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We investigate the asymptotic structure of the three dimensional Warped Anti-de Sitter (WAdS3) 
black holes in the Bergshoeff–Hohm–Townsend (BHT) massive gravity using the canonical Hamiltonian 
formalism. We define the canonical asymptotic gauge generators, which produce the conserved charges 
and the asymptotic symmetry group for the WAdS3 black holes. The attained symmetry group is 
described by a semi-direct sum of a Virasoro and a Kač–Moody algebra. Using the Sugawara construction, 
we obtain a direct sum of two Virasoro algebras. We show that not only the asymptotic conserved charges 
satisfy the first law of black hole thermodynamics, but also they lead to the expected Smarr formula for 
the WAdS3 black holes. We also show that the black hole’s entropy obeys the Cardy formula of the dual 
conformal field theory (CFT).

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A theoretically physical issue in general relativity (GR) is the 
existence of black hole solutions, which are naturally endowed 
through the laws of black hole thermodynamics and accompa-
nied by a macroscopic entropy [1,2]. However, we need a quantum 
theory of GR to produce this entropy from counting the micro-
states [3]. String theory is the most well-known candidate of 
quantum theory of GR, which embraces two practical features: the 
gauge/gravity duality [4], which is also called the AdS/CFT corre-
spondence, and the black hole physics.

Three-dimensional (3D) gravity is another candidate to study 
the quantum theory of GR [5], which could also be appeared in 
the lower dimensional solutions of string theories [6–8]. How-
ever, 3D gravity describing by the Einstein–Hilbert action has no 
physical degrees of freedom [9,10], so it demands that we add 
higher derivative correction terms to the action. The first odd-
parity extension is the topologically massive gravity (TMG) in-
cluding a gravitational Chern–Simons Lagrangian, which gives one 
massive and two massless spin-2 gravitons [11,12]. The BHT mas-
sive gravity theory is a unitary parity-preserving extension, which 
includes higher curvature terms up to the forth order of deriva-
tives [13]. Other extensions of this theory could be found in 
Refs. [14–17].
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In this letter, we study the BHT massive gravity in the canon-
ical first-order formalism [18] on the basis of WAdS3 black holes, 
which have introduced in Refs. [19] and [20]. A similar procedure 
for the BTZ black holes [21] has made in Ref. [22]. In the first step, 
we define the gauge generators based on a constrained Hamilto-
nian theory. We calculate the energy and angular momentum of 
the WAdS3 black hole from the asymptotic structure of these gen-
erators due to the gauge transformations. The Poisson bracket (PB) 
algebra of the asymptotic generators describes the asymptotic sym-
metry group (ASG) of the asymptotically warped backgrounds in 
the BHT massive gravity. We show that these conserved charges 
satisfy the black hole mechanics as the first law, the Smarr formula 
[23], and the Cardy formula [24] in verification of the AdS/CFT cor-
respondence.

In the investigation of the asymptotic symmetries, we use the 
asymptotic boundary conditions (BCs) introduced by Compére and 
Detournay in Refs. [25,26], just like the Brown–Henneaux BCs in 
Ref. [27], which are introduced for the asymptotically AdS3 so-
lutions in 3D gravity theories. In the framework of gauge/gravity 
duality, this is known as WAdS3/warped CFT2 [28,29].

After having briefly discussed the canonical structure of the 
BHT massive gravity in Sect. 2, we will compute the asymp-
totic conserved charges using the asymptotic gauge generators in 
Sect. 3. We consider, in sect. 4, the WAdS3 black hole as a solution 
of the BHT equations of motion and then, derive the asymptotic 
canonical algebra and thermodynamics. Finally, in sect. 5, we dis-
cuss about the concluding results.
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2. Canonical BHT massive gravity

The torsion free BHT massive gravity, which, because of the new 
mass scale m2 is known as the new massive gravity, is described 
by the following action [13]

I = 1

2κ2

∫
d3x

√−g

[
R − 2�0 − 1

m2

(
Rμν Rμν − 3

8
R2

)]
, (2.1)

where κ2 = 8πG is the 3D Newton’s constant and �0 is the cos-
mological constant with the dimension of (mass)2. Since the La-
grangian of (2.1) contains forth order of derivatives, the BHT grav-
ity is an even-parity theory of massive gravitons. The variation of 
the action (2.1) under a variation δgμν yields

