the rank of 0, we obtain
a correspondence

∗x Aut0→ OutFn; g 7→ g∗:

This correspondence sends every subgroup G < Aut0 homomorphically to
a subgroup G∗ < Out Fn. In this case, we say that G realizes G∗ on 0.
Furthermore, if the correspondence is an isomorphism, then it is called an
effective realization.

Culler [2] and Zimmermann [7] observed independently that every finite
subgroup of OutFn can be realized by a group of automorphisms of certain
rank n graph. Moreover, we have the following lemma, of which a proof
can be found in [6].

Lemma 1.1. For any finite subgroup G < OutFn, there exists a finite con-
nected graph 0 with rank n and no vertex of valence 1 or 2 and a subgroup
H < Aut0 realizing G effectively.

Therefore, for analyzing finite subgroups in OutFn, we only need to study
the automorphism groups of various graphs. Based on the above lemma,
Wang and Zimmermann [6] proved that, for finite subgroups of OutFn, their
maximum order is 12 when n = 2 and 2nn! when n 6= 2. In [1], it is shown
that the maximum order of finite abelian subgroups of OutFn is 6 when
n = 2 and 2n when n 6= 2.

Now consider the orders of finite cyclic subgroups of OutFn or, equiva-
lently, the orders of periodic outer automorphisms of OutFn. In this article,
also by using Lemma 1.1, number-theoretical properties are found which
completely determine the set of these orders (Theorem 3.1).

This order set has a close relationship with the set of orders of permu-
tations on an n-tuple. For any n-tuple X, the symmetric group SX is the
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group of all permutations on it. Particularly, for X = �1; 2; : : : ; n�, SX is
denoted by Sn. ∀λ ∈ Sn, let �λ� denote its order. The set of orders of ele-
ments in Sn has been discussed by many authors. Comparing these results
(Lemma 2.3), the following asymptotic estimation is derived:

Theorem 1.1 (Main Theorem). Let cn be the maximum order of finite
cyclic subgroups of OutFn or, equivalently, the maximum order of periodic
outer automorphisms of Fn. Then

cn = exp
(�1+ θn�√n log n

)
; (1.2)

in which �θn� is a number sequence that converges to 0 when n→+∞.

In the following discussion, we use o�1� to denote any arbitrary number
sequence that converges to 0 when n→+∞.

2. THE NUMBER SET An AND Bn

Notation. If x1; : : : ; xk are natural numbers, denote by lcm�x1; : : : ; xk�
their lowest common multiplier. For arbitrary n ∈ � , define

An =
{
lcm�x1; : : : ; xk�y x1; : : : ; xk ∈ �; x1 + · · · + xk ≤ n

}
; (2.1)

an = max
{
xy x ∈ An

}
: (2.2)

Apparently, if n ≤ m, then An ⊆ Am. If y ∈ An; x � y, then x ∈ An. Here
“�” denotes divisibility.

Lemma 2.1. An can be expressed by prime powers as follows:

An =
{
p
i1
1 · · ·pikk y p1; : : : ; pk are different prime numbers,

i1; : : : ; ik ∈ �; p
i1
1 + · · · + pikk ≤ n

}
: (2.3)

Proof. Apparently the right-hand side is contained in An. Now, for any
natural numbers y1; : : : ; yl ∈ � \ �1� that are coprime with each other,
y1 · · · yl = lcm�y1; : : : ; yl�, while y1 + · · · + yl ≤ y1 · · · yl. This implies that,
given any x ∈ An, one can substitute all the xj in the definition of An by
their prime power factors. Removing in different xj redundant powers of
each prime number, the expression in Eq. (2.3) follows.

Lemma 2.2. An is exactly the set of orders of elements in the symmetric
group Sn.
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Proof. In fact, given any permutation λ ∈ Sn, it can be decomposed
into the product of disjoint cycles. (Here, for distinct numbers i1; : : : ; il ∈
�1; : : : ; n�, a cycle �i1; : : : ; il� is an element µ ∈ Sn defined as follows. For
j such that 1 ≤ j < l; µ�ij� = ij+1y µ�il� = i1; and µ keeps all the other
numbers between 1 and n invariant.) Let the orders of these cycles be
x1; : : : ; xk. Then x1 + · · · + xk ≤ n, while

�λ� = lcm�x1; : : : ; xk�:
On the other hand, if x = lcm�x1; : : : ; xk�; x1 + · · · + xk ≤ n, put

y0 = 0; yj = x1 + · · · + xj; 1 ≤ j ≤ k:
Let λ be the product of disjoint cycles �yj−1 + 1; yj−1 + 2; : : : ; yj�; j =
1; : : : ; k. Then λ ∈ Sn while �λ� = x.

The study of the maximum number an ∈ An, or the maximum order
of elements in Sn, began early in 1909, when Landau first established an
asymptotic estimation for it (see [5] for a comprehensive review).

Lemma 2.3. an = exp��1+ o�1��√n log n� �n→+∞�.

