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A weak k-colouring of an m-cycle system is a colouring of the
vertices of the system with k colours in such a way that no cycle
of the system has all of its vertices receive the same colour. An
m-cycle system is said to be weakly k-chromatic if it has a weak
k-colouring but no weak (k − 1)-colouring. In this paper we show
that for all k � 2 and m � 3 with (k,m) �= (2,3) there is a weakly
k-chromatic m-cycle system of order v for all sufficiently large
admissible v .

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

An m-cycle decomposition of a graph G is a collection D of m-cycles in G such that each edge of G
occurs in precisely one cycle in D. An m-cycle system (V , D) is an m-cycle decomposition, D, of the
complete graph on vertex set V and a partial m-cycle system (V , P ) is an m-cycle decomposition, P ,
of some subgraph of the complete graph on vertex set V . The size of V is said to be the order of the
(partial) m-cycle system. Alspach, Gavlas and Šajna [1,19,20] have shown that there exists an m-cycle
system of order v if and only if v is odd,

(v
2

) ≡ 0 (mod m) and either v � m or v = 1. We shall
call such integers m-admissible. A partial m-cycle system (U , P ) is said to be embedded in an m-cycle
system (V , D) if U ⊆ V and P ⊆ D.

For a positive integer k, a weak k-colouring of a (partial) m-cycle system is a colouring of the
vertices of the system with k colours in such a way that no cycle of the system has all of its vertices
receive the same colour. A (partial) m-cycle system is said to be weakly k-chromatic, or to have weak
chromatic number k, if it has a weak k-colouring but no weak (k − 1)-colouring. Since weak colourings
are the only colourings we will consider in this paper, we will often omit the adjectives ‘weak’ and
‘weakly’ in what follows. A set of vertices which all receive the same colour under a given colouring
is referred to as monochromatic, and a cycle whose vertex set is monochromatic is also referred to as
monochromatic.
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Weak colourings were first introduced in the context of hypergraphs, and this naturally led to
the study of weak colourings of Steiner triple systems and partial Steiner triple systems. In particu-
lar, de Brandes, Phelps and Rödl [5] have shown that for all integers k � 3 there is an integer n′

k,3
such that for all 3-admissible integers v � n′

k,3 there is a k-chromatic Steiner triple system of order v
(a simple counting argument [18] shows that there are no non-trivial 2-chromatic Steiner triple sys-
tems). Less is known, however, about weak colourings of general cycle systems. In [14] Milici and
Tuza found, for all m � 3, an m-cycle system that could not be 2-coloured, and in [15] they found
a 2-chromatic m-cycle system of order v for all m � 4 and v > 1 such that v ≡ 1 (mod 2m) if m is
even and v ≡ 1 or m (mod 2m) if m is odd. In [3,4] Burgess and Pike showed that for all k � 2 and
even m � 4 there exists a k-chromatic m-cycle system. Here we show that for all k � 2 and m � 3
with (k,m) �= (2,3) there exist k-chromatic m-cycle systems of all m-admissible orders greater than
or equal to some integer n′

k,m .

Theorem 1.1. Let k and m be integers such that k � 2, m � 3 and (k,m) �= (2,3). Then there is an integer
n′

k,m such that there exists a k-chromatic m-cycle system of order v for all m-admissible integers v � n′
k,m.

Furthermore, if nk,m is the smallest m-admissible such value of n′
k,m and if uk,m is the minimum order of a

k-chromatic partial m-cycle system then nk,m � 2m(uk,m + 1) + 1.

We prove this by finding embeddings of k-chromatic partial m-cycle systems in k-chromatic
m-cycle systems. Since known results on weak colourings of hypergraphs imply that there exists a
k-chromatic partial m-cycle system for all k � 2 and m � 3, this gives us our result. The smallest em-
beddings we construct (which preserve chromatic number) are almost as small as the smallest known
embeddings in the case m is odd and are approximately four times as large as the smallest known
embeddings in the case m is even. Furthermore, we can make use of some known bounds for weak
colourings of hypergraphs to find some bounds on nk,m .

Corollary 1.2. Let k and m be integers such that k � 2, m � 3 and (k,m) �= (2,3). Let uk,m be the minimum
order of a k-chromatic partial m-cycle system, and let nk,m be the smallest m-admissible integer such that there
exists a k-chromatic m-cycle system of order v for all m-admissible integers v � nk,m. Then

1

2m
(k − 1)m−1 < uk,m � nk,m < 5m7(k − 1)m−1(ln(k − 1) + 1

)
.

It is straightforward to verify that this implies that there are functions f1 and f2 of m such that

f1(m)km−1 � uk,m � nk,m � f2(m)km−1 ln(k)

for all k � 2 and m � 3 with (k,m) �= (2,3). This generalises a result in [5] which proved that there
are constants b1 and b2 such that,

b1k2 � uk,3 � nk,3 � b2k2 ln(k)

for all k � 3. In the later paper [16], however, this result was improved to

c1k2 ln(k) � uk,3 � nk,3 � c2k2 ln(k)

for some constants c1 and c2.

