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Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of
a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of
dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is
reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce
platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects
seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects
assessing the acute effects of dietary nitrate (250 ml beetroot juice) or potassium nitrate capsules (KNOs,
8 mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source
or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo
platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male
but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin
expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at
the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic
nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet
reactivity in healthy males but not females. Our studies provide strong support for further clinical trials
investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent
atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual
dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble
guanylate cyclase pathway in limiting thrombotic potential.

Crown Copyright © 2013 Published by Elsevier Inc. Open access under CC BY-NC-ND license.
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percutaneous coronary intervention (PPCI) with stent insertion in
acute myocardial infarction (AMI) [21] and rapid thrombolysis

Cardiovascular disease (CVD) remains a global killer affecting
every ethnic group and accounts for approximately one-third of all
deaths (www.who.int, www.heartstats.org). Over the past few
decades there have been major advances in the treatment of
patients presenting with a cardiovascular event, including primary

Abbreviations: BP, blood pressure; IBMX, 3-isobutyl-1-methylxanthine; LTA, light
transmission aggregometry; PBS, phosphate-buffered saline; PPP, platelet-poor
plasma; PRP, platelet-rich plasma; Sper-NO, spermine-NONOate..
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with tissue plasminogen activator (tPA) poststroke [49]. This first
line treatment coupled with effective secondary prevention using
aspirin and other antiplatelet drugs, such as prasugrel [54], have
made substantial reductions in both mortality and morbidity.
However, progress with respect to primary prevention of athero-
thrombotic events, despite considerable reductions already
achieved through changes in lifestyle factors, remains an issue.
Strong support for population approaches to prevention exist as
articulated in the recent “European Guidelines on Cardiovascular
Disease Prevention” [47]. Until recently it was thought that aspirin
offered an effective option, and its use was routinely recom-
mended in the primary prevention of coronary heart disease and
perhaps to a lesser extent in stroke [1,2,33,34]. However, recent
meta-analyses [6] and population studies [13] indicate serious
bleeding risks with aspirin, that in many cohorts outweigh the
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potential benefits, suggesting that alternatives with a more mod-
erate antiplatelet profile might be of some value. The use of
“statins” in primary prevention has received substantial support
as also has the concept, first mooted by Wald and Law in 2003
[48], of a cardiovascular polypill. However, the medicalisation of
“healthy” individuals, noncompliance, and cost-effectiveness remain
significant hurdles and uncertainties. Such issues have fuelled
desires to better harness the beneficial and potentially antithrom-
botic effects of diets rich in fruit and vegetables [16,17]. This focus in
part stems from the view that dietary interventions may be more
acceptable and achievable for many individuals.

In this regard there has been growing interest in the possibility
that dietary nitrate may underlie some of the beneficial effects of
healthy diets. Inorganic nitrate is found in vegetables and is
especially abundant in green-leafy vegetables and beetroot (Beta
vulgaris). Small-scale clinical studies demonstrate that orally
ingested inorganic nitrate is sequentially bioactivated within the
enterosalivary circuit to inorganic nitrite (NO,") [20,22,52]. Dietary
nitrate is rapidly absorbed across the upper intestine to enter
the circulation. While the majority of this nitrate is eventually
excreted in the urine, ~25% is actively extracted by the salivary
glands and then secreted into the saliva where it comes into close
contact with facultative bacteria expressing nitrate reductases [46]
that have colonized the dorsal surface of the tongue. These
bacteria reduce nitrate to nitrite that is then swallowed. Evidence
suggests that at least some of this swallowed nitrite then appears
within the circulation where it is converted to NO: a reaction
thought to be facilitated by a number of enzyme-dependent and
independent nitrite reductase pathways [50]. This nitrite-derived
NO, in turn, exerts a number of beneficial effects within the
circulation, most notably that administration of dietary nitrate or
nitrate supplementation, via reduction to nitrite, results in NO-
mediated vasodilatation and decreases in blood pressure (BP)
[19,22,52]. Interestingly, post hoc analysis in one BP study also
suggested that while females appeared to express a superior
capacity to generate bioactive nitrite through this pathway that
the activity of the nitrite generated was greater in males than in
females [19].

There is also some suggestion that dietary nitrate, via nitrite as
an intermediate, may repress platelet reactivity. We have pre-
viously shown that consumption of dietary nitrate (as beetroot
juice) attenuates ex vivo stimulated platelet aggregation; an effect
that was lost if the oral conversion of nitrate to nitrite was
prevented [52], thereby preventing elevations of systemic nitrite
levels. However, whether inorganic nitrate was responsible for this
effect, whether NO was the underlying mediator of this response,
and whether sex differences occurred in the effects of nitrate on
platelet reactivity and the mammalian nitrite reductase pathways
that might be involved in these effects remain uncertain. We have
conducted clinical studies in healthy volunteers to interrogate
these unknowns.

