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A B S T R A C T

This study investigated the cross sectional area (CSA) and fat infiltration of the epaxial muscles in Dachs-
hunds with compressive spinal cord lesions due to intervertebral disc herniation (IVDH) and in dogs with
non-compressive spinal cord lesions with fibrocartilaginous embolism (FCE). The CSA and fat infiltra-
tion of the multifidi and longissimus dorsi muscles were determined from T1 weighted magnetic resonance
images. Difference in CSA and fat infiltration between the lesion- and non-lesion side in the Dachs-
hunds was assessed using mixed model analysis. Difference in CSA and fat infiltration between Dachshunds
and FCE dogs was analysed with independent sample t-tests.

There was no difference in CSA or fat infiltration between sides in the Dachshunds. FCE dogs had greater
CSA (multifidus P = 0.036, longissimus P < 0.001) and less fat infiltration compared to Dachshunds (lon-
gissimus P = 0.017). Duration of neurological deficits, age, body size and conformation are likely to have
influenced the difference between the groups.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Intervertebral disc herniation (IVDH) is a common problem in
companion dogs (Bergknut et al., 2012; Packer et al., 2013) with a
clear breed predisposition for degeneration of the intervertebral discs
(Hansen type I disc degeneration) among Dachshunds (Jensen et al.,
2008). In this disease, the nucleus pulposus degenerates and
mineralises. The annulus fibrosus may rupture and extrusion of the
nucleus pulposus into the vertebral canal causes compression of the
nerve roots or spinal cord (Hoerlein, 1952). In Dachshunds this occurs
most frequently in the thoracolumbar area, accompanying signs may
be acute onset of pain, paresis or plegia (Hoerlein, 1952). Re-
search in veterinary medicine has focused on the pathogenesis
(Spitzbarth et al., 2011), histopathology (Henke et al., 2013), sur-
gical treatment (Laitinen and Puerto, 2005), recovery to ambulation
(Olby et al., 2003) and prognosis for recovery (Davis and Brown,
2002; Ruddle et al., 2006).

Human low back pain (LBP) is defined as local or radiating, often
non-specific pain arising from the lower part of the spine and is a
frequent reason for persistent disability and early retirement
(Luomajoki, 2010). Human research has used magnetic resonance

imaging (MRI) (Kader et al., 2000; Kang et al., 2007) to investigate
the cross sectional area (CSA) and fat infiltration of the back muscles
in subjects with LBP in order to design effective management strat-
egies for this problem (Hides et al., 1994; Mannion et al., 2009).
Decrease of multifidus and erector spinae muscle CSA and fat in-
filtration of the muscle tissue are indicators of atrophy and associated
with LBP (Kang et al., 2007; Kjaer et al., 2007). Humans with both
acute (Hides et al., 1994) and chronic (Hides et al., 2008a) LBP have
displayed decreased CSA in the multifidus muscle ipsilateral to the
focus of painful symptoms. Asymptomatic subjects have signifi-
cantly larger multifidi muscles compared to those with LBP (Hides
et al., 2008a). Reduced CSA and dysfunction of the multifidus can
predispose to recurrence of the symptoms (Hides et al., 2001);
however, the changes may persist even though the pain has re-
solved (Hides et al., 1996). The multifidi are considered one of the
main stabilisers of the human spine (Moseley et al., 2002, 2003) and
specific training of the multifidi muscles has reduced the recur-
rence of LBP (Hides et al., 2001), restored the CSA of the multifidi
muscles and relieved the symptoms (Danneels et al., 2000; Hides
et al., 2008b).

The anatomy (Evans 1993a), innervation (Bogduk, 2005a; Kottlors
and Glocker, 2008) and function (Ritter et al., 2001; Schilling and
Carrier, 2009) of the canine multifidi and longissimus dorsi muscles
are similar to that in humans. Multifidi muscle atrophy occurs also
in horses with back pain (Stubbs et al., 2010) and one scientifical-
ly tested management strategy of back pain both in humans (Hides
et al., 2008b; Mannion et al., 2009) and horses (Stubbs et al., 2011)
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is specific retraining of the multifidi muscles. To date, there are no
reports on atrophy, CSA or fat infiltration of epaxial muscles in dogs
with or without signs of spinal cord disorders that would provide
justification for therapeutic exercises.