Notation. Similar to the above definition, define

Bn =
{
p
i1
1 · · ·pikk y p1; : : : ; pk are different prime numbers,

i1; : : : ; ik ∈ �;
(
p
i1
1 − pi1−1

1

)+ · · · + �pikk − pik−1
k � ≤ n}; (2.4)

B0 = �1�; bn = max�xy x ∈ Bn�: (2.5)

Lemma 2.4. Bn can be expressed similarly to An as follows:

Bn =
{
lcm�x1; : : : ; xk�yx1; : : : ; xk ∈ �; ∃mj � xj; 0 < mj < xj;

j = 1; : : : ; k; s.t. �x1 −m1� + · · · + �xk −mk� ≤ n
}
: (2.6)

Proof. The right-hand side apparently contains Bn as a subset. On the
other hand, suppose that x = lcm�x1; : : : ; xk� is an element in the right-
hand set of Eq. (2.6). Suppose that one of the xj , say x1, is not a prime
power. Then there is a prime number p � xj such that

x1 = piq; m1 = pjr; i ≥ j; p � q; p � r; and q > r:

Apparently x = lcm�pi; q; x2; : : : ; xk�. If i > j, then

�pi − pj� + �q− r� ≤ m1�pi−j − 1� +m1�q/r − 1�
≤ m1�pi−jq/r − 1� = x1 −m1:
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If i = j, then

�pi − 1� + �q− r� ≤ pi�q− r� = x1 −m1:

Therefore, x1 can be substituted by pi and q. By induction, we may substi-
tute every xj by a group of prime powers. Namely,

x = lcm�x′1; : : : ; x′l�
satisfying the requirements of the right-hand side of Eq. (2.6), and
x′1; : : : ; x

′
l are all prime powers. If x′1 = pi, then x′1 − pi−1 ≤ x′1 −m′1, so

m′1 can be substituted by pi−1. This can similarly be done for other mj .
Finally, if x1 = pi; x2 = pj; i > j, then x = lcm�x1; x3; : : : ; xk�, so the re-
dundant prime powers in the expression of x can all be removed. Hence,
x ∈ Bn.

Lemma 2.5. The set Bn satisfies the following properties:

1. If m < n, then Bm ⊆ Bn.

2. If x � y; y ∈ Bn, then x ∈ Bn.

3. If x ∈ An, then 2x ∈ Bn.

4. If m;n > 0; x ∈ Bm; y ∈ Bn, then lcm�x; y� ∈ Bm+n.

Proof. (1) and (2) are direct corollaries of the definition.
(3) ∀x ∈ An, following Eq. (2.3), there are distinct primes p1; : : : ; pk

and indices i1; : : : ; ik ∈ �, such that x = pi11 · · ·pikk while pi11 + · · · +pikk ≤ n.
If p1; : : : ; pk 6= 2, then 2x = 2 · pi11 · · ·pikk , while

�2 − 1� + �pi11 − pi1−1
1 � + · · · + �pikk − pik−1

k �
≤ 1+ �pi11 − 1� + pi22 + · · · + pikk ≤ n:

If, say, p1 = 2, then 2x = pi1+1
1 p

i2
2 · · ·pikk , while

�pi1+1
1 − pi11 � + �pi22 − pi2−1

2 � + · · · + �pikk − pik−1
k �

≤ pi11 + pi22 + · · · + pikk ≤ n:
In both cases, by definition, 2x ∈ Bn.

(4) is a corollary of Eq. (2.6).

To sum up, these properties are all satisfied.

Lemma 2.6. The growth rate of the maximum number in Bn satisfies

bn = exp
(�1+ o�1��√n log n

)
; n→+∞: (2.7)
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Proof. By definition, there are distinct prime numbers p1 < · · · < pk
and indices i1; : : : ; ik ∈ �, such that bn = pi11 · · ·pikk , while �pi11 − pi1−1

1 � +
· · · + �pikk − pik−1

k � ≤ n.
Suppose without loss of generality that ∃l ∈ � s.t.

when j < l; pj < 1+ log ny
when j ≥ l; pj ≥ 1+ log n:

By the well-known asymptotic law of the distribution of prime numbers,
or the prime number theorem (see, for example, [3, Chap. 2]), the function
π�ν� of primes less than ν satisfies

π�ν� = �1+ o�1��ν/ log ν; ν→+∞: (2.8)

So l − 1 ≤ π�1+ log n� = �1+ o�1�� log n/ log log n. Because p
ij
j ≤ 2�pijj −

p
ij−1
j � ≤ 2n, one sees that

p
i1
1 · · ·pil−1

l−1 ≤ �2n�l−1 ≤ exp
(
o�1�

√
n log n

)
; n→+∞: (2.9)

When j ≥ l; pij−1
j ≤ �pijj − p

ij−1
j �/ log n. Thus pil−1

l + · · · + pik−1
k ≤ ��pill −

p
il−1
l � + · · · + �pikk − pik−1

k ��/ log n ≤ n/ log n, which implies

p
il
l + · · · + pikk ≤ n+ n/ log n = n�1+ o�1��:

Namely, pill · · ·pikk ∈ An�1+τn�, in which �τn� is a sequence of numbers con-
verging to 0 when n→+∞. By Lemma 2.3,

p
il
l · · ·pikk ≤ an�1+τn� = exp

(�1+ o�1��√n log n
)
; n→+∞: (2.10)

Hence, we obtained bn = pi11 · · ·pikk ≤ exp��1+ o�1��√n log n�.
By Lemma 2.5, bn ≥ an which equals exp��1+ o�1��√n log n�. Compar-

ing this with the above inequality, the equality on the growth rate of bn
follows.