2. Preliminary results

We begin by introducing some notation. For a positive integer v the complete graph and empty
graph of order v will be denoted by K v and K c

v respectively, and for positive integers a and b the
complete bipartite graph with partite sets of size a and b will be denoted by Ka,b . For a given set V
the complete graph and empty graph on vertex set V will be denoted by K V and K c

V respectively,
and for sets A and B the complete bipartite graph with partition {A, B} will be denoted by K A,B .
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For graphs G and H , the lexicographic product of G and H , denoted G · H , is the graph with vertex
set V (G · H) = V (G) × V (H) in which vertices (g1,h1) and (g2,h2) are adjacent if and only if either
g1 is adjacent to g2 in G or g1 = g2 and h1 is adjacent to h2 in H . For vertex-disjoint graphs G and H ,
the join of G and H , denoted G ∨ H , is the graph with vertex set V (G ∨ H) = V (G) ∪ V (H) and edge
set E(G ∨ H) = E(G) ∪ E(H) ∪ {xy: x ∈ V (G), y ∈ V (H)}. The p-cycle with vertices x1, x2, . . . , xp and
edges x1x2, x2x3, . . . , xp−1xp, xp x1 will be denoted by (x1, x2, . . . , xp). In what follows all operations
on elements of Zm are presumed to be the relevant group operations.

We will use Sotteau’s characterisation of when, for even m, there exists an m-cycle decomposition
of a complete bipartite graph.

Theorem 2.1. (See [21].) Let m, a and b be positive integers such that m � 4 and m is even. There is an m-cycle
decomposition of Ka,b if and only if a and b are even, a,b � m

2 and ab ≡ 0 (mod m).

We will also need a result on cycle decompositions of graphs of the form G · K c
Zm

where G is an
m-cycle.

Lemma 2.2. Let m be an integer such that m � 4, and let G be the cycle (x1, x2, . . . , xm). Then there exists an
m-cycle decomposition, D say, of G · K c

Zm
such that

• ((x1,0), (x2,0), . . . , (xm,0)) ∈ D;
• each cycle of D contains the vertices (x1, i) and (x3, i) for some i ∈ Zm; and
• if m is even and m � 6 then each cycle of D contains the vertices (xa, i) and (xa+1, i + j) for some

a ∈ {1,3,5}, i ∈ Zm and j ∈ {0,2,4, . . . ,m − 2}.

Proof. Let p be the permutation (0)(123 · · · (m − 1)) of Zm . Let D = {Ci, j: i, j ∈ Zm} where

Ci, j = (
(x1, i), (x2, i + j), (x3, i),

(
x4, i + p( j)

)
, (x5, i),

(
x6, i + p2( j)

)
, . . . ,

(xm−1, i),
(
xm, i + p

m−2
2 ( j)

))
if m is even and

Ci, j = (
(x1, i), (x2, i + j), (x3, i), (x4, i + j), . . . , (xm−2, i), (xm−1, i + j), (xm, i + 2 j)

)
if m is odd. It is routine to check that D is an m-cycle decomposition of G · K c

Zm
with the required

properties. �
Finally in this section, we require the following result which concerns m-cycle systems of small

order.

Lemma 2.3. Let m and n be integers such that m � 4, m � n � 7m−1
2 and n is m-admissible. Let S1 and S2 be

disjoint sets such that |S1| = n+1
2 and |S2| = n−1

2 . Then there exists an m-cycle system (S1 ∪ S2, C) such that,
for each C ∈ C , V (C) � S1 and V (C) � S2 .

Proof. Let S be a set of size n. Since n is m-admissible there exists an m-cycle system on vertex
set S , (S, C) say, by the result of Alspach, Gavlas and Šajna [1,19,20]. It suffices to show that there is a
partition {S1, S2} of S such that |S1| = n+1

2 , |S2| = n−1
2 and for each C ∈ C , V (C) � S1 and V (C) � S2.

It is easy to see that such a partition exists when m � n � 2m − 1 (noting that
(2m−1

m

)
> 1

m

(2m−1
2

)
in

the case n = 2m − 1), so we may assume that 2m + 1 � n � 7m−1
2 . There are

(
n

n+1

)

2
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partitions of S into a set of size n+1
2 and a set of size n−1

2 . Furthermore, |C| = 1
m

(n
2

)
and for each

C ∈ C there are exactly(
n − m

n+1
2 − m

)
+

(
n − m

n−1
2 − m

)

such partitions of S for which V (C) is a subset of one of the sets in the partition. Thus, if(
n

n+1
2

)
>

1

m

(
n
2

)((
n − m

n+1
2 − m

)
+

(
n − m

n−1
2 − m

))
(∗)

it is easy to see that we can find the required partition of S . So it suffices to show that (∗) holds for
all m and n such that m � 4, 2m + 1 � n � 7m−1

2 and n is m-admissible.
Note that for m = 4, the only value of n for which 2m + 1 � n � 7m−1

2 and n is m-admissible is
n = 9 and that (∗) holds in this case. We can thus assume that m � 5. It is routine to show that (∗)

is equivalent to

2m
(n − 2)!
(n − m)! >

(n+1
2 )!

(n+1
2 − m)! + (n−1

2 )!
(n−1

2 − m)!
and hence, simplifying further, equivalent to

m2m(n − 2)(n − 3)(n − 4) · · · (n + 2 − m) > (n − 1)(n − 3)(n − 5) · · · (n + 3 − 2m).

Since (n − 2)(n − 3)(n − 4) · · · (n + 2 − m) > (n − 3)(n − 5) · · · (n + 5 − 2m), it suffices to show that

m2m � (n − 1)(n + 3 − 2m).