The aim of this study was to determine the relationship between
compressive and non-compressive spinal cord lesions in dogs weigh-
ing ≤15 kg on the thoracolumbar epaxial muscles. The multifidi and
longissimus dorsi muscles at the level of the T10–L3 vertebrae were
assessed for CSA and fat infiltration in Dachshunds with compres-
sive spinal cord lesions, IVDH and in dogs with non-compressive
spinal cord lesions diagnosed with FCE.

2. Materials and methods

2.1. Subjects

The ethics and welfare committee of the authors’ institution ap-
proved this study. As there were no canine studies the sample size
was approximated using information from a human study that evalu-
ated the CSA in several spinal segments (Hides et al., 2008a, Table 1),
suggesting 8–24 dogs in each group (based on 5% type I error and
80% power). Fifty-two client owned Dachshunds and 12 control dogs
undergoing spinal MRI at the Royal Veterinary College (RVC) between
2003 and 2010 were retrospectively reviewed from patient records
for inclusion in the study. Inclusion criteria were to be a Dachs-
hund with a myelopathy secondary to IVDH, localised between the
third thoracic and third lumbar (T3–L3) spinal cord segment and
diagnosed by MRI. Dogs with other causes for T3–L3 myelopathy
or evidence for previous spinal cord compression with or without
surgery were excluded from the study. Control dogs were dogs of
≤15 kg with a T3–L3 myelopathy diagnosed on MRI to have a FCE
and no evidence for compression of the spinal cord. All dogs had
to have good quality transverse T1-weighted MRI images of the spine
between the 10th thoracic and the 3rd lumbar vertebrae (T10–
L3). Lesion side, lesion site, age, breed, sex, body weight, neurological
grading at the time of presentation, duration of neurological defi-
cits and duration of pain reported by the owner prior to presentation
was retrieved from the patient records.

If the side of lesion was not found in the patient records, the ECVN
Diplomate in the author team (ED) confirmed the side of lesion from
the MRIs. Many IVDH lesions were partly ventral and it was decided
to classify the lesion as ‘right sided’ if the lesion was right and ventral
and ‘left sided’ if left and ventral. The lesion was classified as
‘midline’, only if the lesion was purely midline. The neurological
grade at the time of presentation was retrieved from patient records
and where not written, it was determined retrospectively based on
the Modified Frankel Score used previously by Van Wie et al., 2013.

Based on the nature of the spinal cord lesion the dogs were
categorised into three groups: Dachshunds with acute compres-
sive lesions (duration of acute neurological signs less than 7 days
prior to presentation), Dachshunds with chronic compressive lesions
(>7 days) and other small breed dogs with acute non-compressive
lesions (FCE dogs).

2.2. Methodology

All MR images were obtained with a 1.5 Tesla scanner (Phillips
Intera, Phillips Medical, Reigate, UK). Segments from the T10–L3 ver-
tebrae were analysed using a dedicated DICOM viewer (Osirix,
Pixmeo, Bernex, Switzerland) from T1 sequences (TE 8–120, TR
400.00–3680.79, slice thickness 2.5–4.0 mm and gap 2.8–4.4 mm).
The muscle measurements were made in random order at the level
of the disc at each segment as previously reported (Kang et al., 2007).
The CSA of the disc (DISC CSA) was measured in the same image
as the muscular measurements (Fig. 1). The CSA of the multifidi
muscles (MMCSA), the CSA of the longissimus dorsi and the iliocostal
muscles (EPAXCSA) and the CSA of multifidi, longissimus and
iliocostal muscles combined (MMEPAXCSA) were measured bilat-
erally by drawing a region of interest (ROI) around the muscle, tracing
the muscle margins visible on the MRI (Fig. 1). The multifidus muscle
was measured alone, whereas the longissimus dorsi muscle and the
iliocostal muscle were measured together forming the epaxial muscle
measurement, as it was difficult to distinguish between these
muscles. To compensate for possible discrepancy in body weight
and body conformation between IVDH Dachshunds and FCE dogs,
a muscle to disc ratio (Kang et al., 2007) was calculated for all muscle
variables (Multifidus CSA:Disc (MM:DISC), Epaxial CSA:Disc

Table 1
Descriptive statistics of the studied dogs.