3. THE ORDER SET OF GRAPH AUTOMORPHISMS

Before proving the main theorem, first define some special terms that
will be used later.

Definition. A loop is an edge with both ends coinciding with each
other. If, for two vertices in a graph, there is more than one edge connecting
them, then the aggregate of these edges is called a set of multiple edges. A
simple graph is a connected graph without loops, multiple edges, or vertices
of valences 1 or 2.
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By a chain of valence 2 vertices in 0 we mean a set of valence 2 vertices x1;
x2; : : : ; xk ∈ 0 such that, for each i < k, there is an edge in 0 connecting xi
and xi+1. If k > 1 and there is an edge in 0 connecting x1 and xk, namely,
closing this chain, then it is called a closed chain. Clearly, 0 is exactly the
closed chain if it is connected and contains a closed chain.

Notation. If a graph 0 has valence 1 vertices, then one can remove these
vertices and the edges connecting to them. This process can be repeated
inductively to derive a graph 0′ with no valence 1 vertex. For notational
convenience, we refer to the removed parts as “leaves,” and call 0′ a graph
obtained from 0 by “cutting leaves.”

If 0 is not a loop or closed chain and it has no valence 1 vertex, then, by
merging every pair of edges joining at a valence 2 vertex, one can construct
a new graph 0′ with the same rank as that of 0. Moreover, Aut0 is a
subgroup of Aut0′. If 0′ consists of only two vertices x; y and n+ 1 multiple
edges connecting them, then call 0 “a beam of edges.”

Given any x;m ∈ � such that m � x, the following “lotus graph” Gx;m is a
finite connected graph with no valence 1 vertex. It has a center point a and
m other points b1; : : : ; bm, and there are x/m multiple edges ej1; : : : ; e

j
x/m

connecting a with each bj (see Fig. 1). Clearly, rankGx;m = x−m. There
is also a canonical automorphism gx;m ∈ Gx;m with order x defined as
follows: gx;m�a� = a. gx;m�bj� = bj+1 if j 6= m, while gx;m�bm� = b1. If
j 6= m; gx;m�ejk� = ej+1

k . For k = 1; : : : ; x/m − 1; gx;m�emk � = e1
k+1 while

gx;m�emx/m� = e1
1.

By Lemma 1.1, Theorem 1.1 can be induced by the following theorem
that characterizes the order set of periodic outer automorphisms of Fn.

Theorem 3.1. Fix an n > 1. Assume arbitrarily a finite connected rank
n graph 0 with no valence 1 vertex or closed chain and an automorphism
g ∈ Aut0. If 0 is a beam of edges, then order�g� = lcm�a; y� in which

FIG. 1. The “lotus” graph Gx;m.
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a ∈ �1; 2� and y ∈ An+1. Otherwise order�g� ∈ Bn. On the other hand, if
x ∈ Bn or x = lcm�a; y� in which a ∈ �1; 2� and y ∈ An+1, then there is a
finite connected rank n graph 0 with no valence 1 vertex or closed chain, s.t.
∃g ∈ Aut0 with order�g� = x.

Corollary. For the automorphisms of finite connected rank n graphs
with no valence 1 vertex or closed chain, the set of their orders equals Bn ∪
�lcm�2; n + 1��. Furthermore, lcm�2; n + 1� /∈ Bn if and only if n + 1 is a
prime number.

Proof. By the above theorem, this order set equals

B̃n = Bn ∪
{
x = lcm�a; y�y a = 1 or 2; y ∈ An+1

}
: (3.1)

Apparently, An+1 ⊆ Bn. Given any y ∈ An+1 \ �n + 1�. If y is even,
lcm�2; y� = y. So we suppose without loss of generality that y is odd. Then,
by Lemma 2.2, there is a permutation λ ∈ Sn+1, such that y = �λ�. If λ is
not a cycle, then there is an m ∈ �; 0 < m < n + 1, such that λ can be
decomposed into two disjoint permutations λ1; λ2 of m- and �n+ 1−m�-
tuples, respectively. Thus 2y1 ∈ Bm; y2 ∈ Bn−m, while 2y = lcm�2y1; y2�. By
Lemma 2.5, 2y ∈ Bn.

Now suppose that λ is a cycle and y = �λ� is not a prime number. Of
course, lcm�2; y� is in An+1 ⊆ Bn if y is even. If y is odd, suppose that y =
piq, in which p is its smallest prime factor, p - q. If q > 1, then lcm�2; y� =
lcm�2pi; 2q�, while �2pi − pi� + �2q − q� = pi + q ≤ piq − 1 = n. By
Lemma 2.4, lcm�2; y� ∈ Bn. If q = 1; i > 1, then lcm�2; y� = lcm�2; pi�,
while �2 − 1� + �pi − p� ≤ pi − 2 < n, so again lcm�2; y� ∈ Bn. Therefore,
the previous order set is exactly

Bn ∪
{
lcm�2; y�y y ≤ n+ 1 is a prime number

}
:

Clearly, if y is prime, then lcm�2; y� /∈ Bn if and only if y = n + 1 and
n+ 1 is an odd prime number.

