On k-Leaf-Connected Graphs

M. A. Gurgel and Y. Wakabayashi*
Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal-20570, 01000-São Paulo-SP, Brazil
Communicated by the Managing Editors

Received September 10, 1984

Abstract

A graph G is Hamilton-connected if given any two vertices u and v of G, there is a Hamilton path in G with ends u and v. In this note we consider a generalization of this property. For $k \geqslant 2$ we say that a graph $G=(V G, E G)$ is \mathbf{k}-leaf-connected if $|V G|>k$ and given any subset S of $V G$ with $|S|=k, G$ has a spanning tree T such that the set S is the set of endvertices of T. Thus a graph is 2 -leaf-connected if and only if it is Hamilton-connected. This generalization is due to U. S. R. Murty. We prove that the k-leaf-connectedness property is $(|V G|+k-1)$-stable, give sufficient conditions for a graph to be k-leaf-connected, present some necessary conditions and other related results. We show that for all naturals $n, k, 2 \leqslant k<n-2$, there is a sparse k-leaf-connected graph of order n. 1986 Academic Press, Inc.

1. Definitions and Notations

All graphs we consider here are simple. We denote the vertex set of a graph G by $V G$, and the edge set by $E G$. An edge with ends u and v is denoted by $u v$. For $A, B \subset V G, \delta(A, B)$ denotes the set of all edges of G with one end in A and the other in $B ; N_{G}(A)$ denotes the set of all vertices of G adjacent to vertices in A. For $v \in V G$, instead of writing $N_{G}(\{v\})$ we simply write $N_{G}(v)$, and we denote by $d_{G}(v)$ the degree of v in G. When the underlying graph G is clear from the context the subscript is omitted. A path in G is denoted by a sequence of its vertices. If T is a tree in G then $V T$ and $E T$ denote the vertex set and edge set of T, respectively. All other terms and notation not mentioned here are standard and can be found in [3 or 5].
If S is a subset of $V G$, an S -spanning tree in G is a spanning tree in G whose set of endvertices is precisely S. Given an integer $k \geqslant 2$, we say that a graph is \mathbf{k}-leaf-connected or has property $\mathbf{P}(\mathbf{k})$, if $|V G|>k$ and for all subsets S of $V G$ with $|S|=k, G$ has an S-spanning tree. If G has property $P(m)$

[^0]for all $m, 2 \leqslant m \leqslant k$, then we say that G is \mathbf{k}^{*}-leaf-connected or G has property $\mathbf{P}^{*}(k)$.

Throughout this note G denotes a graph, n stands for the order of the graph under consideration, and k is a natural number.

2. Necessary Conditions and Other Results

Theorem 1. If G is k-leaf-connected, $2 \leqslant k<n-1$, then G is $(k+1)$ connected.

Proof. Follows immediately from the fact that for any subset S of $V G$ with $|S|=k$, the graph $G-S$ is connected.

Corollary 1.1. If G is k-leaf-connected, $2 \leqslant k<n-1$, then $d(v) \geqslant k+1$ for every vertex v in G.

The examples in Section 4 show that these two results are sharp.
Theorem 2. If G is k-leaf-connected, $k \geqslant 3$ and G has at least k vertices with degree greater than $n-k$, then G is $(k-1)$-leaf-connected.

Proof. Assume that $k<n-2$, otherwise G is complete and the result is obvious. Let $S:=\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ be a subset of $V G$ and suppose that G does not have an S-spanning tree.

Take a vertex $x \in V G \backslash S$ such that $d(x)>n-k$. Set $S^{\prime}:=S \cup\{x\}$ and let T^{\prime} be an S^{\prime}-spanning tree in G. For each vertex $v_{i} \in S, 1 \leqslant i \leqslant k-1$, let P_{i} be the path in T^{\prime} from x to v_{i}. Call y_{i} the last vertex in P_{i} such that $d_{T^{\prime}}\left(y_{i}\right) \geqslant 3$ and call y_{i}^{\prime} the successor of y_{i} in P_{i}. Note that y_{i}^{\prime} is not adjacent to x. Otherwise,

$$
T:=T^{\prime}+x y_{i}^{\prime}+y_{i} y_{i}^{\prime}
$$

would be an S-spanning tree in G.
It is clear that the $k-1$ vertices $y_{i}^{\prime}, 1 \leqslant i \leqslant k-1$, are all distinct. Since none of them is adjacent to x, it follows that

$$
d_{G}(x) \leqslant n-(k-1)-1=n-k
$$

contradicting the choice of x.
Theorem 3. If G is k-leaf-connected, $k \geqslant 3$ and $k \geqslant n / 2$, then G is ($k-1$)-leaf-connected.
Proof. Follows immediately from Theorem 2 and Corollary 1.1.

Remark. We do not know whether an analogous result as the one present in Corollary 2.1 is also valid for $3 \leqslant k<n / 2$.

In the sequel we define the concept of m-stable property, which was introduced by Bondy and Chvátal [2] inspired by a theorem of Ore [6] on hamiltonian graphs. We prove then that the property $P(k)$ is ($n+k-1$)-stable and use this result to derive some of the sufficient conditions we present in the next section.

Definition. Let P be a property defined on all graphs of order n and let m be a nonnegative integer. The property P is said to be m-stable if whenever G is an arbitrary graph of order n, u and v are non-adjacent vertices of G such that $d(u)+d(u) \geqslant m$ and $G+u v$ has property P, then G itself has property P.

Theorem 4. The property $P(k)$ is $(n+k-1)$-stable.
Proof. Let u and v be any two non-adjacent vertices of a graph G such that $d(u)+d(v) \geqslant n+k-1$. Suppose $G+u v$ has property $P(k)$ but G does not.