Group Breed (n) Gender (n) Lesion category (n) Age* Weight

IVDH Dachshunds (52) Male (25) Acute compressive (32) 7.3 ± 2.3 7.2 ± 2.5
Female (27) Chronic compressive (20)

FCE Various breeds (12)a Male (7) Acute non-compressive (12) 5.6 ± 2.4 10.1 ± 3.9
Female (5)

The breed, gender, lesion category, mean and standard deviation of the age and weight in the studied dogs. aWales terrier (1), Border terrier (1), Bishon frisé (1), Dachshund
(1), Staffordshire bullterrier (1), Whippet (1), Cocker spaniel (1), Chihuahua (1), Lhasa apso (1), German spitz (1), Mixed breed (2).
*Significant difference between IVDH and FCE groups (P = 0.021).

Fig. 1. The measurements. The CSA measurements on the left side at T12–13 in a
FCE dog. The Muscle:Fat ratio was calculated using the hyperintensity mean of muscle
and the hyperintensity mean of fat. (i.e. Muscle:Fat ratio for the left side Epaxial
measurement: Epaxial hyperintensity mean (216.875)/Fat hyperintensity mean
(858.190) = EPAX:FAT).
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(EPAX:DISC) and Multifidus and Epaxial combined CSA:Disc
(MMEPAX:DISC)).

Muscle Disc ratio
Muscle CSA

Disc CSA
: =

To evaluate the presumptive fat infiltration in the muscles, the
signal intensity in the image was determined from the same ROIs.
Additionally a 0.200 cm2 large area of fat was measured at the whitest
spot in the same image (Fig. 1) to ensure consistency in the inten-
sity values because of the MRI acquisition variability. The signal
intensity of muscle and fat ROI was used to calculate a muscle to
fat ratio using the following formula:

Muscle Fat Ratio
Muscle Mean Hyper intensity

Subcutaneous F
: =

aat Mean Hyper intensity

The Muscle:Fat ratio was calculated for all muscle measure-
ments in all the dogs for all individual segments giving the following
variables bilaterally: MM:FAT, EPAX:FAT and MMEPAX:FAT. One as-
sessor (AFB) drew all the ROIs and was blinded to the diagnosis and
background data of all the dogs at the time of the measurements.

2.3. Validation of the method

Prior to analysing the data, the measurement technique was vali-
dated. Dachshunds with IVDH (n = 6), Cavaliers with syringomyelia
(n = 2), a Bishon frisé with FCE and a Pekingese with an inflamma-
tory disease of the spinal cord were collected from patient records
based on the availability to evaluate the muscles in at least four seg-
ments in the T10–L3 range. The CSA of the disc (DISCCSA), multifidus
muscle (MMCSA), epaxial muscle (EPAXCSA), and combined mul-
tifidus and epaxial muscles (MMEPAXCSA) from T10 to L3 on both
sides was measured in random order by the same assessor (AFB).
To test repeatability, the muscles were measured twice at an in-
terval of 3 weeks and the assessor was blinded to the earlier
measurements. The reliability was good with an intra-class corre-
lation between 0.92 and 0.99 for the muscular measurements and
0.93 for the disc CSA. The Bishon frisé and five of the Dachshunds
also matched the inclusion criteria of the CSA study and were there-
fore later analysed together with the rest of the dogs.

2.4. Statistical analysis

Normality of the data was assessed graphically using histo-
grams and a logarithm transformation was calculated where needed.
Mean ± standard deviation was used to summarise age, body weight,
durations for neurological deficits and duration for pain reported
by the owner of the dogs. Statistical difference in gender, age, body
weight and disc CSA between the two groups was compared with
Chi Square test and independent t-tests. The difference between
Muscle:Disc ratio and Muscle:Fat ratio measurements on the lesion
and non-lesion side in the IVDH Dachshunds was analysed using
linear mixed models to account for multiple segments from the same
dog. Age, body weight, sex, breed, site of lesion, segment, neuro-
logical status at presentation, duration of neurological deficits and
duration of pain reported by the owner were used as covariates to
investigate their effects on the difference between sides in the mus-
cular variables.