Rμν − 1

2
Rgμν + �0 gμν + 1

m2
Kμν = 0 , (2.2)

with

Kμν = 3

4
(Rμν − 1

4
gμν R)R − 1

4
(gμν∇2 − ∇μ∇ν)R

− ∇2(Rμν − 1

2
gμν R)

− 2(Rμνρσ − 1

4
gμν Rρσ )Rρσ . (2.3)

Using the canonical auxiliary fields as in Refs. [30] and [31], the 
BHT massive gravity (2.1) can be rearranged in the Chern–Simons-
like formulation by the 3-form Lagrangian,

L = −σ e · R + �0

6
e · e × e + h · T

− 1

m2

(
f · R + 1

2
e · f × f

)
, (2.4)

where σ = ±1 is a parameter and ei is the dreibein field.1 ωi is 
the spin-connection and the 1-forms f i and hi are two auxiliary 
fields. The two 2-forms, Lorentz covariant torsion T and curva-
ture R , are

T = De = de + ω × e , R = dω + 1

2
ω × ω , (2.5)

and “D(ω) = d + ω×” is the Lorentz covariant derivative. Owing 
to the torsion free condition, the field hi acts as a Lagrange mul-
tiplier. In order to prepare the canonical Hamiltonian and primary 
constraints in appropriate form, we rewrite the Lagrangian (2.4) as

L = 1

2
εμνρ

[
− σ ei

μRi νρ + �0

3
εi jk ei

μe j
νek

ρ + hi
μTi νρ

− 1

m2

(
f i

μRi νρ + 1

2
εi jkei

μ f j
ν f k

ρ

)]
. (2.6)

The equations of motion can be extracted from (2.4) by varia-
tion w.r.t. ei, ωi, f i , and hi , respectively,

−σ R(ω) + �0

2
e × e + Dh − 1

2m2
f × f = 0 ,

−σ T (ω) + e × h − 1

m2
D f = 0 ,

R(ω) + e × f = 0 , (2.7)

T (ω) = 0 .

1 The local Lorentz frame metric is ηi j = (+, −, −); the Latin indices (i, j, k, . . . )
and the Greek indices (μ, ν, λ, . . . ) run over 0, 1, and 2, while the letters 
(α, β, γ , . . . ) run over 1, 2; ε012 = 1 and gμν = ηi j ei

μe j
ν .
The second and the third equations plus the torsion free condition, 
T (ω) = 0, give the following fields

hμν = 1

m2
Cμν ≡ 1

m2
ε(μ|ρλ∇ρ Sλ|ν) ,

fμν = −Sμν ≡ −(Rμν − 1

4
gμν R) , (2.8)

where Cμν and Sμν are the symmetric Cotton and Schouten ten-
sors. Substituting these into the first equation of (2.7) and after a 
long calculations, it leads to the Eq. (2.2).

3. Asymptotic conserved charges

In the higher curvature models of gravity, the asymptotic con-
served charges are generally computed from the ADM formalism 
[32] for the asymptotically flat backgrounds and the AD formalism 
[33] for the asymptotically AdS ones. In the latter case, for generic 
higher curvature gravity theories see Ref. [34]. Though lineariza-
tion around an asymptotically WAdS3 background have been done 
for TMG [35], we are unable to do this for the BHT gravity. There-
fore we use the Hamiltonian formalism for the BHT gravity to find 
these conserved quantities.

The asymptotic properties are described by defining the appro-
priate asymptotic gauge generators by including the consistent BCs. 
Consequently, we find the finite conserved charges of WAdS3 black 
holes in the BHT massive gravity. In brief, we first construct the 
canonical Hamiltonian from the Lagrangian (2.6) using the Castel-
lani formalism [18], and then define the primary constraints.2 Fi-
nally, under the local Pioncaré gauge transformations (PGTs), we 
calculate the asymptotic conserved charges.