Take $S \subset V G$ with $|S|=k$ and assume that G does not have an S-spanning tree. Let T be an S-spanning tree in $G+u v$ and call T_{u} and T_{v} the trees obtained from T by removing the edge $u v$. Choose T_{u} and T_{v} such that $u \in V T_{u}$ and $v \in V T_{v}$.

For any vertex x in T_{u} (resp. in T_{v}) denote by x_{p} the predecessor of x in the path from u (resp. v) to x in T_{u} (resp. T_{v}). Let

$$
\begin{aligned}
& A:=\left\{x \in V T_{u}: u x \in E G \backslash E T\right\}, \\
& B:=\left\{x \in V T_{u}: x_{p} v \in E G \backslash E T\right\}, \\
& C:=\left\{x \in V T_{v}: v x \in E G \backslash E T\right\}, \\
& D:=\left\{x \in V T_{v}: x_{p} u \in E G \backslash E T\right\} .
\end{aligned}
$$

It is clear that $A \cap B=\varnothing$, for if x is a vertex in $A \cap B$ then $T+u x+x_{p} v-x_{p} x-u v$ is an S-spanning tree in G, contradicting the assumption. By symmetry, it follows that $C \cap D=\varnothing$. It is also immediate that

$$
|A \cup B| \leqslant\left|V T_{u}\right|-\left|N_{T_{u}}(u)\right|-1
$$

and

$$
d_{G}(u) \leqslant|A|+\left|N_{T_{u}}(u)\right|+|D|+\left|S \cap V T_{v}\right| .
$$

By symmetry,

$$
|C \cup D| \leqslant\left|V T_{v}\right|-\left|N_{T_{v}}(v)\right|-1
$$

and

$$
d_{G}(v) \leqslant|B|+\left|N_{T_{t}}(v)\right|+|C|+\left|S \cap V T_{u}\right| .
$$

Therefore,

$$
\begin{aligned}
d_{G}(u)+d_{G}(v) & \leqslant|A \cup B|+\left|N_{T_{u}}(u)\right|+\left|N_{T_{u}}(v)\right|+|C \cup D|+k \\
& \leqslant\left|V T_{u}\right|+\left|V T_{v}\right|+k-2=n+k-2,
\end{aligned}
$$

a contradiction.

3. Sufficient Conditions

In this section we use some results given in [2] combined with our Theorem 4 to obtain the following two main theorems.

THEOREM 5. Let k and n be such that $2 \leqslant k \leqslant n-3$. Let G be a graph with degree sequence $d_{1} \leqslant d_{2} \leqslant \cdots \leqslant d_{n}$. Suppose there is no integer i such that

$$
\begin{aligned}
k-1<i & <\frac{n+k-1}{2}, \\
d_{i-k+1} & \leqslant i, \\
d_{n-i} & \leqslant n-i+k-2 .
\end{aligned}
$$

Then G is k-leaf-connected.
Proof. Apply Proposition 2.1 and Theorem 3.1 (specialized to $t=\lceil(n+k-1) / 2 \mid)$ given in [2] combined with our Theorem 4. Note that when the conditions of Theorems 3.1 are satisfied, the $(n+k-1)$-closure of G has at least t vertices of degree $n-1$, and therefore it is complete.

Theorem 6. Let k and n be such that $2 \leqslant k \leqslant n-3$. Let G be a graph with $V G=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Suppose there are no indices i and j such that

$$
\begin{aligned}
& j \geqslant \max \{i+1, n-k-i+1\}, \quad v_{i} v_{j} \notin E G \\
& d\left(v_{i}\right) \leqslant i+k-1, \\
& d\left(v_{j}\right) \leqslant j+k-2, \\
& d\left(v_{i}\right)+d\left(v_{j}\right) \leqslant n+k-2 .
\end{aligned}
$$

Then G is k-leaf-connected.

Proof. Same as above, applying Theorem 3.2 instead of Theorem 3.1.

Remark. Theorem 6 is stronger than Theorem 5, according to Theorem 10.1 presented in [2].
Recently, Zhu and Feng [9] obtained improvements of the results (Theorems 3.1 and 3.2 of [2]) due to Bondy and Chvátal. Applying their results one can obtain results which yield the previous theorems as corollaries. The application is straightforward and we leave it to the reader.

Corollary 6.1. Suppose $2 \leqslant k<n$. If G is such that $d(u)+d(v) \geqslant$ $n+k-1$ for every two non-adjacent vertices u and v, then G is k-leaf-connected.

Corollary 6.2. Suppose $2 \leqslant k<n$. If G is such that

$$
|E G| \geqslant \frac{(n-1)(n-2)}{2}+k+1,
$$

then G is k-leaf-connected.
Corollary 6.3. Suppose $2 \leqslant k<n$. If G is such that $d(v) \geqslant(n+k-1) / 2$ for every vertex v, then G is k-leaf-connected.

Remarks. (a) It is not difficult to verify that Theorem 5 and Theorem 6 remain valid if instead of asserting that G is k-leaf-connected we assert that G is k^{*}-leaf-connected. For the corollaries the validity for k^{*} is obvious.
(b) The given corollaries are generalizations of known results for Hamilton-connected graphs. Corollaries 6.1 and 6.2 for $k=2$ are results due to Ore [7]. Note also that these corollaries follow immediately from Theorem 4.
(c) The inequality in Corollary 6.1 cannot be weakened. For each pair (n, k), where $2 \leqslant k<n-1$, consider the graph $G_{n, k}$ which consists of a complete graph K_{n-1} and k edges joining k of its vertices to a vertex not in it. In $G_{n, k}$ every two non-adjacent vertices have degree sum $n+k-2$ and clearly it is not k-leaf-connected.
(d) The graph $G_{n, k}$ also shows that the bound given in Corollary 6.2 is best possible. Note that the number of edges of $G_{n, k}$ is

$$
\frac{n(n-1)}{2}-(n-k-1)=\frac{(n-1)(n-2)}{2}+k .
$$

(e) The inequality in Corollary 6.3 is also best possible. The graph $\vec{G}_{n, k}$ of order n (see Fig. 1) defined below for each pair (n, k), where

Fig. 1. The graph $\widetilde{G}_{n, k}$.
$2 \leqslant k<n-1$, is such that $d(v) \geqslant\lceil(n+k-1) / 2\rceil-1$ for every vertex v, and is not k-leaf-connected.
$\tilde{G}_{n, k}$ consists of the union of the complete graphs $K_{\lfloor(n-k) / 2\rfloor}$, $K_{\mathrm{L}(n-k+1) / 2\rfloor}$ and K_{k}, and all edges with one end in K_{k} and other in $K_{\lfloor(n-k) / 2\rfloor} \cup K_{\llcorner(n-k+1) / 2\rfloor}$.