An independent samples t-test was performed to test the equal-
ity of means in the acute and chronic Dachshunds for the lesion and
the non-lesion sides in all muscular variables, with the nature of
lesion as the grouping variable and using the T12–13 segment, as
most lesions occurred at this level. The same test was used to analyse
differences in the disc CSA and the muscular variables between the
Dachshunds and the FCE dogs at the same segment. Several of the

FCE dogs had midline lesions affecting the spinal cord and
categorising them into lesion and non-lesion sides was therefore
inappropriate. To maintain sample size the average of the left and
right side measurements was calculated in both groups for all vari-
ables; Muscle:Disc ratio and Muscle:Fat ratio using the following
equation:

Muscle Disc ratio average
Multifidus Disc ratio Left Multi

:
:

=
+ ffidus Disc ratio Right:
2

The differences between acute compressive, chronic compres-
sive and acute non-compressive lesions were analysed using one-
way analysis of variance, (ANOVA) and Fisher’s LSD post-hoc
comparisons in the lesion and non-lesion side, as well as in the
average variables at the T12–13 segment. Statistical significance was
set at P < 0.05 and SPSS (version 19, IBM, New York, USA) was used
for the analysis.

3. Results

3.1. Descriptive statistics

There were 52 IVDH Dachshunds and 12 FCE dogs of various
breeds in this study (Table 1). The descriptive data and significant
differences between groups are displayed in (Table 1). There was
no significant difference in gender (P = 0.522) and only a trend to
greater body weight in the FCE dogs (P = 0.060), but the age was
significantly higher in Dachshunds (P = 0.016) (Table 1). Of the seg-
ments measured (n = 219) 10% were from T10 to T11, 19% from T11
to T12, 26% from T12 to T13, 23% from T13 to L1, 15% from L1 to
L2 and 6% from L2 to L3. Mean duration of neurological deficits was
8.4 ± 16.0 days in the Dachshunds and 2.4 ± 3.9 days in FCE dogs.
Mean duration of pain reported by the owner was 28.7 ± 99.1 days
in the Dachshunds and 1.4 ± 4.0 days in the FCE dogs.

3.2. Difference between sides in the Dachshunds

In the Dachshunds (n = 52) the mixed model analysis showed
no difference between the lesion and non-lesion side in the
EPAX:DISC ratio (P = 0.656) and the MMEPAX:DISC ratio (P = 0.790).
‘Duration of neurological deficits’ had a significant effect on the
EPAX:DISC variable (P = 0.029). There was no significant effect of ‘site
of lesion’ (P = 0.149) or ‘segment’ (P = 0.661) on the difference
between sides in the EPAX:DISC variable or in the MMEPAX:DISC
variable (P = 0.079) and (P = 0.698).

The difference between lesion and non-lesion sides for the
MM:FAT ratio (P = 0.510), EPAX:FAT ratio (P = 0.298) and the
MMEPAX:FAT ratio (P = 0.960) in the Dachshunds were not signif-
icant. The ‘site of lesion’ had no significant effect on the difference
between sides in the EPAX:FAT (P = 0.944) or MMEPAX:FAT vari-
ables (P = 0.492) nor had ‘segment’ significant effect on the EPAX:FAT
(P = 0.935) or MMEPAX:FAT variables (P = 0.876). The covariate ‘neu-
rological grade at presentation’ had a significant effect on the
difference between sides in the MM:FAT ratio variable (P = 0.040).
‘Duration of pain reported by the owner’ had a significant effect on
the difference between sides in the EPAX:FAT ratio variable
(P < 0.001). The t-test analysis showed no difference between the
lesion side and non-lesion side in acute or chronic Dachshunds for
any of the Muscle:Disc or Muscle:Fat variables.