We define the canonical Hamiltonian as

Hc = ei
0Hi + ωi

0Ki + f i
0Si + hi

0Ti + ∂αχα , (3.3)

Hi = −ε0αβ
(
−σ Riαβ + �0 εi jk e j

αek
β

+Dαhiβ − 1

2m2
εi jk f j

α f k
β

)
,

Ki = −ε0αβ

(
−σ Tiαβ + εi jk e j

αhk
β − 1

m2
Dα f iβ

)
,

Si = −ε0αβ

(
− 1

m2
Riαβ − 1

m2
εi jke j

α f k
β

)
,

Ti = −ε0αβ Tiαβ ,

χα = −ε0αβ

(
ωi

0[σ eiβ + 1

m2
f iβ ] − ei

0hiβ

)
,

where the last term in Hc is a surface term. The canonical conju-
gate momenta (πi

μ, �i
μ, pi

μ, Pi
μ) are defined for the Lagrangian 

variables (ei
μ, ωi

μ, f i
μ, hi

μ), respectively by

πi
μ ≡ ∂L

∂ ėi
μ

, �i
μ ≡ ∂L

∂ω̇i
μ

, pi
μ ≡ ∂L

∂ ḟ i
μ

, Pi
μ ≡ ∂L

∂ḣi
μ

.

(3.4)

2 The necessary and sufficient conditions for G as a gauge generator are [18]

G = primary, {G, H} = primary, {G,any constraint} = constraints. (3.1)

The Hamilton equations yield the following primary and secondary constraints:

G|φρ=0 = 0 , {G, Hc}|φρ=0 = 0 , (3.2)

where φρ ’s are primary constraints and Hc is the canonical Hamiltonian of the sys-
tem in the gauge theory.



D. Mahdavian Yekta / Physics Letters B 759 (2016) 115–120 117
We need to consider the constraints in order to construct the 
Hamiltonian formulation for such a theory. When the conjugate 
momenta are not independent functions of velocities, the primary 
constraints contribute in the phase space. The set of primary con-
straints are defined from the relations (2.6) and (3.4)

φi
0 ≡ πi

0 ≈ 0 , φi
α ≡ πi

α − ε0αβhiβ ≈ 0 ,

�i
0 ≡ �i

0 ≈ 0 , �i
α ≡ �i

α + ε0αβ(σ eiβ − 1

m2
f iβ) ≈ 0 ,

ψi
μ ≡ pi

μ ≈ 0, ϒi
μ ≡ Pi

μ ≈ 0, (3.5)

and therefore the total Hamiltonian constructed out of these pri-
mary constraints becomes

HT = Hc + ui
μφμ

i + vi
μ�μ

i + wi
μψμ

i + zi
μϒμ

i . (3.6)

The consistency conditions accompanied with the primary con-
straints (3.5) give a number of the secondary constraints, which 
are extensively discussed in Ref. [22]. The secondary constraints, 
in fact, come out as the result of the consistency of the primary 
constraints in Eq. (3.2). The canonical structure of the asymptotic 
symmetry is describing by the following canonical gauge genera-
tors

G = −G1 − G2 , (3.7)

G1 = ξ̇ ρ
(

ei
ρπi

0 + ωi
ρ�i

0 + f i
ρ pi

0 + hi
ρ Pi

0
)

+ ξρ
[

ei
ρH̄i + ωi

ρK̄i + f i
ρ S̄i + hi

ρ T̄i + (∂ρei
0)πi

0

+ (∂ρωi
0)�i

0 + (∂ρ f i
0)pi

0 + (∂ρhi
0)Pi

0
]

,

G2 = θ̇ i�i
0 + θ i

[
K̄i − εi jk

(
e j

0π
k0 + ω j

0�
k0

+ f j
0 pk0 + h j

0 Pk0
)]

,

and the local PGTs are

δ0ei
μ = −εi

jke j
μθk − (∂μξρ)ei

ρ − ξρ∂ρei
μ ,

δ0ω
i
μ = −∇μθ i − (∂μξρ)ωi

ρ − ξρ∂ρωi
μ ,

δ0 f i
μ = −εi

jk f j
μθk − (∂μξρ) f i

ρ − ξρ∂ρ f i
μ , (3.8)

δ0hi
μ = −εi

jkh j
μθk − (∂μξρ)hi

ρ − ξρ∂ρhi
μ .