In the sequel we prove a result which shows that, with the additional regularity hypothesis, the degree based conditions previously presented can be slightly improved. Recently, Tomescu [8] proved the following:

Theorem 7 (Tomescu). Let r be a natural number, $r \geqslant 3$. If G is an r regular graph of order $2 r, G \neq K_{r, r}$, or an r-regular of order $2 r+1$, then G is Hamilton-connected.

This theorem can be extended in the following way:
Theorem 8. Let k, n be natural numbers and $r=\lfloor(n+k-2) / 2\rfloor$. If G is an r-regular graph of order n different from $K_{r, r}$ and if
(i) $2 \leqslant k<(n+2) / 3$ in case $n+k$ is even, or
(ii) $2 \leqslant k<(n+1) / 3$ in case $n+k$ is odd
holds, then G is k-leaf-connected.
Proof. Case (i) $n+k$ is even. For $k=2$ the assertion is one of the statements of Theorem 7 due to Tomescu. Consider then $3 \leqslant k<(n+2) / 3$.

Let S be a subset of $V G$ with $|S|=k$ and suppose G has no S-spanning tree. Let $S^{\prime}:=S \backslash\{x\}, x \in S$. As $r=\lfloor(n+k-2) / 2\rfloor=(n+(k-1)-1) / 2$, by Corollary $6.3 G$ has an S^{\prime}-spanning tree.

Consider an S^{\prime}-spanning tree T in G such that $t:=d_{T}(x)$ is minimum, and let $x_{1}, x_{2}, \ldots, x_{t}$ be the vertices of T which are adjacent to x in T.

Deleting the vertex x from T we obtain t disjoint trees, say $T_{1}, T_{2}, \ldots, T_{t}$, such that $x_{i} \in V T_{i}, 1 \leqslant i \leqslant t$. Set

$$
S_{i}:=S^{\prime} \cap V T_{i}, \quad 1 \leqslant i \leqslant t .
$$

We claim that

$$
\begin{equation*}
N_{G}\left(x_{i}\right) \cap\left(V T_{j} \backslash S_{j}\right)=\varnothing \quad \text { for all } \quad i \neq j, 1 \leqslant i \leqslant t, 1 \leqslant j \leqslant t . \tag{1}
\end{equation*}
$$

Otherwise, if there is a vertex w in the intersection then

$$
\hat{T}:=T+x_{i} w-x x_{i}
$$

is either an S^{\prime}-spanning tree with $d_{\hat{\tau}}(x)<t$ (contradicting the choice of T), or is an S-spanning tree (in case $d_{\tau}(x)=1$), contradicting the assumption. Thus

$$
\begin{equation*}
d_{G}\left(x_{i}\right) \leqslant\left|V T_{i}\right|-\left|S_{i}\right|+\left|S^{\prime}\right| \quad \text { for all } i, 1 \leqslant i \leqslant t, \tag{2}
\end{equation*}
$$

and hence

$$
\sum_{i=1}^{t} d_{G}\left(x_{i}\right) \leqslant \sum_{i=1}^{t}\left|V T_{i}\right|-\sum_{i=1}^{t}\left|S_{i}\right|+t(k-1)=n-1+(t-1)(k-1) .
$$

As $d_{G}\left(x_{i}\right)=(n+k-2) / 2, \quad 1 \leqslant i \leqslant t$, we obtain $(t-2) n \leqslant(t-2) k$. Since $n>k$ we must have $t=2$. Since $d_{G}\left(x_{1}\right)+d_{G}\left(x_{2}\right)=n+k \quad 2$ and $\left|V T_{1}\right|-\left|S_{1}\right|+\left|S^{\prime}\right|+\left|V T_{2}\right|-\left|S_{2}\right|+\left|S^{\prime}\right|=n+k-2$, it follows that equality holds in (2) and

$$
\begin{equation*}
\left|V T_{1}\right|-\left|S_{1}\right|=\left|V T_{2}\right|-\left|S_{2}\right|=\frac{n-k}{2}=: m . \tag{3}
\end{equation*}
$$

Since $t=2$ and (1) holds, then

$$
N_{G}\left(x_{1}\right) \subseteq\left(V T_{1} \backslash\left\{x_{1}\right\}\right) \cup\{x\} \cup S_{2} .
$$

As $\quad d_{G}\left(x_{1}\right)=\left|N_{G}\left(x_{1}\right)\right| \leqslant\left|\left(V T_{1} \backslash\left\{x_{1}\right\}\right) \cup\{x\} \cup S_{2}\right|=\left|V T_{1}\right|+\left|S_{2}\right|=d_{G}\left(x_{1}\right)$, the inclusion above must be an equality, i.e.,

$$
\begin{equation*}
N_{G}\left(x_{1}\right)=\left(V T_{1} \backslash\left\{x_{1}\right\}\right) \cup\{x\} \cup S_{2} . \tag{4}
\end{equation*}
$$