We will show that m2m − (n − 1)(n + 3 − 2m) is non-negative. Now

m2m − (n − 1)(n + 3 − 2m) = m2m − n(n + 2 − 2m) − 2m + 3.

Since n � 0 we can substitute n � 7m−1
2 to obtain

m2m − (n − 1)(n + 3 − 2m) � m2m − n

(
3m + 3

2

)
− 2m + 3.

Since 3m+3
2 � 0 we can again substitute n � 7m−1

2 and simplify to obtain

m2m − (n − 1)(n + 3 − 2m) � 1

4

(
m

(
2m+2 − 21m − 26

) + 15
)
.

It is easy to see that 1
4 (m(2m+2 − 21m − 26) + 15) is non-negative for all m � 5. �

3. Embeddings of partial odd-cycle systems

Our aim in this section is to prove Lemma 3.4 which gives embeddings of partial odd-cycle systems
that preserve chromatic number. To do so, we will closely follow the method used in [10], which
was in turn based heavily on methods employed in [11] and [12]. The embeddings constructed in
this section are nearly as small as the smallest known embeddings for general odd cycle systems
(see [12]). We will require the following result which is apparent from the main construction in [12]
(see in particular Section 3 of [12] and note that, in the notation of that paper, we can choose zi =
(−1)i
 i

2 � which gives z1 = 0, z2 = 1 and z3 = −1).

Lemma 3.1. (See [12].) Let m, n and t be positive integers such that m is odd, m � 5 and t � n and let
(Zn, P ) be a partial m-cycle system of order n. Let G be the graph with vertex set V (G) = Z2t+1 and edge
set E(G) = {xy: x, y ∈ Z2t+1, x �= y and xy is not an edge of a cycle in P }. Then there is an m-cycle decom-
position, D say, of G · K c

Z
such that
m
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• if m � 7 then for each C ∈ D we have (x, i), (x, i + 1), (x, i + 2) ∈ V (C) for some x ∈ Z2t+1 and i ∈ Zm;
and

• if m = 5 then for each C ∈ D we have (x, i), (x, i + 1) ∈ V (C) for some x ∈ Z2t+1 and i ∈ Zm.

We will also require Lemmas 3.2 and 3.3, which are stronger forms of results in [10]. Lemma 3.2
is only used in the proof of Lemma 3.3.

Lemma 3.2. Let m and s be integers such that m is odd, s is even, m � 5 and m−1
2 � s � m − 1, let S and

S ′ be sets and let G and G ′ be m-cycles such that |S| = |S ′| = s
2 and S, S ′ , V (G) and V (G ′) are pairwise

disjoint. Then there is an m-cycle decomposition, D say, of K c
S∪S ′ ∨ (G ∪ G ′) such that, for each C ∈ D, either

|V (C) ∩ S| � 1 and |V (C) ∩ S ′| � 1 or |V (C) ∩ (S ∪ S ′)| = 0.

Proof. Let A be a set such that |A| = s. By Lemma 3 of [10] there is an m-cycle decomposition, D say,
of K c

A ∨ (G ∪ G ′). Furthermore, it is easy to see from the proof of that lemma that

• if s = m−1
2 then exactly one cycle in D is vertex disjoint from K c

A and every other cycle in D
intersects A in exactly m−1

2 vertices;
• if m+1

2 � s � m − 3 then exactly two cycles in D intersect A in exactly s
2 vertices and every other

cycle in D intersects A in exactly m−1
2 vertices;

• if s = m − 1 then every cycle in D intersects A in exactly m−1
2 vertices.

It suffices to show that there is a partition {S, S ′} of A such that |S| = |S ′| = s
2 and for each C ∈ D,

either |V (C) ∩ S| � 1 and |V (C) ∩ S ′| � 1 or |V (C) ∩ (S ∪ S ′)| = 0. That such a partition exists is
obvious in the case s = m−1

2 .
For s � m+1

2 , notice that there are

1

2

(
s
s
2

)

(unordered) partitions of A into two sets of size s
2 . Furthermore, for a cycle C ∈ D such that |V (C) ∩

A| = s
2 there is exactly one such partition of A for which one of the sets of the partition is disjoint

from V (C). Thus, since 1
2

( s
s
2

)
> 2 for all s � 4 it can be seen that the required partition exists in the

case m+1
2 � s � m − 3.

When s = m − 1 there are exactly 2m cycles in D so, since 1
2

( m−1
1
2 (m−1)

)
> 2m holds for m � 9,

it can be seen that the required partition exists when m � 9 and s = m − 1. This leaves only the
cases (m, s) = (5,4) and (m, s) = (7,6), and in each of these cases it is easy to check that if the
construction used in Lemma 2 of [10] is used to obtain the m-cycle decomposition of K c

A ∨ (G ∪ G ′)
then the required partition of A exists. �
Lemma 3.3. Let w and m be integers such that m is odd, w is even, m � 5 and m−1

2 � w � 1
2 (m − 1)2 , and let

W , W ′ , T and T ′ be pairwise-disjoint sets such that |W | = |W ′| = w
2 and |T | = |T ′| = m. Then there exists

an m-cycle decomposition, D say, of K c
W ∪W ′ ∨ (KT ∪ KT ′) such that, for each C ∈ D, either |V (C) ∩ W | � 1

and |V (C) ∩ W ′| � 1 or |V (C) ∩ (W ∪ W ′)| = 0.