If n = 1, the only rank n graph with no valence 1 vertex and closed chain
is a single loop. Thus, c1=2. For n = 2; 2�2 + 1� = 6 > b2 = 4, so c2 = 6.
If n > 2, then lcm�2; n + 1� ≤ 4�n − 1�. But 4 ∈ B2; �n − 1� ∈ Bn−2, so
4�n − 1� ∈ Bn and lcm�2; n + 1� ≤ bn. Therefore, we have the following
corollary.

Corollary. Consider finite connected rank n graphs with no vertex of
valence 1 or closed chains. Let cn be the maximum order of automorphisms
of such graphs. Then c1 = 2; c2 = 6, and, for n > 2; cn = bn.

Proof of Theorem 1.1. By Lemma 1.1, we see that every finite subgroup
G < Out Fn can be realized effectively on some finite connected graph 0,
in which the graph has rank n and no vertex of valence 1 or 2. Particularly,
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this implies that periodic outer automorphisms of Fn have the same order
set as that of⋃�Aut 0y rank�0� = n; 0 has no valence 1 vertex or closed chain

}
:

Therefore, by the above corollary, their maximum order is cn and, for n >
2; cn = bn. By Lemma 2.6,

cn = exp
(�1+ o�1��√n log n

)
; n→+∞:

Now we will prove Theorem 3.1. First, consider the realization prob-
lem. Given n > 1. If x ∈ Bn, then there are natural numbers k; x1; : : : ;
xk;m1; : : : ;mk ∈ �, such that mj < xj; mj � xj; j = 1; : : : ; k; �x1 −m1� +
· · · + �xk −mk� ≤ n, while

x = lcm�x1; : : : ; xk�:
Let 0 be the graph obtained by pinching lotus graphs Gx1;m1

; : : : ;Gxk;mk
at

a common center point, and let g be the automorphism which restricts to
gxj;mj

on each Gxj;mj
. Then the rank of 0 is �x1 −m1� + · · · + �xk −mk� ≤

n, while g ∈ Aut0 has order x. Since the center point is invariant, we can
attach some loops to it and obtain a new graph with rank n. Moreover, g
induces an automorphism on it which restricts to identities on the loops
added. This automorphism also has order x.

Therefore, every element x ∈ Bn can be realized as the order of an
automorphism g on a certain finite connected rank n graph 0 which has no
valence 1 vertex or closed chain.

Now suppose that 0 is a beam of edges, and let 0′ be the graph obtained
from 0 by joining each pair of edges connecting to a valence 2 vertex to-
gether. Then 0′ is a single set of multiple edges, and clearly Aut0′ ⊇ Aut0.
There is a flip map σ ∈ Aut0′ that switches the two vertices and re-
verses all edges. Furthermore, Aut0′ is generated by σ and permutations
of the n + 1 edges. So, in this case, the order set of Aut 0′ is exactly
�lcm�a; y�y a ∈ �1; 2�; y ∈ An+1�. Particularly, if n + 1 is prime, the only
element in Aut0′ with order lcm�2; n+ 1� is the cyclic permutation of all
edges composite with σ . It has no fixed point in the topological underlying
space of 0 or 0′.

Therefore, Theorem 3.1 reduces to the proof of the following statement:

Claim 3.2. Suppose that 0 is a finite connected graph with rank n, having
no valence 1 vertex or closed chain, n > 1, and g ∈ Aut0. If 0 is a beam of
edges, we require that g has at least one fixed point in 0. Then order�g� ∈ Bn.

The proof of this statement is essentially an induction on n and the
number of vertices in 0. Suppose that it is not true. Then choose a smallest
natural number n that violates the rule. Direct verification shows that this
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cannot happen when n = 1 or 2. Thus, suppose without loss of generality
that n > 2. Corresponding to this n, there is a finite connected rank n
graph 0 with no valence 1 vertex or closed chain of valence 2 vertices, s.t.
∃g ∈ Aut0 with order�g� /∈ Bn. Furthermore, when 0 is a beam of edges, g
must have fixed point.

From now on, assume that all the triples �n; 0; g� we discussed are chosen
as in the following lemma.

Lemma 3.1. As discussed above, suppose that there exists counter-examples
�n; 0; g� to the above claim. Choose such triples that minimize n, and then
select in all the satisfied choices a triple with a minimum number of vertices
in 0. Then 0 has no valence 2 vertex.

Proof. By the assumptions, 0 cannot be a single loop or closed chain.
For any open chain in 0, since the action of g on it will be determined by
the action on the chain as a whole segment, one can simply merge all the
edges in the chain to make a single edge. The resulting graph 0′ has rank n
and a fewer number of vertices than that of 0, while the induced action of
g remains of the same order. This contradicts our assumption that �n; 0; g�
is the simplest triple.

Lemma 3.2. For �n; 0; g� in Lemma 3.1, 0 has no loop.