Suppose $N_{G}\left(V T_{1} \backslash S_{1}\right) \cap\left(V T_{2} \backslash S_{2}\right)=\varnothing$. We shall prove that this implies that every vertex $w \in\left(V T_{1} \backslash S_{1}\right) \cup\left(V T_{2} \backslash S_{2}\right)$ is adjacent to x. Assume the contrary. Then using (3) we conclude that

$$
d(w) \leqslant\left|S_{1}\right|+\left|S_{2}\right|+m-1=\frac{n+k-4}{2},
$$

a contradiction. Therefore, $N_{G}(x) \supseteq\left(V T_{1} \backslash S_{1}\right) \cup\left(V T_{2} \backslash S_{2}\right)$ and thus

$$
\frac{n+k-2}{2}=d_{G}(x) \geqslant\left|\left(V T_{1} \backslash S_{1}\right) \cup\left(V T_{2} \backslash S_{2}\right)\right|=n-k
$$

which implies that $k \geqslant(n+2) / 3$, contradicting the hypothesis.
Hence, $N_{G}\left(V T_{1} \backslash S_{1}\right) \cap\left(V T_{2} \backslash S_{2}\right) \neq \varnothing$ and since (1) holds there exists a vertex $w \in\left(V T_{1} \backslash S_{1}\right)$ and a vertex $z \in\left(V T_{2} \backslash S_{2}\right)$ such that $w z \in E G, w \neq x_{1}$, $z \neq x_{2}$. Let

$$
\hat{T}:=T-x_{1} x+w z
$$

If $d_{\Gamma}\left(x_{1}\right)>1$ then \hat{T} is an S-spanning tree in G. Otherwise, let P be the path in \hat{T} with ends w and x_{1}. As $d_{T}(w) \geqslant 3$ there is a vertex $y \in\left(V T_{1} \backslash V P\right)$ such that $y w \in E \hat{T}$. Since $y x_{1} \notin E \hat{T}$ and by (4) $y x_{1} \in E G$, then

$$
\tilde{T}:=\hat{T}-y w+y x_{1}
$$

is an S-spanning tree in G, again a contradiction. Thus the proof of Case (i) is complete.

Case (ii) $n+k$ is odd. As $r=\lfloor(n+k-2) / 2\rfloor=(n+k-3) / 2$, for $k=2$ the assertion is true by Theorem 7. Consider now $3 \leqslant k<(n+1) / 3$.

Since $r=(n+(k-1)-2) / 2$ and $n+(k-1)$ is even, then by the previous case, it follows that G is $(k-1)$-leaf-connected.

Let $S, S^{\prime}, T, x, t, x_{i}, S_{i}, T_{i}$ be as defined in the Case (i), and suppose G has no S-spanning tree. Let us also assume that

$$
\begin{equation*}
N_{G}\left(x_{i}\right) \cap\left(V T_{j} \backslash S_{j}\right)=\varnothing \quad \text { for all } i \neq j, 1 \leqslant i \leqslant t, 1 \leqslant j \leqslant t \tag{5}
\end{equation*}
$$

Otherwise, a contradiction follows easily. Thus

$$
\begin{equation*}
d_{G}\left(x_{i}\right) \leqslant\left|V T_{i}\right|-\left|S_{i}\right|+\left|S^{\prime}\right| \quad \text { for all } i, 1 \leqslant i \leqslant t \tag{6}
\end{equation*}
$$

and hence

$$
t\left(\frac{n+k-3}{2}\right)=\sum_{i=1}^{t} d_{G}\left(x_{i}\right) \leqslant n-1+(t-1)(k-1)
$$

that is,

$$
t \leqslant \frac{2(n-k)}{n-k-1}
$$

Since $3 \leqslant k<(n+1) / 3$ it follows that $t<3$, and therefore $t=2$. But then, since $d_{G}\left(x_{1}\right)+d_{G}\left(x_{2}\right)=n+k-3$ and $\left|V T_{1}\right|-\left|S_{1}\right|+\left|S^{\prime}\right|+\left|V T_{2}\right|-\left|S_{2}\right|+$
$\left|S^{\prime}\right|=n+k-2$, and since (6) holds, we may assume w.lo.g. that $d_{G}\left(x_{1}\right)=$ $\left|V T_{1}\right|-\left|S_{1}\right|+\left|S^{\prime}\right|$ and $d_{G}\left(x_{2}\right)=\left|V T_{2}\right|-\left|S_{2}\right|+\left|S^{\prime}\right|-1$. Thus,

$$
\left|V T_{1}\right|-\left|S_{1}\right|=\left|V T_{2}\right|-\left|S_{2}\right|-1=\frac{n-k-1}{2} .
$$

From (5) we also conclude that $N_{G}\left(x_{1}\right) \subseteq\left(V T_{1} \backslash\left\{x_{1}\right\}\right) \cup\{x\} \cup S_{2}$. Since $\left|N_{G}\left(x_{1}\right)\right|=\left|\left(V T_{1} \backslash\left\{x_{1}\right\}\right) \cup\{x\} \cup S_{2}\right|$, then

$$
\begin{equation*}
N_{G}\left(x_{1}\right)=\left(V T_{1} \backslash\left\{x_{1}\right\}\right) \cup\{x\} \cup S_{2} . \tag{7}
\end{equation*}
$$

Let us assume now that

$$
\begin{equation*}
N_{G}\left(V T_{1} \backslash S_{1}\right) \cap\left(V T_{2} \backslash S_{2}\right)=\varnothing . \tag{8}
\end{equation*}
$$

Thus, for any vertex $w \in V T_{1} \backslash S_{1}, N_{G}(w) \subseteq\left(V T_{1} \backslash\{w\}\right) \cup\{x\} \cup S_{2}$. As above we conclude that

$$
N_{G}(w)=\left(V T_{1} \backslash\{w\}\right) \cup\{x\} \cup S_{2} \quad \text { for all } w \in V T_{1} \backslash S_{1} .
$$