3.3. Difference between Dachshunds and FCE dogs

There was no significant difference in the disc CSA between
Dachshunds (1.16 ± 0.28 cm2) and FCE dogs (1.06 ± 0.36 cm2)
(P = 0.150). The average Muscle:Disc ratio were significantly lower
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in the Dachshunds compared to FCE dogs, MM:DISC P = 0.036,
EPAX:DISC P = < 0.001, MMEPAX:DISC P = <0.001 (Table 2). Also the
average Muscle:Fat ratio in Dachshunds and FCE dogs revealed a
significant difference in EPAX:FAT ratio (P = 0.017) and MMEPAX:FAT
ratio (P = 0.015) with the intensity means being higher in the Dachs-
hunds indicating more fat in their muscles (Table 2). The results were
similar when the lesion segment was restricted to T12–13, with a
significant higher MM:FAT ratio in Dachshunds than FCE dogs
(P = 0.022) (Table 2).

3.4. Difference between compressive and non-compressive lesions

In the EPAX:DISC and MMEPAX:DISC variables there was a sig-
nificant difference between the Dachshund group and the FCE group,
on both the lesion side (P < 0.001), and the non-lesion side (P < 0.001).
The post hoc analysis revealed significant differences between both
the acute (P < 0.001) and the chronic (P < 0.001) compressive lesions
against the acute non-compressive lesions on both the lesion and
non-lesion sides for the above-mentioned variables. Similarly there
was a significant difference between both the acute (P < 0.001) and
the chronic (P < 0.001) compressive lesions against the acute non-
compressive lesions in all averaged Muscle:Disc ratio variables
(P < 0.001) and in the averaged EPAX:FAT ratio variable (P = 0.030)
so that the Muscle:Disc ratio was greater and the fat infiltration was
lower in dogs with non-compressive lesions. There was no differ-
ence between groups in the Muscle:Fat variables: MM:FAT lesion
side (P = 0.126), non-lesion side (P = 0.141), EPAX:FAT lesion side
(P = 0.206), non-lesion side (P = 0.163) and MMEPAX:FAT lesion side
(P = 0.372) and non-lesion side (P = 0.147).

4. Discussion

This study found no difference in the CSA or fat infiltration
between lesion and non-lesion sides in the IVDH Dachshunds. This
is in agreement with a recent human study (Battié et al., 2012) on
the influence of disc lesions on the multifidus CSA. However, other
studies have detected asymmetry in the multifidi in humans with
LBP (Hides et al., 2008a), in patients with unilateral lumbosacral
radiculopathy (Hyun et al., 2007), in lumbar degenerative kypho-
sis (Kang et al., 2007), in pigs with experimental disc or nerve root

injury (Hodges et al., 2006) and in horses with osseous spinal pa-
thology (Stubbs et al., 2010). In dogs the spinal cord extends into
the lumbosacral region (Evans, 1993b), whilst in humans, the spinal
cord ends in the caudal thoracic spine (Moore and Dalley, 1999).
As most protrusions in humans affect the lumbar lower vertebral
discs (Bogduk, 2005b), disc herniation is more likely to compress
individual nerve roots. Research has also identified signs of paraspinal
denervation in humans (Yoshihara et al., 2001; Hides et al., 2008a;
Hyun et al., 2007), pigs (Hodges et al., 2006) and horses (Stubbs et al.,
2010) with disc herniation and nerve root compression. In dogs, IVDH
usually affects the spinal cord itself (Hoerlein, 1952) and is often
distributed bilaterally (Schulz et al., 1998), resulting in bilateral defi-
cits (Besalti et al., 2005; Olby et al., 2003) and denervation atrophy.
This different IVDH mechanism seen in dogs explains why unilat-
eral multifidus CSA decrease is seen in other species, but not in these
Dachshunds.