Proof. Suppose contrarily that 0 has m loops e1; : : : ; em �1 ≤ m ≤ n�.
Removing these loop edges gives rise to a connected graph 0 \ �e1 ∪ · · · ∪
em� with rank n−m. Denote by 0′ the subgraph obtained from it by cutting
leaves. ∀h ∈ Aut0 such that h��e1 ∪ · · · ∪ em� equals identities, and ∀valence
1 vertices x ∈ 0 \ �e1 ∪ · · · ∪ em�. Then x is the end of some ei since 0 itself
has no valence 1 vertex. Thus, h�x� = x, and h restricts to the identity
on the unique edge in 0 \ �e1 ∪ · · · ∪ em� connecting to x. By induction, it
can be shown that h keeps all removed leaves invariant. So, if, in addition,
h�0′ = id0′ , then h = id0. Particularly, this implies that

order�g� = lcm
(
order�g�0′�; order�g��e1 ∪ · · · ∪ em��

)
: (3.2)

There are only three cases.

Case 1. 0′ contains no closed chain and n−m > 1. By the assumptions,
either order�g�0′� ∈ Bn−m or order�g�0′� = 2�n−m+ 1� in which n−m+
1 > 2 is a prime number. Now g induces a permutation λ on the loops,
and g�λ� keeps every loop invariant, although it may reverse the directions
of certain loops. Thus, the order of g��e1 ∪ · · · ∪ em� is a divisor of 2�λ�.

If order�g�0′� ∈ Bn−m, then, since �λ� ∈ Am; 2�λ� ∈ Bm, one sees from
Lemma 2.5 that lcm�order�g�0′�; 2�λ�� ∈ Bn. If order�g�0′� = 2�n−m+ 1�
in which n − m + 1 is an odd prime number, then lcm�order�g�0′�;
2�λ�� = lcm�n − m + 1; 2�λ��. Since n − m + 1 ∈ Bn−m, we still have
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lcm�order�g�0′�; 2�λ�� ∈ Bn. In both subcases, as the divisor of lcm�order
�g�0′�; 2�λ��; order�g� ∈ Bn.

Case 2. m = n− 1. Then 0′ is a single loop or closed chain of valence 2
vertices. Again, g induces a permutation λ on the loops, and order�g��e1 ∪
· · · ∪ em�� is a divisor of 2�λ�; �λ� ∈ Am ⊆ An. Since g�λ� induces the identity
permutation on the loops, it follows from the construction of 0′ that g�λ�

must fix at least one vertex in 0′ (one that has a path connecting to some
loop edge, which consists of removed leaves). Therefore, �g�λ��0′�2 = id0′ .
This implies that order�g� is a divisor of 2�λ�. Similar to Case 1, order�g� ∈
Bn.

Case 3. m = n. Then 0 \ �e1 ∪ · · · ∪ em� is in fact a tree graph. In this
case, any element in Aut0 is determined by its action on the loops. There-
fore, suppose that g induces a permutation λ on the n loops. Then �λ� ∈ An

and

order�g� = �λ� or 2�λ� ∈ Bn:
In each case, we always get a contradiction. Hence, for 0 chosen in

Lemma 3.1, 0 has no loop.

Notation. Assume a graph Y . For any subset X ⊆ Y and subgroup
G < AutY , the orbit of G passing X is defined as the set

OG�X� =
⋃�h�X�y h ∈ G�: (3.3)

Particularly, if G is a cyclic group generated by h ∈ AutY , then denote
OG�X� by Oh�X�.

Lemma 3.3. For �n; 0; g� in Lemma 3.1, 0 has no multiple edges.

Proof. By the previous lemma, 0 has no loop. Suppose contrarily that
there is more than one edge connecting vertices x; y ∈ 0. Choose an edge e0
among these multiple edges. Suppose that the orbit of g passing e0 contains
k edges, in which m of them connect x and y. Then m � k, and for each
i ∈ �, there are m edges in Og�e0� connecting gi�x� and gi�y�, namely,

gi�e0�; gi+�k/m��e0�; : : : ; gi+�m−1��k/m��e0�:
Case 1. Og�e0� does not contain all the edges connecting x and y. Then

this also happens for every pair �gi�x�; gi�y��. Therefore, the graph 0 \
Og�e0� is connected with rank n− k (here k ≤ n). Denote by 0′ the graph
obtained from 0 \Og�e0� by cutting leaves.

If x; y both have valence 1 in 0 \ Og�e0�, then 0 is exactly x; y together
with n+ 1 multiple edges connecting them, while Og�e0� contains m = n of
the edges. Therefore, order�g��2n ∈ Bn.
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If x; y both have valence greater than 1 in 0 \ Og�e0�, then 0 = 0′ ∪
Og�e0�, while order�g� = lcm�order�g�0′�; �Og�e0���. If, say, x has valence 1
and y has valence greater than 1 in 0 \Og�e0�, then, for any i ∈ �; gi�x� 6=
y, so if gi�e0� = e0, then its ends gi�x� = x; gi�y� = y. It can be shown
inductively that gi fixes all the removed leaves. Therefore, order�g� =
lcm�order�g�0′�; �Og�e0���. In both subcases, �Og�e0�� = k ∈ Bk−1 and 0′

has rank n − k. Similar to the proof of Case 1 of the previous lemma, if
0′ is not a closed chain, then order�g�0′� ∈ Bn−k+1, so order�g� ∈ Bn by
Lemma 2.5. If 0′ is a closed chain, then k = n− 1. Moreover, gk��x; y�� =
�x; y�. Thus g2k = id0 and order�g� � 2k ∈ Bn.