Let $s \in S_{1} \cup S_{2}$. Since every vertex in $V T_{1} \backslash S_{1}$ is adjacent to s and $\left|V T_{1} \backslash S_{1}\right|=(n-k-1) / 2$, then $\left|N_{G}(s) \cap\left(\left(V T_{2} \backslash S_{2}\right) \cup\{x\}\right)\right| \leqslant(n+k-3) /$ $2-(n-k-1) / 2=k-1$. Thus

$$
\begin{equation*}
\left|\delta\left(S_{1} \cup S_{2},\left(V T_{2} \backslash S_{2}\right) \cup\{x\}\right)\right| \leqslant\left|S_{1} \cup S_{2}\right| \cdot(k-1) . \tag{9}
\end{equation*}
$$

Since x is adjacent to all vertices of $V T_{1} \backslash S_{1}, x$ is adjacent to at most $k-1$ vertices of $V T_{2} \backslash S_{2}$. This fact and (9) imply that

$$
\left|\delta\left(S_{1} \cup S_{2} \cup\{x\}, V T_{2} \backslash S_{2}\right)\right| \leqslant\left|S_{1} \cup S_{2}\right| \cdot(k-1)+k-1=k(k-1) . \text { (10) }
$$

On the other hand, since $\left|V T_{2} \backslash S_{2}\right|=(n-k+1) / 2$, every vertex in $V T_{2} \backslash S_{2}$ must be adjacent to at least $(n+k-3) / 2-(n-k+1) / 2+1=$ $k-1$ vertices not in $V T_{2} \backslash S_{2}$. Thus, assuming (8),

$$
\begin{equation*}
\left|\delta\left(S_{1} \cup S_{2} \cup\{x\}, V T_{2} \backslash S_{2}\right)\right| \geqslant(k-1) \frac{(n-k+1)}{2} . \tag{11}
\end{equation*}
$$

Now (10) and (11) imply that $(k-1)((n-k+1) / 2) \leqslant k(k-1)$, that is, $k \geqslant(n+1) / 3$. Since this contradicts the hypothesis, we conclude that (8) cannot occur. Therefore,

$$
N_{C}\left(V T_{1} \backslash S_{1}\right) \cap\left(V T_{2} \backslash S_{2}\right) \neq \varnothing,
$$

and the proof follows analogously to Case (i).

Remark. The upper bounds on k given in Theorem 8 are best possible. To prove this let us show that for all pairs (n, k), $n \geqslant 7$, such that
(i) $n+k$ is even, $(n+2) / 3 \leqslant k \leqslant n-4$ and k or r is even, or
(ii) $n+k$ is odd and $(n+1) / 3 \leqslant k \leqslant n-5$
holds, there exists an r-regular graph G of order n, with $r=\lfloor(n+k-2) / 2\rfloor$, $G \neq K_{r, r}$, which is not k-leaf-connected.

Let S, Y, Z be disjoint sets of vertices, with $|S|=k,|Z|=\lfloor(n-k) / 2\rfloor$ and $|Y|=\lfloor(n-k+1) / 2\rfloor$.
(a) Suppose (i) holds. In this case, note that $|Z|=|Y|=(n-k) / 2$ and $r=(n+k-2) / 2$. Let $V H:=S \cup Z \cup Y$ and $E H:=\delta(Z, Z \cup S) \cup$ $\delta(Y, Y \cup S)$. Thus, $d_{H}(v)=r$ for all $v \in Z \cup Y$ and $d_{H}(v)=n-k$ for all $v \in S$.
Let $p:=r-(n-k)$. Since $k \geqslant(n+2) / 3$, then $p \geqslant 0$. If $p=0$ then H is the desired graph G, otherwise let G be the graph obtained from H by completing it to an r-regular graph. That is, by adding edges with both ends in S so that $d_{G}(s)=d_{H}(s)+p=r$ for all $s \in S$. Since there is no edge in $E H$ with both ends in S, such a completion is possible if the degree sequence $d=\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ with $d_{i}=p, 1 \leqslant i \leqslant k$, is graphic. It is easy to see that since $p<k-1$, the sequence d is graphic if k or p is even. Note that if (i) holds then in case k is odd, p is even.

Clearly, G has no S-spanning tree ($G-S$ is disconnected) and $G \neq K_{r, r}$.
(b) Suppose (ii) holds. In this case, note that $|Z|=$ $|Y|-1=(n-k-1) / 2$ and $r=(n+k-3) / 2$. Let $V H:=S \cup Z \cup Y$ and $E H:=\delta(Z, Z \cup S)$. Note that to show that H can be completed to an r regular graph G, it sufficies to show that when (ii) holds the degree sequence $d=\left(d_{1}, d_{2}, \ldots, d_{q}\right)$, where $q=n-|Z|=(n+k+1) / 2, d_{i}=k-1$ for $1 \leqslant i \leqslant k$, and $d_{i}=r$ for $k<i \leqslant q$, is graphic. (The proof is long but not difficult and therefore it will be omitted.) It is immediate that G is not bipartite and G has no S-spanning tree ($G-S$ is disconnected).

Fig. 2. (a) A 5-regular, not 4-leaf-connected graph $G, G \neq K_{5,5}$; (b) A 4-regular, not 3-leafconnected graph $G, G \neq K_{4,4}$.

In Fig. 2 we give examples obtained by using the previous constructions. The edges added to the initial graph H to obtain G are indicated by dashed lines.