Here, the gauge symmetries are the asymptotic local translations 
ξμ and the local Lorentz rotations θ i of Poincaré transformations. 
Due to the BCs given in the next section and the asymptotic be-
havior of θ i , the variation of G2 term vanishes after the integration. 
Varying the G1 term, we have from (3.3)

δG1 = ξρ
(

ei
ρ δHi + ωi

ρ δKi + f i
ρ δSi + hi

ρ δTi

)
+ ∂O1 + R (3.9)

= 2ε0αβ ξρ∂α

[
ei

ρ (σ δωiβ − 1

2
δhiβ) + ωi

ρ (σ δeiβ

+ 1

2 m2
δ f iβ) + 1

m2
f iρδωiβ − hi

ρ δeiβ

]
,

where ∂O1 is a boundary term that vanishes after integration and 
R includes the regular terms. The expression On stands for O(r−n), 
and from the Stoke’s theorem

∫
M2

d2x∂α vα =
∫

∂M2

vαdfα =
2π∫
0

v1dϕ (dfα = εαβdxβ) ,

(3.10)
we can show the term ∂O1 has no contribution to the asymptotic 
conserved charges, by the fact that the boundary of M2 is a circle 
at infinity parametrized by the angular coordinate ϕ .

We can arrange the relation (3.9) to the following form

δG1 = ∂α(ξ0δEα + ξ2δMα) , (3.11)

where

Eα = 2ε0αβ

[
ei

0 (σ δωiβ − 1

2
δhiβ) + ωi

0 (σ δeiβ + 1

2 m2
δ f iβ)

+ 1

m2
f i

0δωiβ − hi
0 δeiβ

]
,

Mα = 2ε0αβ

[
ei

2 (σ δωiβ − 1

2
δhiβ) + ωi

2 (σ δeiβ + 1

2 m2
δ f iβ)

+ 1

m2
f i

2δωiβ − hi
2 δeiβ

]
. (3.12)

The energy and angular momentum of the black hole are the con-
served charges corresponding to the diffeomorphisms ξ0 = 1 and 
ξ2 = 1, respectively,

E =
2π∫
0

E1 dϕ , J =
2π∫
0

M1 dϕ . (3.13)

4. WAdS3 black hole

In this section, we investigate the structure of the BHT fields 
content in the canonical form on the basis of WAdS3 black hole. 
The line element of this solution is given by the metric [19]

ds2 = N2dt2 − l2dr2

4N2 K 2
− K 2(dϕ + Nϕdt)2 , (4.1)

where the functions N, K , and Nϕ are

N2 = (ν2 + 3)(r − r+)(r − r−)

4K 2
, Nϕ = 2νr − √

(ν2 + 3) r+r−
2K 2

,

K 2 = r

4

[
3(ν2 − 1) + (ν2 + 3)(r+ + r−) − 4ν

√
(ν2 + 3) r+r−

]
.

(4.2)

The parameter ν is a warped factor and r+ , r− are the outer and 
inner horizons of the black hole, respectively. Substituting (4.1)
into the equations of motion (2.2), we obtain

l2 = −4ν4 − 48ν2 + 9

2�0(20ν2 − 3)
, m2 = 20ν2 − 3

2 l2
. (4.3)

As we see, the warped factor ν corrects the radius of AdS space 
from l2 = −1/�0 to the above value in the presence of the higher 
order corrections. The components of the diagonal dreibein ei for 
the metric (4.1) are

e0 = Ndt , e1 = l

2N K
dr , e2 = K (dϕ + Nϕdt) , (4.4)

and the components of the spin connection are computed from the 
torsion-free condition

ω0 = − Nν

l
dt − 2N K K ′

l
dϕ , ω1 = − K N ′

ϕ

2N
dr ,

ω2 = − K Nϕν

l
dt + K 3N ′

ϕ

2N
dϕ . (4.5)

Inserting the fields (4.4) and (4.5) into the second and third equa-
tions in (2.7), we arrive at
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f0 = −l−2
[
(2ν2 − 3

2
)Ndt + 3(ν2 − 1)N K 2Nϕdϕ

]
,

f1 = −l−2 (ν2 − 3

2
)

l

2N K
dr , (4.6)

f2 = −l−2
[
(

3

2
− 2ν2)K Nϕ dt

+
(

3

2
− 2ν2 − 3(ν2 − 1)N2

)
Kdϕ

]
,

and

h0 = 3ν

m2l3
(ν2 − 1)N(2 + 3N2)dt ,

h1 = 3ν

m2l3
(ν2 − 1)

3Nϕl

2
dr , (4.7)

h2 = − 3ν

m2l3
(ν2 − 1)

[
3N2 K Nϕ dt − 2Kdϕ

]
.

Now, we have all the fields content of the theory (2.4) and ready 
to compute the conserved charges of the WAdS3 black hole.