Case 2. All the edges connecting x and y are in the orbit passing e0.
Consider the graph 0′′ obtained from 0 by replacing with a single edge
each group of multiple edges in Og�e0� that connect two vertices. Cut off
all the leaves in 0′′, and denote the result by 0′. It is connected with rank
n′ = n− �m− 1�k/m, and m ≥ 2.

If both x; y have valence 1 in 0′′, then 0 is exactly x; y together with n+ 1
edges connecting them, and Og�e0� contains all the edges. Thus 0 itself is
a beam of edges. By the assumptions on g, one knows that 0 cannot be a
counterexample.

Otherwise, similar to the previous case, we derive that order�g� =
lcm�order�g0′ �; k�; in which g0′ is the induced action of g on 0′. In ad-
dition, the ends x; y of e0 are both invariant under g2k/m. There are two
subcases.

If 0′ is a single loop or closed chain, then n′ = 1; order�g0′ ���2k/m�, and
order�g� is a divisor of lcm�2k/m;k�. If 2�m, then 2k/m�k, so order�g��k.
But k − k/m < n, which implies that k ∈ Bn, so order�g� ∈ Bn. If 2 -m,
suppose that k/m = 2jq; 2 - q, then order�g��lcm�2j+1; qm�. However,

�2j+1 − 2j� + �qm− q� ≤ 2j�qm− q� + 1 = k− k/m+ 1 = n:
By Lemma 2.4, lcm�2j+1; qm� ∈ Bn, and consequently order�g� ∈ Bn.

If 0′ is not a closed chain, then n′ > 1, and either order�g0′ � ∈ Bn′
or order�g0′ � = 2�n′ + 1�. If order�g0′ � ∈ Bn′ , since k ∈ Bk−k/m and n =
n′ + k− k/m, it follows from Lemma 2.5 that order�g� ∈ Bn. Otherwise 0′

is a beam of edges, order�g0′ � = 2�n′ + 1�, and n′ + 1 is a prime number.
�g0′ �k/m has at least one fixed point. It is not difficult to show from this
that either 2��k/m� or �n′ + 1���k/m�. If 2��k/m�, then k/2 ∈ Bk/2−k/2m ⊆
Bk−k/m−1. Thus order�g� = lcm�n′ + 1; k� or lcm�2�n′ + 1�; k/2� ∈ Bn. Oth-
erwise, n′ + 1 6= 2 will be a prime factor of k/m, so order�g� = lcm�2; k�.
However, k− k/m+ 1 ≤ n, again by Lemma 2.4, order�g� ∈ Bn.

Hence, one always derives order�g� ∈ Bn, which contradicts the assump-
tions in Lemma 3.1.

Corollary. For �n; 0; g� in Lemma 3.1, 0 must be a simple graph.
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Lemma 3.4. For �n; 0; g� in Lemma 3.1, 0 has at least one vertex with
valence 3.

Proof. Suppose that all the vertices in 0 have valences greater than or
equal to 4. Denote their total number by k0. Then there are at least four
edges connecting to each vertex, while each edge has two ends. Therefore,
the total number of edges is k1 ≥ 4k0/2 = 2k0, and the Euler characteristic
number χ�0� = k0 − k1 ≤ −k0. However, χ�0� = 1− n, so k0 ≤ n− 1.

By the previous corollary, 0 must be simple, which implies that any
h ∈ Aut0 is determined by its induced permutation on the vertices of 0.
Particularly, denote by λ the induced permutation of g on the vertices of
0. Then

order�g� = �λ� ∈ Ak0
⊆ An ⊆ Bn:

4. PROOF OF CLAIM 3.2

By the previous lemmas, for a triple �n; 0; g� satisfying the requirements
in Lemma 3.1, 0 must be a simple graph. Moreover, it has at least one
vertex x with valence 3. Denote the three vertices in 0 adjacent to x by
y1; y2; y3, and denote the edge connecting x with each yi by ei; i = 1; 2; 3.
Then, for any vertex x′ ∈ Og�x� and y ′ ∈ Og�yi�, all edges in 0 connecting
x′ and y ′, if there exist such edges, must be in Og��e1; e2; e3��.

In the following paragraphs, Claim 3.2 will be proved by reduction to
absurdity from this. Consequently, Theorems 3.1 and 1.1 also hold. There
are four cases.

Case 1. Og�x� 6= Og�y1� 6= Og�y2� 6= Og�y3�, or Og�x� 6= Og�y1� 6=
Og�y2� = Og�y3�, or Og�x� = Og�y3� 6= Og�y1� 6= Og�y2�, or Og�x� =
Og�y2� = Og�y3� 6= Og�y1�. The common points of these cases are that
Og�x� 6= Og�y1�, while y1 is the unique element in Og�y1� that is adjacent
to x. They are connected by the edge e1. Particularly, g�Og�x���y1� = y1 since
g�Og�x���y1� is also adjacent to g�Og�x���x� = x. Thus, ∃m ∈ �, such that
�Og�x�� = m�Og�y1��.