Methods
Volunteers

The studies were peer-reviewed by the institutional review
board and were granted full ethics approval by The London
Stanmore Research Ethics Committee (11/LO/0715). Informed,
written consent was taken after satisfying the inclusion criteria.
Volunteers were included if they fulfilled the following Inclusion
criteria: 1845 years of age, body mass index (BMI) of 1840 kg/m?,
and no systemic medication (other than the oral contraceptive
pill). Volunteers adhered to a low nitrate diet and refrained from
caffeine consumption and strenuous exercise the day before and

the day of the respective study, and were fasted overnight before
all study visits.

Investigation of the effect of dietary nitrate ingestion (beetroot juice)
on platelet aggregation assessed ex vivo using light transmission
aggregometry (LTA)

In a single-blind (investigator blind), randomised, placebo-
controlled crossover study, male (n=12) and female (n=12) volun-
teers received dietary nitrate (as beetroot juice giving a nitrate
dose: 3.1 +0.35 mmol equivalent to approximately 190 mg) or
matched-volume of low nitrate-containing water (Zepbrook Ltd.,
London, UK) placebo control, on two separate occasions, at least 7 to
28 days apart. For LTA, blood was collected into a 60 ml syringe
preprepared with 3.2% sodium citrate through a 19 gauge butterfly
needle and then immediately centrifuged (170g, 21 °C, 15 min) to
generate platelet rich plasma (PRP) that was stored at 37 °C and
used within 30 min. Blood was sequentially centrifuged (170g,
21 °C, 15 min, and then 15,000g, 21 °C, 2 min) to generate PRP and
platelet-poor plasma (PPP), respectively. PRP was taken as equiva-
lent to 0% aggregation and PPP was taken as equivalent to 100%
aggregation, respectively. Platelet aggregation in response to ade-
nosine diphosphate (ADP) (0.1-30 pmol/L), collagen (0.1-3 pg/ml), and
epinephrine (0.001-100 pmol/L) was measured using a 96-well plate
light transmission assay over 16 min, as previously described [3]. For
comparisons between groups and treatments the AUC of percentage
aggregation response over 16 min was used. All measures were
performed at baseline and at 3 h post intervention. This 3 h time
point was selected in view of our previous findings demonstrating that
circulating levels of nitrite, and the associated bioactivity, peak 3 h post
nitrate ingestion [52].

Assessment of the in vitro effects of nitrite on platelet aggregation

Blood collected from healthy male volunteers (n=6-8) was
incubated (10-30 min, 37 °C) with potassium nitrite (KNO,,
0.1-3 umol/L), spermine-NONOate (Sper-NO; 1-10 pmol/L), or
phosphate-buffered saline (PBS, as control). Platelet aggregation
was assessed in response to ADP (0.1-10 umol/L) and collagen
(0.1-30 pg/ml) in PRP by LTA.

To assess the effect of nitrite on platelet aggregation in whole
blood, blood was collected and incubated with nitrite for 10 min
prior to assessment of aggregation in response to ADP or collagen
using impedance aggregometry (n=12-15 males). In a separate
series of experiments the effects of Sper-NO (1-10 pmol/L) on
ADP-induced aggregation of whole blood were determined (n=5
males, n=>5 females). An aliquot of blood was collected from each
volunteer for in vitro incubation with nitrite (1 umol/L, 10 min,
37 °C) followed by isolation of a platelet pellet for determination of
cyclic guanosine monophosphate (cGMP) levels using a commer-
cially available ELISA. In addition, a separate aliquot of blood was
collected for erythrocyte isolation (n=7 males; n=5 females) and
assessment of nitrite reductase activity using gas phase ozone
chemiluminescence as previously described [51].

Investigation of the effects of inorganic nitrate supplementation
(KNOs capsules) on whole blood platelet aggregation assessed ex vivo

In a double blind, randomised, placebo controlled crossover
study male (n=12) and female (n=13) volunteers received either
8 mmol potassium nitrate (KNOs, Martindale Pharmaceuticals,
Ipswich, UK, equivalent to 496 mg of nitrate) or matched potas-
sium chloride (KCI, Martindale Pharmaceuticals, Ipswich, UK)
placebo control, and returned for the cross-over limb between
7 and 28 days later. Capsules were consumed with 2 slices of
dry wholemeal toast and 250 ml low-nitrate-containing water
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(Zepbrook Ltd., London, UK). Blood, urine, and saliva were col-
lected for analysis of [nitrate] and [nitrite] and blood was sepa-
rately collected for determination of P-selectin expression under
unstimulated conditions. Platelet aggregation was assessed in
whole blood in response to ADP (10 pmol/L), collagen (3 pg/ml),
epinephrine (10 pmol/L), and PBS (as control) using an impedance
aggregometer (MultiplateRanalyzer, Dyabyte Medical, Germany)
measured over a 6 min period. Aggregation is quantified as AUC
giving a measure of total resistance Q'time. Briefly 300 uL of
citrated whole blood was added to 300 pL of normal saline with
3 mmol/L CaCl, (Sigma, UK) and equilibrated with constant
magnetic stirring for 3 min prior to addition of agonist and platelet
aggregation measurement. For the incubation of whole blood with
nitrite following a 3 min equilibration period, the relevant con-
centration of potassium nitrite was added and a further 10 min
incubation period ensued prior to addition of aggregating agonist
and measurement of platelet aggregation. All measures were
performed at baseline and at 3 h.