4. Familes of Sparse k-Leaf-Connected Graphs

In this section we show the existence of k-leaf-connected graphs which have the least possible number of edges.
Note that by Corollary 1.1, if $k \leqslant n-2$ a k-leaf-connected graph of order n must have at least $\lceil(k+1) n / 2\rceil$ edges. So, if we denote by $\varphi(k, n)$ the least number of edges that a k-leaf-connected graph on n vertices can have, then we know that

$$
\begin{equation*}
\varphi(k, n) \geqslant\left\lceil\frac{(k+1) n}{2}\right\rceil, \quad \text { for } \quad 2 \leqslant k \leqslant n-2 . \tag{12}
\end{equation*}
$$

(Clearly, $\varphi(n-2, n)=\varphi(n-1, n)=(n-1) n / 2$.
It is also known from the following theorem of Moon ([1, pp. 221]) that for $k=2$ equality holds in (12), that is,

$$
\varphi(2, n)=\lceil 3 n / 2\rceil, \quad \text { for } \quad n \geqslant 4 .
$$

Theorem 9 (Moon). For every $n \geqslant 4$, there exists a Hamilton-connected graph M_{n} of order n with exactly $\lceil 3 n / 2\rceil$ edges.

The graphs given by Moon are shown in Fig. 3.
Now the question that remains to be answered is whether equality holds in (12) also for $3 \leqslant k<n-2$. The answer is YES, as it will be shown in the sequel. We shall consider for each pair $(k, n), 3 \leqslant k<n-2$, a graph $H_{k+1 . n}$ which is $(k+1)$-connected and has $\lceil(k+1) n / 2\rceil$ edges, and shall prove that $H_{k+1, n}$ is k-leaf-connected.

The construction of the graphs $H_{k+1, n}$ to be considered is due to Harary [4] and can be found in [1 and 3]. We follow the notation of [3], and consider all the additions taken modulo n.

Fig. 3. Sparse Hamilton-connected graphs M_{n}.

FIG. 4. (a) $H_{4,8}$; (b) $H_{5,8}$; (c) $H_{5,9}$
Construction of $H_{m, n}$. Case 1. m even. Let $m=2 r$. Then $H_{2 r, n}$ is constructed as follows. It has vertices $0,1, \ldots, n-1$, and two vertices i and j are joined if $i-r \leqslant j \leqslant i+r$ (see Fig. 4a).

Case 2. m odd, n even. Let $m=2 r+1$. Then $H_{2 r+1, n}$ is obtained by first constructing $H_{2 r, n}$ and then adding edges joining vertex i to vertex $i+n / 2$ for $1 \leqslant i \leqslant n / 2$ (see Fig. 4b).

Case 3. m odd, n odd. Let $m=2 r+1$. Then $H_{2 r+1, n}$ is obtained by first constructing $H_{2 r, n}$ and then adding edges joining:
(a) vertex 0 to vertices $(n-1) / 2$ and $(n+1) / 2$,
(b) vertex i to vertex $i+(n+1) / 2$ for $1 \leqslant i<(n-1) / 2$ (see Fig. 4c).

Theorem 10 (Harary). The graph $H_{k+1, n}$ is $(k+1)$-connected and has $\lceil(k+1) n / 2\rceil$ edges.

Lemma 11. The graph $H_{k+1, n}$ is Hamilton-connected if $k \geqslant 3$.
Proof. Since for $k \geqslant 3$ the graph $H_{k+1, n}$ contains the graph $H_{4, n}$, it suffices to prove that $H_{4, n}$ is Hamilton-connected. Let i and j be any two vertices in $H_{4, n}$. We shall prove that $H_{4, n}$ has a Hamilton path P with ends i and j. Assume that $0 \leqslant i<j-1 \leqslant n-2$, otherwise the result is obvious. Let $m:=\lfloor(j-i) / 2\rfloor$. If $j-i$ is odd then $j-2 m=i+1$. In this case, the claimed path is

$$
P:=(j, j-2, j-4, \ldots, j-2 m, i+2, i+4, \ldots, i+2 m, j+1, j+2, \ldots, i) .
$$

If $j-i$ is even then $j-2(m-1)=i+2$. In this case, let

$$
P:=(j, j-2, j-4, \ldots, j-2(m-1), i+1, i+3, \ldots, i+(2 m+1),
$$

$$
j+2, j+3, \ldots, i)
$$

Remark. The graph $H_{3, n}$ is bipartite for $n=2 p, p \geqslant 3, p$ odd, and therefore non-Hamilton-connected. Also for $n=2 p+1, p \geqslant 5, p$ odd, it is easy to see that $H_{3, n}$ is non-Hamilton-connected.

Before we prove the next theorem, let us introduce the notation and terminology needed in the sequel. The hamiltonian cycle ($0,1, \ldots, n-1$) contained in $H_{k+1, n}$ is denoted by C. For any two vertices x and y in C we denote by $C(x, y)$, (resp. $C^{-1}(x, y)$), the path on C defined when one traverses C clockwise, (resp. counterclockwise), from x to y. If S is a subset of vertices and x, y are in S, we say that $x S$-precedes y in C if $C(x, y)$ contains no other vertex from S, except x and y. If x is a vertex, we denote by x^{\prime} and $x^{\prime \prime}$ the two neighbours of x in C, choosing them in a such way that x is contained in $C\left(x^{\prime}, x^{\prime \prime}\right)$.

Now using an idea similar to the one used in the proof of Lemma 11, the following lemma can be easily proved.

Lemma 12. Consider the graph $H_{4, n}$. Let x and y be any two vertices not consecutive on C, and let \bar{x} be any vertex in $C(y, x), \bar{x} \neq x$. Then $H_{4, n}$ has a path from \bar{x} to x containing all and only the vertices in $C(y, x)$.

Theorem 13. The graph $H_{k+1, n}$ is k^{*}-leaf-connected if $k \geqslant 3$.
Proof. Assume that $k \leqslant n-3$, otherwise the result is obvious. Let S be a subset of vertices with $|S|=m, 3 \leqslant m \leqslant k$, and let us prove that $H_{k+1, n}$ has an S-spanning tree T.