Since g ∈ Aut0, each gj�x� is adjacent to exactly one vertex in Og�y1�,
namely, gj�y1�. The edge connecting gj�x� and gj�y1� is gj�e�. Furthermore,
each gj�y1� is adjacent to m vertices in Og�x�, i.e.,

gj�x�; gj+�Og�y1���x�; : : : ; gj+�m−1��Og�y1���x�:
By identifying these m vertices with gj�y1� and removing the edges

gj�e1�; gj+�Og�y1���e1�; : : : ; gj+�m−1��Og�y1���e1�;
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one obtains a new graph 0′ with rank n and a fewer number of vertices
than that of 0.

Denote by ϕx 0 → 0′ the canonical quotient map. Suppose that the
valence of y1 ∈ 0 is j. Then, because all vertices in Og�x� have valences 3,
the valence of ϕ�y1� ∈ 0′ must be j′ = j + 3m− 2m = j +m ≥ 4. Similarly,
all other vertices in ϕ�Og�y1�� also have valence greater than or equal to 4.
Therefore, 0′ has no vertex with valence 1 or 2. Moreover, 0′ has at least
three vertices ϕ�y1�; ϕ�y2�; ϕ�y3�, so it will not be a beam of edges.

Now g induces an action g0′ ∈ Aut0′ defined as follows:

g0′ ◦ ϕ = ϕ ◦ g: (4.1)

The above discussions show that the triple �n; 0′; g0′ � cannot be a counter-
example to Claim 3.2. This implies that

order�g0′ � ∈ Bn:
Put h = gorder�g0′ �, and arbitrarily fix a vertex v ∈ 0. Then

ϕ�h�v�� = �g0′ �order�g0′ ��ϕ�v�� = ϕ�v�:
If v /∈ Og�x� ∪Og�y1�, then ϕ−1�ϕ�v�� has only one element, so h�v� = v. If
v ∈ Og�y1�, then ϕ−1�ϕ�v�� has only one element in Og�y1�, which implies
that h�v� = v. Finally, if v ∈ Og�x�, suppose without loss of generality that
v = x. Then, other than e1, there are two edges e2; e3 that are connected
to x. Since, for i = 2; 3; ϕ−1�ϕ�ei�� has only one element, and ϕ�h�ei�� =
�g0′ �order�g0′ ��ϕ�ei�� = ϕ�ei�, it follows that h�ei� = ei. Thus, x and h�x�
are both common ends of e2 and e3. However, 0 has no multiple edges,
so h�x� = x. To sum up, h fixes all the vertices in 0, i.e., h = id0, and
order�g� � order�g0′ �.

Hence, order�g� ∈ Bn, which contradicts our assumptions.

Case 2. Og�x� = Og�y1� 6= Og�y2� = Og�y3�. Then �Og�x�� is even, and
all the vertices in Og�x� are divided into adjacent pairs. By squeezing each
pair and the edge connecting them to one point, one can construct a new
graph 0′ with no vertex of valence 1 or 2. Furthermore, 0′ has rank n and a
fewer number of vertices than that of 0. Denote by g0′ the induced action of
g on 0′. Then �n; 0′; g0′ � cannot be a counter-example to Claim 3.2. Since 0′

has at least three vertices, it is not a beam of edges. Therefore, order�g0′ � ∈
Bn. However, order�g� = order�g0′ �, which leads to a contradiction again.

By symmetry, the discussions in the above two cases imply that Og�y1� =
Og�y2� = Og�y3� whenever order�g� /∈ Bn.

Case 3. Og�x� = Og�y1� = Og�y2� = Og�y3�. Since 0 is connected,
Og�x� must contain all the vertices in 0, which implies order�g� =
�Og�x�� = k0, in which k0 is the number of vertices in 0. Because all the
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vertices have valence 3, the number of edges in 0 is exactly 3k0/2, and
1 − n = χ�0� = k0 − 3k0/2 = −k0/2. Hence, order�g� = k0 = 2�n − 1� ∈
Bn.

Case 4. Og�x� 6= Og�y1� = Og�y2� = Og�y3�. Let 0′′ be the connected
graph that is obtained by first delete Og�x� and all the edges with at least
one end in them, then insert back a single point x′, and finally connecting
x′ with each point in Og�y1� by one edge. Denote by 0′ the graph obtained
from 0′′ by cutting leaves.

By definition, χ�0′� = χ�0′′� = χ�0� − ��Og�x�� − 1� + �3�Og�x�� −
�Og�y1���, so the rank of 0′ is

n′ = n− χ�0′� + χ�0� = n− 2�Og�x�� + �Og�y1�� − 1: (4.2)

Furthermore, g induces a unique action on 0′ which commutes with the
quotient map from 0 to 0′.

There are two subcases.