Proof. Since m−1
2 � w � 1

2 (m − 1)2, it is routine to check that there are partitions {W1, W2, . . . , Wr}
and {W ′

1, W ′
2, . . . , W ′

r} of W and W ′ respectively such that r � m−1
2 , |W i | = |W ′

i | for i ∈ {1,2, . . . , r}
and m−1

2 � |W i ∪ W ′
i | � m − 1 for i ∈ {1,2, . . . , r}. Let {G1, G2, . . . , G m−1

2
} and {G ′

1, G ′
2, . . . , G ′

m−1
2

} be

m-cycle decompositions of KT and KT ′ respectively (it is well known that Hamilton decompositions
of complete graphs of odd order exist). By Lemma 3.2, for each i ∈ {1,2, . . . , r} there is an m-cycle



1200 D. Horsley, D.A. Pike / Journal of Combinatorial Theory, Series A 117 (2010) 1195–1206
decomposition, Di say, of K c
W i∪W ′

i
∨ (Gi ∪ G ′

i) such that, for each C ∈ Di , either |V (C) ∩ W i | � 1 and

|V (C) ∩ W ′
i | � 1 or |V (C) ∩ (W ∪ W ′)| = 0. It is easy to see that

D1 ∪ D2 ∪ · · · ∪ Dr ∪
{

Gi, G ′
i: i ∈

{
r + 1, r + 2, . . . ,

m − 1

2

}}

is an m-cycle decomposition of K c
W ∪W ′ ∨ (KT ∪ KT ′ ) with the required properties. �

We are now ready to prove the main result of this section.

Lemma 3.4. Let k, m, u and v be positive integers such that m is odd, k � 2, m � 5, (k,m) �= (2,5), v �
2mu + 3m−1

2 and v is m-admissible. Then any k-chromatic partial m-cycle system of order u can be embedded
in a k-chromatic m-cycle system of order v.

Proof. We shall first deal with the case m � 7. The special case m = 5 will be dealt with afterwards.
Let (Zu, P ) be a k-chromatic partial m-cycle system and let α be a colouring of Zu with the

colours c1, c2, . . . , ck such that no cycle of P is monochromatic under α. Let t and w be the integers
such that v = m(2t + 1) + w and m−1

2 � w � 5m−3
2 . Note that w is even since v and m(2t + 1) are

odd, and that t � u.
Let W and W ′ be disjoint sets, each disjoint from Z2t+1 × Zm , with |W | = |W ′| = w

2 and let
V = W ∪ W ′ ∪ (Z2t+1 × Zm) be a vertex set. Let p be the permutation (c1c2 · · · ck) of the colour set
{c1, c2, . . . , ck}. Let β be a colouring of V with the colours c1, c2, . . . , ck defined by β(a) = c1 if a ∈ W ,
β(a) = c2 if a ∈ W ′ , and

β
(
(x, i)

) =

⎧⎪⎪⎨
⎪⎪⎩

α(x), if x ∈ Zu and i ∈ {0,2,4, . . . ,m − 1};
p(α(x)), if x ∈ Zu and i ∈ {1,3,5, . . . ,m − 2};
c1, if x ∈ Z2t+1 \ Zu and i ∈ {0,2,4, . . . ,m − 1};
c2, if x ∈ Z2t+1 \ Zu and i ∈ {1,3,5, . . . ,m − 2}.

We shall construct a collection C of m-cycles on the vertex set V such that (V , C) is an m-cycle
system, C contains a copy of P , and β is a k-colouring of (V , C). This will complete the proof, since
the fact that C contains a copy of P will imply that the chromatic number of (V , C) is at least k.

We construct C according to the following steps.

(1) For each cycle C ∈ P let x1, x2, . . . , xm be vertices such that C = (x1, x2, . . . , xm) and α(x1) �= α(x3)

(these exist since m is odd and C is not monochromatic under α). Use Lemma 2.2, to obtain
an m-cycle decomposition, DC say, of C · K c

Zm
such that ((x1,0), (x2,0), . . . , (xm,0)) ∈ DC and

each cycle of DC contains the vertices (x1, i) and (x3, i) for some i ∈ Zm . Since α(x1) �= α(x3),
β(x1, i) �= β(x3, i) for all i ∈ Zm and it is easy to see that no cycle in DC is monochromatic
under β . Add the cycles in each of these decompositions to C .

(2) Let G be the graph with vertex set V (G) = Z2t+1 and edge set E(G) = {xy: x, y ∈ Z2t+1, x �= y
and xy is not an edge of a cycle in P }. Use Lemma 3.1 to obtain an m-cycle decomposition,
D say, of G · K c

Zm
such that for each C ∈ D we have (x, i), (x, i + 1), (x, i + 2) ∈ V (C) for some

x ∈ Z2t+1 and i ∈ Zm . Clearly, no cycle in D is monochromatic under β . Add the cycles in D to C .
(3) For each x ∈ {0,1, . . . , t − 1} use Lemma 3.3 to obtain an m-cycle decomposition, Dx say,

of K c
W ∪W ′ ∨ (K{2x}×Zm ∪ K{2x+1}×Zm ) such that, for each C ∈ Dx , either |V (C) ∩ W | � 1 and

|V (C) ∩ W ′| � 1 or |V (C) ∩ (W ∪ W ′)| = 0 (we can apply Lemma 3.3 since w � 5m−3
2 implies

w � 1
2 (m − 1)2 for all m � 7). Since β assigns colour c1 to the vertices in W , assigns colour

c2 to the vertices in W ′ , and does not assign the same colour to all the vertices of {y} × Zm

for any y ∈ Z2t+1, no cycle in Dx is monochromatic under β . Add the cycles in each of these
decompositions to C .