4.1. Conserved charges

The ASG of asymptotically WAdS3 metrics is described by four 
Killing vectors relating to the isometry group S L(2, R) × U (1) [19]. 
In fact, the asymptotic symmetries are defined by the transfor-
mations that do not affect the asymptotic form of the field con-
figurations. Having well-defined canonical generators in the ASG, 
we must introduce suitable BCs. For the asymptotically WAdS-
like spacetimes, such as Gödel and spacelike stretched AdS3 black 
holes, these BCs have been proposed in Refs. [25,26] as follows

gμν = ḡμν + Gμν, ḡμν

=
⎛
⎜⎝

−1 0 −νr

0 − l2

(ν2+3)r2 0

−νr 0 − 3
4 (ν2 − 1)r2

⎞
⎟⎠ ,

Gμν ∼
⎛
⎝ O1 O2 O0

O2 O3 O1
O0 O1 O−1

⎞
⎠. (4.8)

We can use this asymptotic form of the metric to derive the 
asymptotic behavior of the triad fields [36]. So, from the relations 
(4.4)–(4.7) and according to (4.8), we obtain

ei
μ = ēi

μ + Ei
μ, ωi

μ = ω̄i
μ + �i

μ,

f i
μ = f̄ i

μ + F i
μ, hi

μ = h̄i
μ + Hi

μ , (4.9)

where the sub-leading boundary terms are

Ei
μ ∼

⎛
⎝ O1 O2 O2

O2 O2 O1
O1 O2 O0

⎞
⎠ , �i

μ ∼
⎛
⎝ O1 O2 O0

O2 O2 O1
O1 O2 O0

⎞
⎠ ,

F i
μ ∼

⎛
⎝ O1 O2 O0

O2 O2 O1
O1 O2 O0

⎞
⎠ , Hi

μ ∼
⎛
⎝ O1 O2 O0

O2 O2 O1
O1 O2 O0

⎞
⎠ . (4.10)

Note that the bared notation in (4.9) refers to the leading-order 
of the background fields and the asymptotic configurations should 
include the warped black hole geometries. The subset of the PGTs 
(3.8), which leaves the BCs (4.9) and (4.10) invariant, gives the fol-
lowing vectors
ξ0 = T (ϕ) +O2 , θ0 = − 2l√
3(ν2 + 3)(ν2 − 1) r

∂2
2 S(ϕ) +O2,

ξ1 = −r∂2 S(ϕ) +O0 , θ1 = 2l
√

ν2 + 3

3(ν2 − 1) r
∂2T (ϕ) +O3, (4.11)

ξ2 = S(ϕ) +O2 , θ2 = − 4lν

(ν2 + 3)
√

3(ν2 − 1) r
∂2

2 S(ϕ) +O2 ,

where the functions T (ϕ) and S(ϕ) are some harmonic functions 
of the periodic coordinate ϕ . The PGTs produce a closed Lie alge-
bra,

[δ′
0, δ

′′
0 ] = δ′′′

0 (T ′′′, S ′′′) , (4.12)

such that to lowest order, we obtain

T ′′′ = S ′∂2T ′′ − S ′′∂2T ′, S ′′′ = S ′∂2 S ′′ − S ′′∂2 S ′ . (4.13)

The improved form of the gauge generator (3.7) is G̃ = G + K
[36], where the surface boundary term

K =
∮

dfα
(
ξ0Eα + ξ2Mα

)
=

∫
0

2π

dϕ(lTE1 + SM1) , (4.14)

depends only on the leading terms of the gauge symmetries and 
E1 and M1, which are given by the expressions

E1 = 2

[
ei

0 (σ δωi2 − 1

2
δhi2) + ωi

0 (σ δei2 + 1

2 m2
δ f i2)

+ 1

m2
f i

0δωi2 − hi
0 δei2

]
,

M1 = 2

[
ei

2 (σ δωi2 − 1

2
δhi2) + ωi

2 (σ δei2 + 1

2 m2
δ f i2)

+ 1

m2
f i

2δωi2 − hi
2 δei2

]
. (4.15)

From the adopted asymptotic BCs (4.9) and (4.10), the energy and 
angular momentum of the WAdS3 black hole (3.12) have the finite 
values

E = ν2(ν2 + 3)

G(20ν2 − 3)

[
r+ + r− − 1

ν

√
(ν2 + 3)r+r−

]
,

J = ν3(ν2 + 3)l

4G(20ν2 − 3)

[(
r+ + r− − 1

ν

√
(ν2 + 3)r+r−

)2

−(r+ − r−)2
]
. (4.16)

We have multiplied the coefficient 1
2κ2 , which, for simplicity, have 

been dropped in generators (3.7). The results are different in some 
coefficients by those in Refs. [37,38], which this may refer to the 
notations.