Blood pressure measurement

Blood pressure was measured at baseline to confirm healthy
volunteer status and effective randomisation. An Omron 705IT was
used for all BP measurements while participants were seated and
readings were performed in triplicate according to established
guidelines [53]. Laminated coverings were used for the machine
and the printer so that both investigators and participants were
blinded to the readings. The means of the 2nd and 3rd readings
were used to calculate the final BP measurement.

Blood sampling

Blood was collected into either 1.8 mg EDTA per ml of blood
(for NOy), 3.2% buffered sodium citrate (for aggregation assays), or
0.1 mmol/L 3-isobutyl-1-methylxanthine (IBMX) (for cGMP assay)
containing vacutainers (BD) through a 21-gauge butterfly needle
inserted into an antecubital vein. For the generation of platelet-
rich plasma (PRP), citrated blood was immediately centrifuged
(170g at 21 °C for 15 min) and PRP separated, stored at 37 °C, and
used within 30 min. For measurement of NOy levels, blood
samples were centrifuged immediately (1300g, 4 °C, 10 min) and
the supernatant was collected and stored at -80 °C pending
analysis by ozone chemiluminescence.

Urine and saliva sampling

Mid-stream urine samples were collected into sterile pots and
an aliquot was stored at -80°C pending analysis by ozone
chemiluminescence. Unstimulated saliva was collected into sterile
Eppendorfs and centrifuged (14,000g, 4 °C, 10 min) and the
supernatant was stored at —80°C pending analysis by ozone
chemiluminescence.

Ozone chemiluminescence

Briefly, to determine total nitrate and nitrite levels (collectively
termed [NOy]), samples were added to 0.1 mmol/L vanadium (III)
chloride in 1 mmol/L hydrochloric acid refluxing at 95 °C under
nitrogen. Nitrite concentrations were determined by addition of
samples to 0.09 mmol/L potassium iodide in glacial acetic acid
under nitrogen at room temperature. [Nitrate] were calculated by
subtraction of [nitrite] from [NO,] as previously described. [14]

Measurement of platelet cGMP

For assessment of platelet cGMP following in vivo interventions
blood (12 ml) was collected into 3 citrated tubes via the same
puncture and 0.1 mmol/L IBMX (Sigma, UK) added. This blood was
immediately centrifuged (170g, 15 min, 21 °C) to generate PRP that
was then further centrifuged (1800g, 10 min, 4 °C) to obtain a
platelet pellet and PPP. Both were then stored at —80 °C pending
cGMP measurement. For assessment of the effects of the in vitro
effects of nitrite on platelet cGMP, blood was collected as above
and immediately incubated with nitrite at 37 °C for 10 min.
Following this PRP and then a platelet pellet were generated and
then stored at — 80 °C pending cGMP measurement. Platelet cGMP
was measured using an ELISA (GE Healthcare, Amersham) accord-
ing to the manufacturer's instructions.

P-selectin expression

Two-colour whole blood flow cytometry was used to measure
platelet P-selectin using a modification of previously published
protocols and recommendations [41]. Whole blood was collected
from individuals prior to and following ingestion of nitrate or
placebo capsules. Samples were immediately incubated with
selective antibodies, at room temperature for 20 min, and then
fixed using 1% paraformaldehyde (Sigma, UK), stored at 4 °C and
analysed 2 h after completion of each study visit using a Becton
Dickinson FACSCalibur flow cytometer (Becton Dickinson, San Jose,
CA). The platelet population was identified preliminarily based on
forward and side scatter properties, then further delineated via
labeling with CD42b monoclonal antibody conjugated to allophy-
cocyanin (APC). Gates were used to isolate this population, and
CD62 (P-selectin) monoclonal antibody conjugated to (fluorosce-
nisothiocyanate) FITC was used to determine P-selectin expres-
sion. Populations were further confirmed by use of antibody
negative isotypes to P-selectin and CD42b. All samples were run
in duplicate. 10,000 platelets were acquired in the CD42b region,
and results were expressed as the percentage of platelets positive
for P-selectin.