(4) It can be seen that a monochromatic subset of W ∪ W ′ ∪ ({2t} × Zm) under β contains at most
w+m+1

2 vertices. Also, at most two maximal monochromatic subsets of W ∪ W ′ ∪ ({2t} × Zm)

under β contain at least m vertices. Thus, we can use Lemma 2.3 to find an m-cycle system on
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the vertex set W ∪ W ′ ∪ ({2t} × Zm) which contains no cycle that is monochromatic under β (by
choosing {S1, S2} to be a partition of W ∪ W ′ ∪ ({2t} × Zm) such that |S1| = w+m+1

2 , S1 contains
one of the largest two maximal monochromatic subsets of W ∪ W ′ ∪ ({2t}×Zm) under β , and S2
contains the other). Add the cycles of this system to C .

Since, for each cycle C = (x1, x2, . . . , xm) in P , the cycle ((x1,0), (x2,0), . . . , (xm,0)) is in the de-
composition of C · K c

Zm
whose cycles we add to C in (1), there is a copy of P on the vertex set

Zu × {0} in C . We have seen that no cycle of C is monochromatic under β , and it is routine to check
that (V , C) is an m-cycle system. So we are finished in the case m � 7.

We now consider the special case m = 5. Note that in this case k � 3. We proceed exactly as we
did for the case m � 7, with three exceptions. Firstly, we define β by β(a) = c1 if a ∈ W , β(a) = c2 if
a ∈ W ′ , and

β
(
(x, i)

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α(x), if x ∈ Zu, i ∈ {0,2};
p(α(x)), if x ∈ Zu and i ∈ {1,3};
p2(α(x)), if x ∈ Zu and i = 4;
c1, if x ∈ Z2t+1 \ Zu, i ∈ {0,2};
c2, if x ∈ Z2t+1 \ Zu and i ∈ {1,3};
c3, if x ∈ Z2t+1 \ Zu and i = 4.

Secondly, in (2) we now use Lemma 3.1 to obtain a 5-cycle decomposition, D say, of G · K c
Z5

such
that for each C ∈ D we have (x, i), (x, i + 1) ∈ V (C) for some x ∈ Z2t+1 and i ∈ Z5. It is easy to see
that no cycle of this decomposition is monochromatic under (the new definition of) β .

Thirdly, if v ≡ 5 (mod 10), we let w = 0 and let t be the integer such that v = 5(2t + 1). Instead
of performing steps (3) and (4), we simply take a 5-cycle decomposition of K{x}×Z5 for each x ∈ Z2t+1
(it is well known that Hamilton decompositions of complete graphs of odd order exist) and add the
cycles in each of these decompositions to C . It is easy to see that no cycle in these decompositions
is monochromatic under (the new definition of) β . This means that if we are performing step (3)
then, since v is 5-admissible, it must be that v ≡ 1 (mod 10) and hence w = 6. It follows that
w � 1

2 (m − 1)2, so we can indeed apply Lemma 3.3 as required.
Except as noted, the arguments given in the case m � 7 hold without any alteration. �

4. Embeddings of partial even-cycle systems

Our aim in this section is to prove Lemma 4.3 which gives embeddings of partial even-cycle sys-
tems that preserve chromatic number. To do so, we will employ a method very similar to that used
in [13] along with a technique from [2]. Note that unlike in the odd-cycle case, where we gave em-
beddings nearly as small as the smallest known embeddings, the smallest embeddings we construct
here are approximately four times as large as the smallest known embeddings (see [9]).

Before we prove Lemma 4.3 we require a preliminary result on m-cycle decompositions of com-
plete bipartite graphs.

Lemma 4.1. Let m be an even integer such that m � 4, let S1 , S2 and T be pairwise-disjoint sets such that
|S1| = |S2| = m

2 and |T | = m. Then there exists an m-cycle decomposition, D say, of K S1∪S2,T such that, for
each C ∈ D, |V (C) ∩ S1| � 1 and |V (C) ∩ S2| � 1.

Proof. It is routine to check that the result holds when m = 4, so we may assume m � 6.
Let S be a set such that |S| = m and S and T are disjoint. By Theorem 2.1 there exists a decom-

position, D say, of K S,T . It suffices to find a partition {S1, S2} of S such that |S1| = |S2| = m
2 and, for

each C ∈ D, |V (C) ∩ S1| � 1 and |V (C) ∩ S2| � 1.
Notice that there are

1

2

(
m
m

)

2
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(unordered) partitions of S into two sets of size m
2 . Furthermore, |D| = m and for each C ∈ D there is

exactly one such partition of S for which one of the sets of the partition is disjoint from V (C). Thus,
since for each m � 6 we have

1

2

(
m
m
2

)
> m,

it is easy to see that we can find the required partition. �
We also require the following result which will help us deal with the special case m = 4.