Denote the elements of S by $s_{1}, s_{2}, \ldots, s_{m}$ in a such a way that $s_{i} S$ precedes s_{i+1} in $C, 1 \leqslant i \leqslant m$, and $C\left(s_{1}, s_{2}\right)$ has at least 3 vertices.

The tree T will be constructed stepwise. We first construct a tree $T^{\prime \prime}$ with leaf set $S^{\prime}, S^{\prime} \subset S$, then (if necessary) we extend it to a tree $T^{\prime \prime}$ with leaf set $S^{\prime \prime}, S^{\prime \prime} \subseteq S^{\prime \prime} \subset S$, and finally we extend $T^{\prime \prime}$ to T.

Procedure \propto (Construction of $T^{\prime \prime}$).

Input: $H_{k+1, n}$ and $S=\left\{s_{1}, \ldots, s_{m}\right\}$ (according to the convention).
Output: An index $j(\Gamma m / 2\rceil+1 \leqslant j \leqslant m)$ and a tree T^{\prime} with leaf set

$$
S^{\prime}=\left\{s_{1}, s_{2}, \ldots, s_{j-1}\right\} .
$$

(I) [Initialization]

$$
\begin{aligned}
T^{\prime} & :=C\left(s_{1}, s_{2}\right) ; \quad S^{\prime}:=\left\{s_{1}, s_{2}\right\} ; \quad t:=1 ; \quad i:=2 ; \\
u & \left.\left.:=s_{2}^{\prime} \text { ("predecessor" of } s_{2}\right) ; v:=s_{2}^{\prime \prime} \text { ("successor" of } s_{2}\right) ;
\end{aligned}
$$

(II) [Iteration]

While ($i<m-1$ and $t<\lceil k / 2\rceil$) do

$$
\begin{aligned}
& \text { begin } T^{\prime}:=T^{\prime}+u v ; \quad i:=i+1 ; \\
& \text { if } v \neq s_{i} \text { then begin } T^{\prime}:=T^{\prime} \cup C\left(v, s_{i}\right) \text {; } \\
& S^{\prime}:=S^{\prime} \cup\left\{s_{i}\right\} ; \\
& u:=s_{i}^{\prime} ; t:=1 \text {; } \\
& \text { end } \\
& \text { else } \quad t:=t+1 ; \\
& v:=s_{i}^{\prime \prime} ; \\
& \text { end; }
\end{aligned}
$$

(III) [Returning value of j]

$$
j:=i+1 . \quad[\text { STOP. }]
$$

Note that at the end of the Procedure $\alpha, I^{\prime \prime}$ is a tree (with leaf set $\left.S^{\prime}=\left\{s_{1}, s_{2}, \ldots, s_{j-1}\right\}\right)$ containing all and only the vertices of $C\left(s_{1}, s_{j-1}\right)$. Now if $j<m$, by applying the next Procedure β (symmetric to Procedure α), we extend $T^{\prime \prime}$ to a tree $T^{\prime \prime}$ with leaf set $S^{\prime \prime}=S \backslash\left\{s_{j}\right\}$.

Procedure β (Construction of $T^{\prime \prime}$).
Input: $\quad H_{k+1 . n}, S=\left\{s_{1}, \ldots, s_{m}\right\}$,
T^{\prime}, S^{\prime} and j (output of Procedure α).
Output: A tree $T^{\prime \prime} \supseteq T^{\prime}$ with leaf set $S^{\prime \prime}=S \backslash\left\{s_{j}\right\}$, a vertex z in $V T^{\prime \prime} \backslash S^{\prime \prime}$ (to be used in the construction of T).
(I) [Initialization]

$$
T^{\prime \prime}:=T^{\prime} ; \quad S^{\prime \prime}:=S^{\prime} ; \quad u:=s_{1}^{\prime \prime} ; \quad v:=s_{1}^{\prime} ; \quad i:=m ;
$$

(II) [Iteration]

While $i>j$ do begin

$$
\begin{array}{ll}
T^{\prime \prime}:=T^{\prime \prime}+u v ; \\
\text { if } v \neq s_{i} \text { then } & \text { begin } \\
& T^{\prime \prime}:=T^{\prime \prime} \cup C^{-1}\left(v, s_{i}\right) ; \\
& S^{\prime \prime}:=S^{\prime \prime} \cup\left\{s_{i}\right\} ; u:=s_{i}^{\prime \prime} ; \\
& \text { end } ;
\end{array}
$$

$$
\begin{aligned}
& v:=s_{i}^{\prime} ; \\
& i:=i-1 ; \\
& \text { end; }
\end{aligned}
$$

(III) [Returning the attachment vertex z] $z:=u . \quad$ [STOP].