Erythrocyte nitrite reductase assay

For the measurement of the nitrite reductase activity of tissue
and erythrocyte samples gas phase chemiluminescence was used.
Experiments were performed in a sealed 10-ml glass reaction
chamber containing citric acid/Na-HPO. buffer at pH 7.4 (physio-
logical levels) or pH 6.8 (representing acidosis), and KNO,
(10-300 pmol/L) in a total volume of 1 ml. This solution was
bubbled with nitrogen gas (100%) by means of an NO scrubbing
air filter (Sievers, Boulder, CO, USA). The headspace NO concentra-
tion was measured in parts per billion by continuous sampling for
ozone chemiluminescence (Sievers 280 A nitric oxide analyzer).
The impact of biological tissue samples on NO production from
nitrite, was determined by the addition of washed human RBCs
from healthy human volunteers and measurement of NO over
2 min, calculating the rate of NO production (pmol per g per s)
from the area under the curve.

Statistical analysis

The data were analysed using Graphpad Prism software version
5. All data are expressed as mean + SEM. Data for LTA aggrego-
metry represent the area under the curve (over 16 min) % platelet
aggregation and are reported in arbitrary units, presented in concen-
tration-response curves and were analysed using repeated-measures
two-way ANOVA and Bonferroni post hoc tests. Erythrocytic nitrite
reductase activity was analysed by two-way repeated-measures
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ANOVA. Nitrite incubation whole blood aggregometry data were
analysed using one-way ANOVA and Dunnett's post hoc test compared
to control (PBS). Systemic NOy levels were analysed using one-way
ANOVA and Bonferroni post hoc tests. For comparison of all other data
paired Student's t tests were used. Values of P < 0.05 were considered
significant.

Results

All interventions were tolerated without adverse effects.

Dietary nitrate treatment attenuates ex vivo sensitivity of platelets
to ADP

There were no significant differences in the demographics of
healthy volunteers between visits (Table 1).

In both male (Fig. 1) and female (Fig. 2) volunteers, dietary
nitrate administration, in the form of beetroot juice, caused a
significant rise in plasma [nitrite] and [nitrate]. Ex vivo assessment
of platelet reactivity using LTA demonstrated concentration-
dependent aggregation of platelets isolated from either male or
female volunteers in response to collagen, ADP, and epinephrine
(Figs. 1 and 2). Importantly, the concentration-response curves to
both ADP and collagen, but not epinephrine, were significantly
suppressed following dietary nitrate treatment in males (Fig. 1)
but not females (Fig. 2). The placebo had no effect on platelet
responses to any aggregating stimuli in either sex (Figs. 1 and 2).

In vitro incubation of platelets with nitrite does not alter platelet
reactivity

We next investigated whether the effects of dietary nitrate in
male volunteers were related to a direct effect of nitrite on
circulating platelets. Nitrite treatment did not alter the aggregating
response to either ADP or collagen of PRP collected from untreated
healthy male volunteers following a 30min (Fig. 3A
and B) or a 10 min pretreatment period (Fig. 3E and F). In contrast,
prior incubation of platelets with Sper-NO caused a concentration-
dependent attenuation of platelet aggregation (Fig. 3C, D, G, and H).

In vitro incubation of whole blood with nitrite attenuates platelet
aggregation responses to ADP

To investigate the possibility that nitrite bioactivity might be
dependent on the presence of erythrocytes (a previously identified
important site for nitrite conversion to NO within the circulation
[11]) we investigated the effect of incubation in vitro of whole
blood, collected from male volunteers, with nitrite and subsequent
sensitivity to platelet aggregating stimuli using whole blood
impedance aggregometry. Nitrite incubation (KNO,, 10 min)

Table 1
Demographics, hemodynamic and plasma NOy values for both limbs of the dietary
nitrate (beetroot juice) vs low-nitrate-containing water supplementation study.

caused a modest (maximum effect 27 +8% inhibition)
concentration-dependent reduction in platelet aggregation in
response to ADP (Fig. 4A) and to a lesser extent collagen
(Fig. 4B), although the latter did not reach statistical significance.
Nitrite treatment had no effect on epinephrine-induced aggrega-
tion responses (Fig. 4C). Incubation with an equivalent salt solu-
tion control of KCL had no significant effect on responses to ADP
(PBS 42 +5.1 AU, 0.3 umol/L 42.1 + 3.9 AU, 1 umol/L 35 + 4.9 AU,
3 umol/L 35.4 4+ 7.1 AU, n=5 for each). This effect of nitrite was
associated with a near doubling of platelet cGMP levels (Fig. 4D).
In contrast, nitrite did not alter responses of whole blood collected
from female healthy volunteers to ADP and nitrite treatment was
not associated with any elevation of platelet cGMP levels (Fig. 4E
and F). In support of a reduced sensitivity of females to NO, Sper-
NO caused concentration-dependent attenuation of platelet aggre-
gation in response to ADP that was significantly reduced in
females compared to males (Table 2)