Lemma 4.2. Let G be the cycle (x1, x2, x3, x4). Then there exists a 4-cycle decomposition, D say, of G · K c
Z4

such that

• ((x1,0), (x2,0), (x3,0), (x4,0)) ∈ D;
• for each cycle C ∈ D there is an a ∈ {1,2} such that either {(xa, i), (xa+1, i)} ⊆ V (C) for some i ∈ Z4 or

one of the pairs {(xa,0), (xa+1,2)}, {(xa,1), (xa+2,3)}, or {(xa,3), (xa+2,1)} is a subset of V (C).

Proof. Let D = {Ai, A′
i: i ∈ Z4} ∪ {B j, B ′

j, B ′′
j , B ′′′

j : j ∈ {0,2}} where

Ai = (
(x1, i), (x2, i + 1), (x3, i + 2), (x4, i + 3)

)
,

A′
i = (

(x1, i), (x2, i − 1), (x3, i − 2), (x4, i − 3)
)
,

B j = (
(x1, j), (x2, j), (x3, j), (x4, j)

)
,

B ′
j = (

(x1, j), (x2, j + 2), (x3, j), (x4, j + 2)
)
,

B ′′
j = (

(x1, j + 1), (x2, j + 3), (x3, j + 3), (x4, j + 1)
)
,

B ′′′
j = (

(x1, j + 1), (x2, j + 1), (x3, j + 3), (x4, j + 3)
)
.

It is routine to check that D is a decomposition of G · K c
Z4

with the required properties. �
We are now ready to prove the main result of this section.

Lemma 4.3. Let k, m, u and v be positive integers such that m is even, k � 2, m � 4, (k,m) �= (2,4), v �
2mu +m + 1 and v is m-admissible. Then any k-chromatic partial m-cycle system of order u can be embedded
in a k-chromatic m-cycle system of order v.

Proof. We shall first deal with the case m � 6. The special case m = 4 will be dealt with afterwards.
Let (Zu, P ) be a k-chromatic partial m-cycle system and let α be a colouring of Zu with the

colours c1, c2, . . . , ck such that no cycle of P is monochromatic under α. Let t and w be the integers
such that v = 2mt + w + 1 and m � w � 3m − 1. Note that t � u, that w is even since v is odd, and
that w �= m since v is m-admissible, so m + 2 � w � 3m − 2. Let W and W ′ be disjoint sets, each
disjoint from Z2t × Zm , with |W | = |W ′| = w

2 . Let V = {∞} ∪ W ∪ W ′ ∪ (Z2t × Zm) be a vertex set.
Let p be the permutation (c1c2 · · · ck) of the colour set {c1, c2, . . . , ck} and let β be a colouring of V
with the colours c1, c2, . . . , ck defined by β(a) = c1 if a ∈ {∞} ∪ W , β(a) = c2 if a ∈ W ′ and

β
(
(x, i)

) =

⎧⎪⎪⎨
⎪⎪⎩

α(x), if x ∈ Zu and i ∈ {0,2,4, . . . ,m − 2};
p(α(x)), if x ∈ Zu and i ∈ {1,3,5, . . . ,m − 1};
c1, if x ∈ Z2t \ Zu and i ∈ {0,2,4, . . . ,m − 2};
c2, if x ∈ Z2t \ Zu and i ∈ {1,3,5, . . . ,m − 1}.

We shall construct a collection C of m-cycles on the vertex set V such that (V , C) is an m-cycle
system, C contains a copy of P , and β is a k-colouring of (V , C). This will complete the proof, since
the fact that C contains a copy of P will imply that the chromatic number of (V , C) is at least k.

We construct C according to the following steps.
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(1) For each cycle C ∈ P let x1, x2, . . . , xm be vertices such that C = (x1, x2, . . . , xm) and either
α(x1) �= α(x3) or α(xa) = α(xb) if and only if a ≡ b (mod 2) for a,b ∈ {1,2, . . . ,m} (these ex-
ist since m is even and C is not monochromatic under α). Using Lemma 2.2, take an m-cycle
decomposition, DC say, of C · K c

Zm
such that

(i) ((x1,0), (x2,0), . . . , (xm,0)) ∈ DC ;
(ii) each cycle of DC contains the vertices (x1, i) and (x3, i) for some i ∈ Zm; and

(iii) each cycle of DC contains the vertices (xa, i) and (xa+1, i + j) for some a ∈ {1,3,5}, i ∈ Zm
and j ∈ {0,2,4, . . . ,m − 2}.

If α(x1) �= α(x3) then, for each i ∈ Zm , β((x1, i)) �= β((x3, i)) and no cycle of DC is monochromatic
under β by (ii). Otherwise, α(xa) = α(xb) if and only if a ≡ b (mod 2) for a,b ∈ {1,2, . . . ,m − 1}.
In particular α(xa) �= α(xa+1) for any a ∈ {1,2, . . . ,m −1}, it can be seen that β((xa, i)) �= β((xa+1,

i + j)) for any a ∈ {1,2, . . . ,m − 1}, i ∈ Zm and j ∈ {0,2,4, . . . ,m − 2}, and hence no cycle of DC
is monochromatic under β by (iii). Add the cycles in each of these decompositions to C .