At the end of the Procedure $\beta, T^{\prime \prime}$ is a tree with leaf set $S^{\prime \prime}=S \backslash\left\{s_{j}\right\}$ containing all and only the vertices of $C\left(s_{j+1}, s_{j-1}\right)$. (If $j=m$ then $T^{\prime \prime}=T^{\prime}$ and $z=s_{1}^{\prime \prime}$.) Now in order to obtain T it remains to include the vertices of $C\left(s_{j-1}^{\prime \prime}, s_{j+1}^{\prime}\right)$, assuring that s_{j} will become a leaf of it. To do that, we define different constructions according to the adjacency relation between s_{j+1}, s_{j} and s_{j-1}.
Suppose s_{j} and s_{j-1} are adjacent in C. If s_{j+1} and s_{j} are also adjacent in C then let $T:=T^{\prime \prime}+z s_{j}$, otherwise let $T:=\left(T^{\prime \prime}+z s_{j+1}^{\prime}\right) \cup C^{-1}\left(s_{j+1}^{\prime}, s_{j}\right)$. Now suppose s_{j} and s_{j-1} are non-adjacent in C. If s_{j+1} and s_{j} are also nonadjacent in C, let $x:=s_{j}, y:=s_{j-1}^{\prime \prime}$ and $P\left(x^{\prime}, x\right)$ be a path from x^{\prime} to x (see Lemma 12) containing all and only the vertices in $C(y, x)$. In this case, set $T:=\left(T^{\prime \prime}+z s_{j+1}^{\prime}\right) \cup\left(C^{-1}\left(s_{j+1}^{\prime}, x^{\prime \prime}\right)+x^{\prime \prime} x^{\prime}\right) \cup P\left(x^{\prime}, x\right)$. If s_{j+1} and s_{j} are adjacent in C, then (since $G-S$ is connected) there is a vertex w in $V T^{\prime \prime} \backslash S^{\prime \prime}$ which is adjacent to a vertex, say x, in $C\left(s_{j-1}^{\prime \prime}, s_{j}^{\prime}\right)$. If $x=s_{j-1}^{\prime \prime}$ let $T:=\left(T^{\prime \prime}+w x\right) \cup C\left(x, s_{j}\right)$; otherwise let $y:=s_{j-1}^{\prime \prime}, P\left(x^{\prime}, x\right)$ be a path from x^{\prime} to x containing all and only the vertices in $C(y, x)$, and set $T:=\left(T^{\prime \prime}+w x\right) \cup\left(P\left(x^{\prime}, x\right)+x^{\prime} x^{\prime \prime}\right) \cup C\left(x^{\prime \prime}, s_{j}\right)$.
Clearly, in all cases above T is an S-spanning tree. Since by Lemma 11, $H_{k+1, n}$ is Hamilton-connected, the proof is complete.

Now, from Theorems 9,10 , and 13 and inequality (12) we conclude that

$$
\varphi(k, n)=\left[\frac{(k+1) n}{2}\right], \quad \text { for } \quad 2 \leqslant k \leqslant n-2 .
$$

The graphs M_{n} and $H_{k+1, n}, k \geqslant 3$, are examples of sparsest possible graphs with property $P(2)$ and $P^{*}(k)$, respectively. As the next theorem shows, one can combine them to obtain other sparse k-leaf-connected graphs.

Theorem 14. Suppose H is a graph with property $P^{*}(k-1), k \geqslant 3$, $|V H| \geqslant 4$. Then the graph $G=H \times K_{2}$ obtained by the product of H and the complete graph K_{2}, has property $P^{*}(k)$.

Proof. In order to simplify notation we consider that the graph $G=H \times K_{2}$ is obtained as follows. We take a graph H^{\prime} isomorphic to H and let $\psi: V H \rightarrow V H^{\prime}$ be the bijection that defines the isomorphism between H and H^{\prime}. Then $V G:=V H \cup V H^{\prime}$ and $E G:=E H \cup E H^{\prime} \cup\{v \psi(v): v \in V H\}$.

For any $v \in V H$ let $\psi(v)$ be denoted by v^{\prime}. Now consider a subset S of $V G$ with $|S|=m, 3 \leqslant m \leqslant k$, and let us prove that G has an S-spanning tree.
By symmetry it suffices to consider the cases where $|S \cap V H|=p$, $\lceil m / 2\rceil \leqslant p \leqslant m$.

Case 1. $|S \cap V H|=p, \quad\lceil m / 2\rceil \leqslant p \leqslant m-1$. Let $X:=S \cap V H$. Since $2 \leqslant|X|<k$, by hypothesis there is an X-spanning tree T in H. Let
$\bar{X}:=S \backslash X$. Then clearly, $\left|\psi^{-1}(\bar{X}) \cup X\right| \leqslant k$. As H has property $P(k-1)$, by Corollary 1.1, $|V H| \geqslant k+1$, and therefore, there is a vertex $v \in V H \backslash\left(\psi^{-1}(\bar{X}) \cup X\right)$.

Now, let T^{\prime} be an \bar{X}-spanning tree in H^{\prime} if $|\bar{X}| \geqslant 2$. If $\bar{X}=\left\{x^{\prime}\right\}$ let T^{\prime} be a Hamilton path in H^{\prime} with ends x^{\prime} and v^{\prime}..In any case, $T \cup T^{\prime}+v v^{\prime}$ is an S spanning tree in G.

Case 2. $|S \cap V H|=m$. Let x be any vertex in S, T be an $(S \backslash\{x\})$-spanning tree in H, Y be the set of neighbours of x in $T, Y^{\prime}:=\psi(Y)$ and T^{\prime} be a Y^{\prime}-spanning tree in H^{\prime}. Then $T \cup T^{\prime}-\{x y: y \in Y\}+\left\{y y^{\prime}: y \in Y\right\}+x x^{\prime}$ is an S-spanning tree in G.

Now it remains to be proved that G has property $P(2)$. The proof is easy and we leave it to the reader.

Acknowledgment

We thank the referees for the valuable suggestions and remarks.

References

1. C. Berge, "Graphs and Hypergraphs," North-Holland, Amsterdam, 1976.
2. J. A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976), 111-135.
3. J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," Macmillan \& Co., London, 1976.
4. F. Harary, The maximum connectivity of a graph, Proc. Nat. Acad. Sci. 48 (1962), 1142-1146.
5. F. Harary, "Graph Theory," Addison-Wesley, Reading, 1972.
6. O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.
7. O. Ore, Hamilton-connected graphs, J. Math. Pures Appl. 42 (1963), 21-27.
8. I. Tomescu, On hamiltonian-connected regular graphs, J. Graph Theory 7 (1983), 429-436.
9. Y.-J. Zhu and T. Feng, A generalization of the Bondy-Chavatal theorem on the k-closure, J. Combin. Theory Ser. B 35 (1983), 247-255.

[^0]: * Supported by a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNP_{q}).