Inorganic nitrate supplementation attenuates sensitivity of platelets
to ADP and collagen in males only

There were no significant differences in the demographics of
healthy volunteers between visits (Table 3). Of the females
recruited for this study 6 were taking the contraceptive pill and
7 were not. Following KNO3 supplementation there was significant
elevation in plasma, salivary, and urinary [nitrate] and [nitrite] in
both male (Fig. 5) and female (Fig. 6) healthy volunteers, an effect
not seen following KCl ingestion. In male volunteers these eleva-
tions were associated with a significant suppression of ADP
(Fig. 7A and B) but not epinephrine-induced aggregatory response
(Fig. 7C and D). In contrast, despite elevations in systemic [nitrite] and
[nitrate] following KNOs5 ingestion in female volunteers, no change in
ex vivo platelet reactivity was demonstrated (Fig. 7E-H).

Table 2
Effect of the NO donor Spermine NONOate on ADP (10 pmol/L)-induced platelet
aggregation in whole blood of male (n=5) and female (n=5) healthy volunteers.

Spermine NONOate Male (% control ADP Female (% control ADP

(pmol/L) response) response)
0.1 1179 +£ 2.6 107.9 + 4.6
1.0 106.9 + 4.7 99.9 +4.2
3.0 46.9 + 17.1%* 75.6 +14.6
10.0 3.5 4 2.7 10.0 + 2.2

Data shown as mean + SEM. Statistical significance determined using one-way
ANOVA followed by Dunnett's comparison to the control response to ADP in each
< respective sex (male aggregation response= 37.0 + 2.9 and female aggregation=
50.5 +1.6).

Table 3

Baseline demographic, hemodynamic, and analytical parameters for both limbs of
the potassium nitrate (8 mmmol) versus potassium chloride (8 mmol)
capsule study.

Characteristic Placebo Dietary Nitrate P value Characteristic Placebo Inorganic nitrate P value
Male (n) 12 Male (n) 12

Age (years) 26.1+0.8 Age (years) 26.7+ 1.4

BMI (kg/m?) 238+ 12 BMI (kg/m?) 22.8+20

Baseline SBP (mm Hg) 126.4+3.9 126.5+3.8 0.98 Baseline SBP (mm Hg) 120.3 +3.2 121.0+ 3.7 0.80
Baseline DBP (mm Hg) 71.8+2.8 721+19 0.87 Baseline DBP (mm Hg) 67.2+1.8 66.8 +2.0 0.77
Female (n) 12 Female (n) 12

Age (years) 241+19 Age (years) 293 +1.8

BMI (kg/m?) 229+ 11 BMI (kg/m?) 229+08

Baseline SBP (mm Hg) 106.8 +2.3 1051+ 1.9 0.26 Baseline SBP (mm Hg) 107.8 +2.6 106.1 £2.3 0.44
Baseline DBP (mm Hg) 64.0+ 1.6 65.0+ 14 0.39 Baseline DBP (mm Hg) 68.8 +2.0 67.3+22 0.35

Statistical analysis conducted using paired t test.

Statistical analysis conducted using paired t test.
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Fig. 1. Dietary nitrate supplementation elevates plasma nitrite levels and attenuates platelet reactivity in healthy male volunteers. Ex vivo platelet (PRP) aggregation assessed
by light transmission aggregometry in response to ADP (0.1-0.3 pmol/L), collagen (0.1-30 pg/ml), and epinephrine (0.001-100 pmol/L), before and 3 h post placebo (A-C) or
dietary nitrate (beetroot juice, ~3.1 mmol nitrate, D-F) (n=12). Effect of dietary nitrate on plasma nitrate (G) and nitrite (H) concentrations. Data are expressed as
mean + SEM. Significance shown as ###P < 0.001 for two-way repeated-measures ANOVA, and *P < 0.05,**P < 0.01, and ***P < 0.001 for Bonferroni post hoc tests following
one-way or two-way repeated-measures ANOVA as appropriate. (ADP, adenosine diphosphate; PRP, platelet-rich plasma).

Suppression of platelet aggregation with dietary nitrate is associated
with significant increase in platelet cGMP and suppression
of P-selectin exposure

In males, attenuation of ex vivo platelet reactivity following
inorganic nitrate ingestion was associated with a doubling of
platelet cGMP levels and a significant suppression of P-selectin
expression (Fig. 8). Neither KNO5 or KCl ingestion affected platelet
number in either males or females (Fig. 8A and E). In contrast, the
lack of effect of inorganic nitrate consumption in females was
associated with an absence of any rise in platelet cGMP levels and
no changes in P-selectin expression (Fig. 8F-H). There were no
differences in P-selectin mean fluorescence intensity between the
groups (data not shown). The differences in the functional effects
of oral nitrate ingestion between the sexes is unlikely to be due to
differences in the nitrite reductase potential of erythrocytes since
activity, assessed in vitro, at both pH 74 and 6.8 (optimal
conditions for nitrite reduction) was identical (Fig. 81 and ]).