(2) For each 2-element subset {x, y} of Z2t such that xy is not an edge in any cycle of P and
{x, y} �= {z, z + t} for any z ∈ {0,1, . . . , t − 1}, use Lemma 4.1 to obtain a decomposition, Dxy say,
of K{x}×Zm,{y}×Zm such that for each C ∈ Dxy , |V (C) ∩ {(x,0), (x,2), (x,4), . . . , (x,m − 2)}| � 1 and
|V (C) ∩ {(x,1), (x,3), (x,5), . . . , (x,m − 1)}| � 1. Clearly, no cycle of Dxy is monochromatic un-
der β . Add the cycles in each of these decompositions to C .

(3) For each x ∈ {0,1, . . . , t − 1} notice that a monochromatic subset of ({x, x + t} × Zm) ∪ {∞} un-
der β contains at most m + 1 vertices. Also, for each x ∈ {0,1, . . . , t − 1}, at most two maximal
monochromatic subsets of ({x, x + t} × Zm) ∪ {∞} under β contain at least m vertices. Thus,
we can use Lemma 2.3 to obtain an m-cycle system on the vertex set ({x, x + t} × Zm) ∪ {∞}
which contains no cycle that is monochromatic under β (by choosing {S1, S2} to be a partition of
({x, x + t} × Zm) ∪ {∞} such that |S1| = m + 1, S1 contains one of the two largest monochromatic
subsets of ({x, x + t} × Zm) ∪ {∞} under β , and S2 contains the other). Add the cycles in each of
these systems to C .

(4) Since m + 2 � w � 3m − 2 and since w is even, it is routine to check that there exist partitions
{W1, W2, . . . , Wr} and {W ′

1, W ′
2, . . . , W ′

r}, of W and W ′ respectively such that r � 5, |W�| = |W ′
�|

for � ∈ {1,2, . . . , r}, and m
2 � |W� ∪ W ′

�| � m − 2 for � ∈ {1,2, . . . , r}. For each � ∈ {1,2, . . . , r}, use
Theorem 2.1 to obtain an m-cycle decomposition, D� say, of KW�∪W ′

�,Z2t×Zm
. Since each cycle in

D� contains m
2 vertices in W� ∪ W ′

� and |W� ∪ W ′
�| � m − 2 it is easy to see that no cycle of D�

is monochromatic under β . Add the cycles in each of these decompositions to C .
(5) Use Lemma 2.3 to obtain an m-cycle system on the vertex set {∞} ∪ W ∪ W ′ such that for

each cycle C of the system V (C) � {∞} ∪ W and V (C) � W ′ . Clearly, no cycle of the system is
monochromatic under β . Add the cycles of this system to C .

Since for each cycle C = (x1, x2, . . . , xm) in P the cycle ((x1,0), (x2,0), . . . , (xm,0)) is in the de-
composition of C · K c

Zm
whose cycles we add to C in (1), there is a copy of P on the vertex set

Zu × {0} in C . We have seen that no cycle of C is monochromatic under β , and it is routine to check
that (V , C) is an m-cycle system. So we are finished in the case m � 6.

We now consider the special case m = 4. Note that in this case k � 3. We proceed exactly as we
did for the case m � 6 with two exceptions. Firstly, we define β as follows.

β
(
(x, i)

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α(x), if x ∈ Zu, i ∈ {0,2};
p(α(x)), if x ∈ Zu and i = 1;
p2(α(x)), if x ∈ Zu and i = 3;
c1, if x ∈ Z2t \ Zu, i ∈ {0,2};
c2, if x ∈ Z2t \ Zu and i = 1;
c3, if x ∈ Z2t \ Zu and i = 3.

Secondly, instead of performing step (1) we perform step (1′), as outlined below.

(1′) For each cycle C ∈ P let x1, x2, x3, x4 be vertices such that C = (x1, x2, x3, x4) and either α(x1) �=
α(x3) or α(xa) = α(xb) if and only if a ≡ b (mod 2) for a,b ∈ {1,2,3,4} (these exist since C is not
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monochromatic under α). If α(x1) �= α(x3), use Lemma 2.2 to obtain an m-cycle decomposition,
DC say, of C · K c

Z4
such that ((x1,0), (x2,0), (x3,0), (x4,0)) ∈ DC and each cycle of DC contains

the vertices (x1, i) and (x3, i) for some i ∈ Z4. Since α(x1) �= α(x3), β((x1, i)) �= β((x3, i)) for each
i ∈ Z4 and thus no cycle of DC is monochromatic under β . Otherwise α(xa) = α(xb) if and only
if a ≡ b (mod 2) for a,b ∈ {1,2,3,4}, and we use Lemma 4.2 to take a 4-cycle decomposition,
DC say, of C · K c

Z4
such that ((x1,0), (x2,0), (x3,0), (x4,0)) ∈ DC and for each cycle B ∈ DC there

is an a ∈ {1,2} such that either {(xa, i), (xa+1, i)} ⊆ V (B) for some i ∈ Z4 or one of the pairs
{(xa,0), (xa+1,2)}, {(xa,1), (xa+2,3)}, or {(xa,3), (xa+2,1)} is a subset of V (B). It is routine to
check that this implies that no cycle of DC is monochromatic under β . Add the cycles in these
decompositions to C .

Except as noted the arguments given in the case m � 6 hold without any alteration. �
5. Proof of main theorem

Before we can prove our main theorem we must show that for all m � 3 and k � 2 there exists a
k-chromatic partial m-cycle system. This is a simple consequence of the following result which is a
special case of a result on weak colourings of hypergraphs from [17] (note that the value of |V | does
not appear in the statement of the theorem in [17] but is explicitly defined in the proof).