4.2. Asymptotic canonical algebra

The PB algebra of the improved asymptotic generators forms a 
centrally extended representation of the ASG. On the other words, 
though the PB algebra of the generators G̃[ξ ] is isomorphic to 
the Lie algebra of the asymptotic symmetries by (4.12), it in-
cludes a centrally extended term. That is, for G̃ ′ ≡ G̃[T ′, S ′] and 
G̃ ′′ ≡ G̃[T ′′, S ′′], we obtain

{G̃ ′′, G̃ ′} = G̃ ′′′ + k , (4.17)

where the functions T ′′′, S ′′′ are given by (4.13) and k is called the 
central charge of algebra.
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In the canonical algebra, when the constraints remain un-
changed under the gauge transformations δ0, we can approximate 
the PB as {G̃ ′′, G̃ ′} = δ′

0G̃ ′′ ≈ δ′
0 K ′′ . So, for G̃ ′′′ ≈ K ′′′ , we have 

δ′
0 K ′′ ≈ K ′′′ + k. Using the PGTs laws, the expression for δ′

0 K ′′ re-
duces to

δ0E1 = −S∂2E1 − (∂2 S)E1 − 8ν(ν2 + 3)

3(20ν2 − 3)
∂2T , (4.18)

δ0M1 = −2(∂2 S)M1 − S∂2M1 − (l∂2T )E1

− 64ν3l

(ν2 + 3)(20ν2 − 3)
∂3

2 S,

such that from the Eqs. (4.13) and (4.14), we obtain

k = 8νl(ν2 + 3)

3(20ν2 − 3)

2π∫
0

dϕT ′′∂2T ′

+ 64ν3l

(ν2 + 3)(20ν2 − 3)

2π∫
0

dϕS ′′∂3
2 S ′. (4.19)

By defining two sets of the Fourier modes from the canonical 
generators

Pn ≡ G̃(T = e−inϕ, S = 0) , Ln ≡ G̃(T = 0 , S = e−inϕ) , (4.20)

the canonical algebra takes the form

i{Ln,Lm} = (n − m)Ln+m + cV

12
n3δn+m,0 ,

i{Pn,Pm} = − cK

12
nδn+m,0 ,

i{Pn,Lm} = nPn+m , (4.21)

where

cV = 96ν3l

G(ν2 + 3)(20ν2 − 3)
, cK = 4νl(ν2 + 3)

G(20ν2 − 3)
, (4.22)

are the central extended terms of a Virasoro and a Kač–Moody 
algebra, respectively. We use the Sugawara construction [39] to 
produce the conformal algebra for the basis of (4.21). We define 
the following set of generators

Ln ≡ − 6

ck

∑
r

PrPn−r

⇒ L−
n ≡ Ln − Ln , L+

n ≡ −L−n − inzP−n, (4.23)

whereupon, the PB of L±
n take the familiar conformal form of two 

Virasoro algebras

i{L+
n , L+

m} = (n − m)L+
n+m + c+

12
n3δn+m,0 ,

i{L+
n , L−

m} = 0 ,

i{L−
n , L−

m} = (n − m)L−
n+m + c−

12
n3δn+m,0 , (4.24)

with c− = cV and c+ = cK z2. Since the BHT massive gravity is 
an even-parity theory of higher derivative gravity in 3D, the con-
tent of the left–right sectors in the dual CFT2 are equivalent, i.e., 
c+ = c− and consequently we obtain

z2 = 24ν2

(ν2 + 3)2
. (4.25)
4.3. Thermodynamics

In 3D massive gravity theories, due to the higher derivative 
corrections, the entropy of black holes is not precisely equal to 
the value Area(H)

4G proposing by Bekenstein and Hawking [1,2]. In 
general, we use the Wald formula in the case of higher Reiman-
nian curvature terms [40,41]. According to the AdS/CFT duality, the 
macroscopic entropy of a black hole must agree with the micro-
scopic one given by the Cardy formula, which counts the micro-
states in the dual CFT. This entropy together with the other phys-
ical parameters of the black hole, such as the energy and angular 
momentum, satisfy the first law of black hole thermodynamics. 
The first law can also be obtained from the Smarr’s method. For 
the WAdS3 black holes this formula is [42]