Discussion

Dietary (inorganic) nitrate may underpin the cardioprotective
effects offered by fruit- and vegetable-rich diets [16,17,20]. In
support of this possibility, recent studies in healthy volunteers have
shown a range of beneficial effects of acute administration of a

dietary nitrate load [52] or inorganic nitrate supplementation
[19,22,23] on the cardiovascular system including some suggestion
of reduced platelet reactivity [38,52]. In the present study we
demonstrate a modest antiplatelet effect of both dietary and
inorganic nitrate supplementation in male but not female healthy
volunteers. This effect in males is dependent on elevation of
circulating nitrite followed by reduction of nitrite to NO, in part,
at the level of the erythrocyte. In turn this NO suppresses platelet
reactivity by elevation of cGMP. Our results also suggest that while
the enterosalivary circuit and nitrite reductive pathways are intact
in females, the antiplatelet effect is absent due to an absence of
platelet cGMP increase. These findings suggest that dietary nitrate
or inorganic nitrate supplementation may prove useful in providing
a modest reduction of platelet activity either in primary prevention
or as an adjunct to antiplatelet therapies in secondary prevention of
atherothrombotic events. Moreover, our observations describe a
novel sexual dimorphism that may help to better understand the
sex differences evident in thrombotic potential in humans.
Inorganic nitrate administration caused a significant rise in both
circulating nitrate, and consequently nitrite levels, whether adminis-
tered in a dietary form or via inorganic nitrate supplementation. These
changes in NOy are similar to those demonstrated in healthy volun-
teers previously [5,19,52]. It is accepted that, following its ingestion,
inorganic nitrate is rapidly absorbed across the intestine and then
either excreted by the kidneys or concentrated in the salivary glands,
where in the case of the latter, it is secreted into the saliva [46]. Our
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Fig. 2. Dietary nitrate supplementation elevates plasma nitrite levels but does affect platelet reactivity in healthy female volunteers. Ex vivo platelet (PRP) aggregation
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Fig. 3. Spermine-NONOate but not KNO, inhibits aggregation of platelet-rich plasma (PRP). Platelet aggregation induced by ADP (0.1-0.3 umol/L) or collagen (0.1-30 pg/ml)
assessed by light transmission aggregometry in PRP from healthy untreated male volunteers incubated ex vivo for 30 min with either KNO, (A, B) or spermine-NONOate
(C, D) or for 10 min with KNO; (1 pmol/L, E, F) or spermine-NONOate (10 umol/L G, H). Data are expressed as mean + SEM of n=5-13. Significance shown as #P < 0.05,
##P < 0.01, and ###P < 0.001 for two-way repeated-measures ANOVA followed by Bonferroni post tests shown as ** P<0.01 and ** for P < 0.001. (ADP, adenosine
diphosphate; PRP, platelet-rich plasma; Sper-NO, Spermine-NONOate).



S. Velmurugan et al. / Free Radical Biology and Medicine 65 (2013) 1521-1532

A 70 Male
S 60 -
<
§ 501 [
®
$ 401 . *
>
) N i
20 -
ADP 0.3 1 3
+ Nitrite (umol/L)
C
20 Male
=)
< 154
2 N
]
® 1041
(=]
e
(=]
<m 5
0 J
Epinephrine 0.3 1 3
+ Nitrite (umol/L)
E
70 Female
5 60
<
g 50 7
T 40 T
[o2]
e
fe)) 30 4
[=2]
< 20
10 -
ADP 0.3 1 3

+ Nitrite (umol/L)

1527

B Male

Collagen 0.3 1 3

70

T

60

50

40

Aggregation (AU)

30

20 -

+ Nitrite (umol/L)

80 - Male
60

40

20 A

cGMP
(fmol/108platelets)

T T
Vehicle Nitrite (1pmol/L)

807 Female

60 - _—

40 A

20 -

cGMP
(fmol/108platelets)

T T
Vehicle Nitrite (1pmol/L)

Fig. 4. KNO;, reduces platelet aggregation in whole blood with an associated rise in platelet cGMP in males. Platelet aggregation assessed by impedance aggregometry of
whole blood of healthy male volunteers incubated ex vivo with KNO, (0.3—3 pmol/L) in response to (A) ADP (10 umol/L, n=13), (B) collagen (3 pg/ml, n=11), and
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results demonstrate clear evidence of this pathway occurring in the
healthy volunteers recruited into this clinical study. Within the oral
cavity approximately two-thirds of inorganic nitrate is thought to be
converted to nitrite by bacterial nitrate reductases [18,43,46,52]: a
view likewise supported by our findings herein. This nitrite, once
swallowed, enters the circulation with levels peaking at approximately
3 h following nitrate ingestion [19,52]. Importantly, the biological
effects of inorganic nitrate ingestion correlate directly with the levels
of nitrite in the circulation, peak simultaneously with the peak in
circulating nitrite levels, and are thought to be due to the conversion of
this nitrite to NO within the circulation [19]. It was on this basis that all
assessments of platelet function in the studies described herein were
conducted 3 h following nitrate ingestion in order to observe the
maximum possible effects.