This study found no difference between sides in CSA or fat in-
filtration of the epaxial muscles when the acute and the chronic
Dachshunds were compared. The majority of these Dachshunds were
presented as emergencies with severe neurological deficits requir-
ing immediate diagnostic workup and surgery. As such the duration
of clinical signs may not have been long enough to cause signifi-
cant changes in muscular CSA. Recent human research on the
response of multifidus to disc herniation (Battié et al., 2012), with
symptoms lasting for less than 6 weeks, reported changes in muscle
composition at the lesion side and at the lesion level, but no de-
crease in the CSA (Battié et al., 2012). This was explained by the lack
of chronicity. However, an experimental study on disc- and nerve
lesions affecting the multifidus CSA in pigs reported a decrease in
the CSA on the lesion side within 3 days (Hodges et al., 2006). The
present study categorised acute and chronic dogs based on the du-
ration of neurological signs, less than 7 days as acute and equal to
or greater than 7 days as chronic. The analysis found the ‘duration
of neurological deficits’ variable to have a significant effect on the
EPAX:DISC ratio and the mean duration of neurological signs for
chronic Dachshunds was 18.2 ± 22.3 days, which is considerably
shorter than the 6–12 week long duration of LBP symptoms re-
ported in humans (Mannion et al., 2009). Therefore it is likely that
even the chronic Dachshunds were not chronic enough, or the sample
size not sufficient to show asymmetry in the muscle CSA.

This study identified significantly smaller CSA in IVDH Dachs-
hunds compared to ≤15 kg dogs with FCE. Studies in humans have
identified decreased CSA in paraspinal muscles of patients with LPB
compared to asymptomatic subjects (Hides et al., 2008a). The FCE
dogs used for comparison in this study were not asymptomatic, but
fibrocartilaginous embolism causes spinal cord infarction with acute
onset of clinical signs including paresis or plegia similar to those
of IVDH (Gandini et al., 2003, Nakamoto et al., 2008). However, in
contrast to IVDH, the character of FCE is non-compressive and gen-
erally non-painful (Gandini et al., 2003). It is possible that the smaller
CSA in Dachshunds here is a sign of denervation atrophy because
of the painful and compressive character of the IVDH (Hoerlein,
1952). Previous studies have discussed denervation and disuse as
possible reasons for multifidus atrophy (Hodges et al., 2006; Mattila
et al., 1986). In humans with LBP, local multifidus atrophy is thought
to be neurogenic (Beneck and Kulig, 2012), as disuse seems to affect
the vertebral muscle CSA more generally (Belavy et al., 2011).
Generalised disuse atrophy, as an explanation for the smaller CSA
in the studied Dachshunds cannot be excluded. All the Dachs-
hunds had pain and paresis of varying grades at presentation and
were unable to exercise normally. The duration of neurological defi-
cits and pain reported by the owners were noticeable longer in the
Dachshunds than in the FCE dogs.

The FCE dogs were of different breeds and conformations to
the Dachshunds and there was a trend to significantly smaller
body weight in the Dachshunds (P = 0.060). It is also known that

Table 2
The difference between Dachshunds and FCE dogs.

Average variables Group All dogsa Dogs with lesion at
T12–13 segmentA

Mean ± sd P Mean ± sd P

Muscle:Disc ratio average (cm2)
Multifidus IVDH 0.25 ± 0.08 0.036 0.25 ± 0.07 <0.001

FCE 0.59 ± 0.50 0.45 ± 0.95
Epaxial

IVDH 2.28 ± 0.84 <0.001 2.48 ± 0.91 <0.001
FCE 4.22 ± 1.24 4.06 ± 0.59

Multifidus + Epaxial
IVDH 3.55 ± 1.31 <0.001 3.89 ± 1.43 <0.001
FCE 6.87 ± 1.92 6.61 ± 0.97

Muscle:fat ratio average mean hyperintensity
Multifidus IVDH 0.56 ± 0.18 0.072 0.56 ± 0.12 0.022