E = T H S B H + 2�H J . (4.26)

Since we have computed the energy and angular momentum 
from the Hamiltonian formalism, we can use the Smarr-like for-
mula (4.26) to find the entropy. The Hawking temperature and 
angular velocity of the event horizon for (4.1) are given in Ref. [19]
by

T H = ν2 + 3

4π l

r+ − r−
2 rh

, �H = 1

l rh
,

rh ≡ ν r+ − 1

2

√
(ν2 + 3) r+r− . (4.27)

Substituting the values of (4.16) and (4.27) in the relation (4.26), 
we have

S B H = 2πrh

4G

(
16ν2l

20ν2 − 3

)
. (4.28)

Recently, the authors of [43] have also computed the entropy of 
WAdS3 black hole in the covariant phase space formalism, which is 
equal to (4.28). We have discussed the asymptotic conformal struc-
ture of WAdS3 in the previous subsection, so, we can compute the 
entropy from the holographic consideration by the Cardy formula

S = π2l

3
(cL T L + cR T R) , (4.29)

where the left and right temperatures for the WAdS3 black hole 
are [19]

T L ≡ ν2 + 3

8π l
(r+ − r−),

T R ≡ ν2 + 3

8π l

(
r+ + r− − 1

ν

√
(ν2 + 3) r+r−

)
. (4.30)

By using the value of central charges cL = cR = cV in (4.22), we 
obtain again the entropy (4.28). We can define the following zero 
modes for the Fourier modes (4.23), as we have done in Ref. [44],

L+
0 ≡ G(20ν2 − 3)

4ν(ν2 + 3)
E2

= ν3(ν2 + 3)

4G(20ν2 − 3)

(
r+ + r− − 1

ν

√
(ν2 + 3) r+r−

)2

= π2l

6
cL T 2

L ,

L−
0 ≡ L+

0 − J/l = ν3(ν2 + 3)

4G(20ν2 − 3)
(r+ − r−)2 = π2l

6
cR T 2

R , (4.31)

which again by using the other Cardy formula
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S = 2π

⎛
⎝

√
c+L+

0

6
+

√
c−L−

0

6

⎞
⎠ , (4.32)

and c+ = c− = cV , the result is in agreement with (4.28).

5. Conclusions

In this paper, we have studied the WAdS3 black hole in the 
3D BHT massive gravity and found its properties in the view 
point of the AdS/CFT correspondence. Since the linearization of 
the BHT theory around asymptotically warped backgrounds does 
not lead to an integrable and diffeomorphism invariant bound-
ary term for the conserved charges in metric formalism, we 
should try another approach. Therefore, we have studied it in 
the first-order formalism by constructing the canonical Hamil-
tonian and derived the field equations of motion. Then, we 
have found the conjugate momenta of the 1-form fields, which 
they determined the primary constraints in Eq. (3.5). We have 
also defined the canonical gauge generators (3.7), which under 
the PGTs (3.8), lead to the finite asymptotic conserved charges 
(3.12).

To illustrate the procedure, we calculated these conserved 
charges for the WAdS3 black hole, as energy and angular momen-
tum by (4.16). It must be noted that these values are achieved 
by defining suitable BCs (4.9) and (4.10) in the asymptotic re-
gion. We have derived the ASG of the asymptotically warped 
solutions using the PB of improved gauge generators, which has 
the S L(2, R) × U (1) isometry, and shown that from the Sugawara 
construction it enhances to the S L(2, R) × S L(2, R) isometry with 
equal left–right central charges of the value cV in (4.22). Finally, 
we calculated the entropy of the black hole from the Smarr for-
mula and considered that the physical quantities satisfy the first 
law of black hole thermodynamics, dM = T dS + �d J . We have 
shown that the value of entropy (4.28) was precisely equal to the 
ones obtained from the Cardy formulae (4.29) and (4.32). As a 
practical matter, we can apply similar calculation for the extended 
theories of 3D massive gravities posed in Refs. [14–17] and [31], in 
the case of warped black holes. For instance, we have done a sim-
ilar work in Ref. [45] for the minimal massive gravity theory [46]
in the BTZ sector.
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