We have demonstrated that the rise in circulating nitrite levels
following either dietary nitrate ingestion or following inorganic
nitrate supplementation was associated with a reduction in ex vivo
platelet aggregation induced by either ADP or collagen using two
distinct methods of assessment of platelet aggregation. Impor-
tantly, however, we found no effect on responses to the weak
platelet activator epinephrine. Both ADP and collagen, while
activating distinct receptors (P2Y1/P2Y12 and GPVI) and molecular
pathways within the platelet, trigger a number of common
phenomena implicated in platelet activation, including platelet
granule secretion, thromboxane A, release, and platelet aggrega-
tion events also commonly associated with increases in phosho-
lipase C and phosphoinositide-3-kinase activity (see review [25]).
In contrast, epinephrine alters platelet reactivity by binding to
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ay-receptors coupled to Gi resulting in a reduction in intracellular

It is likely that the repressive effects of inorganic nitrate on
cAMP levels. It has been suggested that per se epinephrine exerts

platelet reactivity are due to the formation and activity of NO

little change in platelet response; however, when present in
combination with other stronger activating stimuli such as ADP
or histamine, ay-receptor activation enhances the stimulatory
effect of the agonist [7,40]. Since epinephrine was not used in
combination with other agonists this may underlie the absence in
effect of inorganic nitrate on responses seen but also suggests that
nitrate acts to suppress pathways implicated in platelet activation
commonly associated with stronger stimuli.

in vivo. NO is a potent inhibitor of platelet function and basal NO
generation is thought to play a crucial role in suppressing platelet
reactivity in physiology [26]. This activity of NO has been attrib-
uted, primarily, to activation of sGC and consequent elevation of
platelet cGMP levels [12,30,35,39]. Although, there is also some
suggestion that there may be sGC-independent effects of NO and
NO donor drugs on platelets [27,32,42,55] and also controversially
prostimulatory effects of the NO-sGC-cGMP pathway in platelets
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Fig. 8. KNOs supplementation elevates platelet cGMP levels and simultaneously suppresses unstimulated platelet P-selectin expression in healthy male but not female
volunteers. Platelet count (A, n=12), platelet cGMP levels (B, n=9) and platelet P-selectin expression (C and D, n=11-12) in healthy males following KNO3 or KCl (8 mmol)
supplementation and in healthy females (E-H, respectively). Erythrocytic nitrite reductase activity at pH 7.4 (I) and pH 6.8 (J), in males (n=7) and females (n=5). All data are
expressed as mean + SEM. Significance shown as *P < 0.05 and **P < 0.01 following paired ¢ test for two groups. No significant differences in nitrite reductase activity
assessed using two-way repeated-measures ANOVA.

[28,45,55]. More recently both of these possibilities have been Although, in contrast using the same platelet-specific mice evi-
challenged by demonstration of an absence of any anti- or indeed dence for a stimulatory effect of NO-induced cGMP has also been
prostimulatory platelet effects of NO in mice lacking the p; subunit proffered [55]. Nevertheless, irrespective of this controversy, our
of sGC [12] or in mice with selective deletion of platelet sGC [39]. studies support an inhibitory role for the NO-sGC-cGMP pathway
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in platelets. Indeed, we show that inorganic nitrate ingestion in
males elevates platelet cGMP levels implicating NO in the anti-
aggregatory effects. This effect likely underlies the beneficial
effects since in females where no change in platelet reactivity
was evident there was likewise no change in platelet cGMP levels.

The exact mechanisms involved in cGMP-induced suppression
of platelet reactivity in the present study are uncertain. It has been
suggested that elevation of ¢cGMP in platelets results in PKG
activation and consequent phosphorylation of a range of proteins
that influence platelet function including inositol triphosphate
receptors and phosphodiesterase 5 to name just two (see review
[15]). Irrespective of the exact molecular pathways involved, NO
has been shown to cause a number of phenomena in platelets that
would ultimately result in decreased activity including reduced
granule secretion [8,29] and platelet adhesion [36]: phenomena
shown to be both ¢cGMP dependent [29,37] and independent
[27,31]. As an index of both of these characteristics we measured
P-selectin expression and demonstrated that, in males treated
with inorganic nitrate, unstimulated platelet P-selectin expression
was suppressed and accordingly in females where cGMP was not
changed no difference in P-selectin expression was evident.