Subcase a. y1 has valence 1 in 0′′; that is, any edge in 0 that is connected
to y1 must have the other end in Og�x�. Let m be the total number of such
edges. Then m is actually the valence of y1, so m ≥ 3. These properties are
also satisfied by other vertices in Og�y1� (for example, y2 and y3). Moreover,
Og�x� ∪Og�y1� contains all the vertices in 0. Since 0 is simple,

order�g� = lcm��Og�x��; �Og�y1���;
and the number of edges in 0 is 3�Og�x�� = m�Og�y1��. However, 1 − n =
χ�0� = ��Og�x�� + �Og�y1��� − 3�Og�x�� = �Og�y1�� − 2�Og�x��. Thus,

�Og�x�� ≤ 2�Og�x�� − �Og�y1�� = n− 1:

If 3 � m, then �Og�y1�� is a divisor of �Og�x��, so order�g� = �Og�x�� ∈
Bn. If 3 -m, suppose that �Og�x�� = 3jq in which 3 � q and q ≥ 2. Then
order�g� = lcm�3j+1; q�. Now ∀u; v ∈ �, if u; v ≥ 4, then

u+ v ≤ 2 max�u; v� ≤ �min�u; v�/2�max�u; v� = uv/2:
It follows that, if u; v ≥ 2, then u+ v ≤ uv/2 + 2. As a result,

�3j+1 − 3j� + �q− 1� ≤ �3j+1 − 3j�q/2 + 2 − 1 = �Og�x�� + 1 ≤ n:
By Lemma 2.4, order�g� ∈ Bn.

Subcase b. y1 has valence greater than 1 in 0′′. Then all vertices in
Og�y1� also have valence greater than 1 in 0′′. Thus 0′′ = 0′. For any h = gj ,
denote by h0′ its induced action on 0′. Clearly, if h0′ = id0′; h�x� = x,
then h = id0. Namely, order�g� is a divisor of lcm�order�g0′ �; �Og�x���.
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TABLE 1
The Maximum Order cn for Some Small n

n cn n cn

1 2 11 90 = 2 · 32 · 5
2 6 12 180 = 22 · 32 · 5
3 6 = 2 · 3 13 210 = 2 · 3 · 5 · 7
4 12 = 22 · 3 14 420 = 22 · 3 · 5 · 7
5 12 = 22 · 3 15 420 = 22 · 3 · 5 · 7
6 20 = 22 · 5 16 504 = 23 · 32 · 7
7 30 = 2 · 3 · 5 17 630 = 2 · 32 · 5 · 7
8 60 = 22 · 3 · 5 18 1260 = 22 · 32 · 5 · 7
9 60 = 22 · 3 · 5 19 1260 = 22 · 32 · 5 · 7

10 84 = 22 · 3 · 7 20 2520 = 23 · 32 · 5 · 7

Moreover, 0′ has no closed chain, since x′ has valence greater than or
equal to 3.

If �Og�x�� ≥ �Og�y1��, then

�Og�x�� ≤ 2�Og�x�� − �Og�y1�� = n− n′ − 1;

in which n′ is the rank of 0′. Because n′ < n, by the “simplestness” of
�n; 0; g�; order �g0′ � ∈ Bn′+1. By Lemma 2.5, order�g� ∈ Bn.

Now suppose that �Og�x�� < �Og�y1��. ∀j ∈ �; gj�x� = x implies
that gj��y1; y2; y3�� = �y1; y2; y3�. Since y1; y2; y3 are in the same or-
bit of g, it follows that �Og�y1�� is a divisor of 3�Og�x��. Therefore,
�Og�x�� = �Og�y1��/3 or 2�Og�y1��/3.

If �Og�x�� = �Og�y1��/3, then, for each j ∈ �, the three vertices in Og�y1�
adjacent to gj�x� must be

gj�y1�; gj+�Og�x���y1�; and gj+2�Og�x���y1�;
and each gj�y1� is adjacent to a unique vertex in Og�x�. By arguments
similar to the proof of Case 1, one can show that order�g� ∈ Bn.

If �Og�x�� = 2k; �Og�y1�� = 3k in which k ∈ �, then

n− n′ − 1 = 2�Og�x�� − �Og�y1�� = k = �Og�x�� − k:
By Lemma 2.4, �Og�x�� ∈ Bn−n′−1. However, order�g0′ � ∈ Bn′+1. It fol-
lows from Lemma 2.5 that lcm�order�g0′ �; �Og�x��� ∈ Bn. Consequently,
order�g� ∈ Bn, once again a contradiction.

To sum up, all four cases are impossible. Hence, Theorem 3.1 is true.

Remark. We thank the referee for pointing out that part of our results,
namely, the description in Theorem 3.1, is also obtained in [4]. However,
we believe that our approach here is simpler and more intrinsic. It also
gives a clearer understanding of the action of elements in OutFn on graphs
as well as the realization of numbers in the order sets Bn.
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5. APPENDIX: SOME CALCULATIONS FOR cn

Theorem 3.1 reduces the problem of finding maximum orders to the
study of number sets Bn. According to this theorem, for some small n, the
maximum order cn of periodic outer automorphisms of Fn can be calculated
easily. Table 1 shows part of the results. In addition, it is known that, for
an defined in Eq. (2.2),

log an =
√
n log n

(
1+ log log n+ µn

2 log n

)
;

in which �µn� is a bounded number series. Careful analysis of Bn shows
that, when n > 2,

log cn = log bn =
√
n log n

(
1+ log log n+ τn

2 log n

)
;

in which �τn� is another bounded number sequence.
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