Theorem 5.1. (See [17].) Let � and m be positive integers such that m � 3 and let V be a set such that |V | =

2m6�m−1(ln(�) + 1)�. Then there is a collection of m-element subsets of V , {S1, S2, . . . , St} say, such that
|Si ∩ S j | � 1 for all 1 � i < j � t and under every �-colouring of V one of S1, S2, . . . , St is monochromatic.

Lemma 5.2. Let k and m be integers such that k � 2 and m � 3. Then there exists a k-chromatic partial m-cycle
system of order 
2m6(k − 1)m−1(ln(k − 1) + 1)�.

Proof. Let V be a set such that |V | = 
2m6(k − 1)m−1(ln(k − 1) + 1)�. By Theorem 5.1 there is a col-
lection of m-element subsets of V , {S1, S2, . . . , St} say, such that |Si ∩ S j | � 1 for all 1 � i < j � t and
under every (k − 1)-colouring of V one of S1, S2, . . . , St is monochromatic. Let P = {C1, C2, . . . , Ct},
where Ci is an arbitrary m-cycle on vertex set Si for each i ∈ {1,2, . . . , t} and note that (V , P ) is a
partial m-cycle system. Since under every (k − 1)-colouring of V one of S1, S2, . . . , St is monochro-
matic, it follows that the chromatic number of (V , P ) is at least k.

Let k† be an integer such that k† � 2. The removal of any cycle from a (k†)-chromatic partial
m-cycle system results in a new partial m-cycle system whose chromatic number is either k† or
k† − 1. To see this, observe that otherwise we could obtain a (k† − 1)-colouring of the original system
by taking the (k† − 2)-colouring of the new system (which exists by assumption) and recolouring an
arbitrary vertex on the cycle which is removed to form the new system with a colour which does not
appear on any other vertex.

Thus, since the chromatic number of (V , P ) is at least k, it is easy to see that we can remove
cycles one at a time from (V , P ) until we obtain a k-chromatic partial m-cycle system. �

Given Lemmas 3.4, 4.3 and 5.2 it is now a simple matter to prove our main theorem.

Proof of Theorem 1.1. By Lemma 5.2 there exists a k-chromatic partial m-cycle system, so we may
let uk,m be the minimum order of a k-chromatic partial m-cycle system. The result is shown to be
true for m = 3 in [5] (the fact that n3,k � 6u3,k + 7 is not stated in the theorem in [5] but is apparent
from the proof), so we may assume m � 4. Note that 2m(uk,m + 1) + 1 is m-admissible, so it suffices
to show that there exists a k-chromatic m-cycle system of order v for all m-admissible v such that
v � 2m(uk,m + 1) + 1. The proof now splits into two cases according to the parity of m.

Case 1. Suppose m is odd. If (k,m) �= (2,5) then by Lemma 3.4 there exists a k-chromatic m-cycle
system of order v for all m-admissible v such that v � 2m(uk,m) + 3m−1

2 and we are finished. In
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the special case (k,m) = (2,5) El-Zanati and Rodger [7] have shown that there exists a 2-chromatic
5-cycle system of order v for all 5-admissible v such that v � 5.

Case 2. Suppose m is even. If (k,m) �= (2,4) then by Lemma 4.3 there exists a k-chromatic m-cycle
system of order v for all m-admissible v such that v � 2m(uk,m) + m + 1 and we are finished. In
the special case (k,m) = (2,4) El-Zanati and Rodger [6,7] have shown that there exists a 2-chromatic
4-cycle system of order v for all 4-admissible v such that v � 9. �

To obtain our lower bound on nk,m we will make use of another result on colourings of hyper-
graphs.

Theorem 5.3. (See [8].) Let � and m be integers such that � � 2 and m � 3 and let V be a set and let
{S1, S2, . . . , St} be a collection of m-element subsets of V , such that each element of V is in at most 
 1

4m �m−1�
of the sets S1, S2, . . . , St . Then there is an �-colouring of V under which none of the sets S1, S2, . . . , St is
monochromatic.

Proof of Corollary 1.2. Let (U , P ) be a partial m-cycle system of order at most 2
 1
4m (k − 1)m−1� + 1.

Say P = {C1, C2, . . . , Ct}. Each element of U is in at most 
 1
4m (k − 1)m−1� of the sets V (C1), V (C2),

. . . , V (Ct), so by Theorem 5.3 there is a (k − 1)-colouring of U under which none of the sets
V (C1), V (C2), . . . , V (Ct) is monochromatic. This is a (k − 1)-colouring of (U , P ). Thus no partial
m-cycle system of order at most 2
 1

4m (k − 1)m−1� + 1 is k-chromatic. Combining this fact with the
result of Lemma 5.2 we have

2

⌊
1

4m
(k − 1)m−1

⌋
+ 2 � uk,m � 2m6(k − 1)m−1(ln(k − 1) + 1

)
.

Thus, by applying Theorem 1.1 and observing that uk,m � nk,m we have that

2

⌊
1

4m
(k − 1)m−1

⌋
+ 2 � uk,m � nk,m � 4m7(k − 1)m−1(ln(k − 1) + 1

) + 2m + 1.

The result stated clearly follows from this. �
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