The conversion of nitrite to NO within the circulation is thought
to be facilitated by a number of distinct nitrite reductases that
have been localised to either the erythrocyte or the blood vessel
wall. To determine whether the platelet itself might be the site of
nitrite reduction we investigated the effects of incubation of
purified platelets with nitrite, at similar concentrations to those
achieved following oral inorganic nitrate ingestion (i.e., 0.1-
3 umol/L), prior to assessment of aggregation using LTA. Our data
show no effect of nitrite when incubated with platelets for 10 or
30 min despite clear evidence of sensitivity to NO, demonstrated
using the NO donor Sper-NO. These observations are in agreement
with recent studies testing similar concentrations of nitrite with
human PRP demonstrating no effect of nitrite on ADP or collagen-
induced aggregation [44] and suggest that nitrite has no direct
effect on platelets. In contrast, there are some suggestions that
nitrite exerts direct inhibitory effects on platelets; however, the
in vivo relevance of these observations are uncertain since the
effects of nitrite were achieved with concentrations 10-100 times
above that found circulating in vivo [4,24]. Thus, in agreement
with recently published observations [44], our findings intimate
that while physiological concentrations of nitrite in vivo exert
antiplatelet effects this is not due to its conversion to NO at the
platelet itself.

To determine whether the erythrocyte might be the site of nitrite
conversion within the circulation we assessed the effects of nitrite
incubation on platelet aggregation in whole blood. Our data
demonstrate that in vitro nitrite causes moderate concentration-
dependent inhibition of platelet aggregation in response to ADP
when incubated with whole blood collected from healthy male
volunteers. This effect of nitrite was likely due to its conversion to
NO since it was associated with elevations in platelet cGMP levels. It
is therefore probable that in vivo nitrite reduction occurs, at least in
part, at the erythrocyte. Indeed, there are several reports demon-
strating erythrocytic nitrite reduction [11,51]. However, whether the
erythrocyte accounts for all of the nitrite reduction occurring in vivo
that underlies the reduced platelet sensitivity is uncertain. The exact
nitrite reductase that might be involved in this effect is not certain.
Recent in vitro studies suggest that deoxyhemoglobin might be the
nitrite reductase on erythrocytes influencing platelet function since
reductions in oxygen tension associated with increases in deoxyhe-
moglobin levels resulted in improved nitrite bioactivity [44].
Whether this might be the pathway involved in our study is
uncertain and warrants investigation.

Our studies also suggest that the pathways for NO bioactivity
within the circulation are different between the sexes. More

specifically, our data imply that the NO-sGC-cGMP pathway in
platelets is impaired in females compared to males, resulting in a
reduction of the antiplatelet effect of nitrite-derived NO in
females. This difference in activity was not due to differences in
the capacity to reduce nitrite to NO since the nitrite reductase
activity of erythrocytes assessed ex vivo was identical between the
sexes under varying pH conditions and nitrite concentrations. We
suggest that the differences in bioactivity relate to a reduced sGC
activity in females compared to males. Such a proposal is sup-
ported by our data demonstrating a reduced sensitivity of female
blood to NO donors as well as an absence of effect of both dietary
nitrate and in vitro nitrite administration on platelet function in
women. Accordingly, a number of recent preclinical studies
indicate a greater role for the NO-sGC-cGMP pathway in vascular
reactivity in males compared to females. Indeed, while male sGC,;
knockout mice are hypertensive, female knockouts are not [9].
In addition, our own recent investigations suggest that while sGC
activators cause potent vasodilatation and decreases in BP in male
mice, the activity is much reduced in females, an effect reflecting
reduced sGC expression [10]. Our observations shown herein suggest
that this phenomenon translates to humans, although further
molecular investigations are required to confirm this possibility.

Conclusions

Thus, inorganic nitrate ingestion, whether taken via the diet or
through supplementation, causes a modest decrease in platelet
reactivity in healthy males but not females. This effect in males is
associated with elevations of circulating nitrite resulting in NO-
induced elevations of platelet cGMP, an effect that is absent in
females and likely underlying the lack of responsiveness in terms
of platelet activity in females. The effects of inorganic nitrate on
platelet activity may offer potential in the therapeutics of cardio-
vascular disease in secondary prevention, as an adjunct to current
antiplatelet therapies to prevent atherothrombotic complications.
However, it is possible that the greatest potential of dietary nitrate
may lie in primary prevention. The modest antiplatelet activity of
such a dietary intervention may provide a superior option to
aspirin possibly via providing an important but less dramatic
antiplatelet effect versus aspirin, in addition to a reduced bleeding
complications profile. We suggest that our studies support the
case for large-scale and long-term clinical studies assessing the
therapeutic potential of a dietary nitrate intervention on platelet
reactivity in patients at risk of atherothrombotic events.
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