FCE 0.49 ± 0.11 0.47 ± 0.06
Epaxial

IVDH 0.55 ± 0.22 0.017 0.54 ± 0.15 0.038
FCE 0.46 ± 0.07 0.44 ± 0.07

Multifidus + Epaxial
IVDH 0.56 ± 0.06 0.015 0.55 ± 0.14 0.021
FCE 0.47 ± 0.06 0.45 ± 0.06

an = 45 for IVDH Dachshunds and n = 12 for FCE dogs; An = 18 for IVD Dachshunds
and n = 8 for FCE dogs. Mean, standard deviation (sd) and statistical differences
(independent sample t-test) between the two groups for the average variables at
the T12–13 segment.
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vertebral morphology (Breit, 2002; Dabanoglu et al., 2004; McClain
et al., 2002) and epaxial muscle architecture (Webster et al., 2014)
and (Kader et al., 2000) differs between dog breeds. To standardise
for any variety in muscle size between the dogs, a Muscle:Disc ratio
extrapolated from human literature (Kang et al., 2007) was used.
As no significant difference (P = 0.150) in the disc CSA between the
Dachshunds and FCE dogs was found at the T12–13 segment the
Muscle:Disc ratio was considered justified. Still, it cannot be ex-
cluded that the discrepancy in body conformation between the
Dachshunds and controls has influenced the results.

An interesting finding was that the Dachshunds seem to have
greater fat infiltration compared to the FCE dogs. In humans with
IVDH, increased fat infiltration in the multifidus muscle ipsilateral
and distal to the lesion has been identified (Battié et al., 2012), whilst
those patients with LBP were found to have increased fat infiltra-
tion of the multifidus muscle bilaterally and at multiple levels (Kader
et al., 2000). Duration of neurological deficits and pain reported by
the owner may be associated with the fat infiltration, as progres-
sive fat infiltration has been seen in human back muscles following
denervation (Kamath et al., 2008). It is proposed that the in-
creased fat infiltration in human spinal muscles is due to disuse
(Elliott et al., 2008) and denervation (Hyun et al., 2007). Research
has also shown that fat infiltration in human paraspinal muscles
increases with age (Fortin et al., 2014) and is only evident in 14%
of adolescents examined (Kjaer et al., 2007). In this population the
age of the Dachshunds was significantly greater (7.3 years ± 2.3) than
those dogs affected by FCE (5.6 years ± 2.4, P = 0.016). This may result
in reduced activity levels of the Dachshunds. As such it is possible
that the fat infiltration identified is age related, rather than asso-
ciated with the IVDH. In humans it was also found that severe fat
infiltration of the multifidus muscle was strongly associated with
LBP only in adults and not in adolescents (Kjaer et al., 2007).

In agreement with recent research on human back muscles (Fortin
and Battié, 2012), this study found that the CSA of canine epaxial
muscles could be reliably measured using the technique em-
ployed in the presented study. Fat deposition in muscles shows high
signal intensity on MRI (Cagnie et al., 2009) and T1w MRI se-
quences have been used successfully to evaluate fat infiltration in
the human neck (Cagnie et al., 2009; Elliott et al., 2008, 2009) and
back muscles (Kader et al., 2000). In this study the fat infiltration
was quantified using signal intensity, as visual methods including
subjective grading of the fat infiltration, have been criticised (Kang
et al., 2007; Kjaer et al., 2007). A study on isolated canine infraspi-
natus muscles found that increased fat infiltration and decreased
muscle volume on T1 weighted MR images correlated well with
subsequent histological analysis (Safran et al., 2005).

The undisputable limitation of the present study is lack of a
control group consisting of healthy Dachshunds, due to the ethical
and financial challenges associated with this. The group used as a
comparison was a heterogeneous group of dogs with FCE and was
the only control population available in this retrospective study. The
retrospective nature of this study brought on further limitations as
the researchers had to rely on the information in the patient records
only regarding the duration of pain, neurological deficits and neu-
rological status of the dogs. Another weakness in this study is that
the assessor drawing the ROIs was not blinded to the side of the
disc lesion on the MR images. However, the observer did not know
the history, signalment or diagnosis of the dogs at the time of the
measurements.

5. Conclusions

This study found that Dachshunds with IVDH had significantly
smaller CSA and greater fat infiltration compared to dogs with FCE.
The results suggest future studies to consider increasing CSA and
restoring muscle composition in the epaxial muscles with specific

training. However, the differences in the age and body conforma-
tion between the groups must be kept in mind when interpreting
the results of this work.
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