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ABSTRACT The maximum entropy method (MEM) is used to analyze time-resolved pulse-fluorescence spectrometry.
The central problem in such analyses is the recovery of the distribution of exponentials describing the decay of the
fluorescence (i.e., inverting the Laplace transform) which is, in turn, convolved by the shape of the excitation flash.
MEM is shown to give high quality results from both computer-generated “noisy” data and experimental data from

chemical and biological molecules.

The use of the Shannon-Jaynes entropy function is justified and both the theoretical and practical advantages of
MEM are presented. The MEM results are easy to interpret and can help to overcome some experimental limitations. In
particular MEM could be a powerful tool to analyze the heterogeneity of fluorescent emission of biological
macromolecules which can be correlated with their conformational dynamics in solution.

1. INTRODUCTION

Fluorescence spectroscopy has now become a classical
method for studying biological molecules in solution. How-
ever, steady-state measurements, even though they are
very sensitive, cannot probe the molecular origins of the
observed effect. The excited states of the fluorophores have
a half-life in the range of a few picoseconds to some tens of
nanoseconds. Since this corresponds to the timescale of
many important biological processes (diffusion of small
molecules over a few angstroms, rotational and internal
motions, proton transfer reactions, etc., time-resolved fluo-
rometry has become an important and popular tool. Vari-
ous pulse fluorometric techniques can measure such short
decay times with good precision and of these the single-
photoelectron time-correlated method is now the most
sensitive (Ware, 1971; Yguerabide, 1972; Wabhl, 1975).
Despite the great advances in measurement techniques
over recent years, the analysis of the data is fraught with
difficulties. The fluorescent kinetics are usually very com-
plicated arising from the heterogeneity of the types of
fluorophores and from their varied physical or chemical
environments. Furthermore, the core of the problem is a
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Laplace transform, which is notorious for the ill-condi-
tioning it introduces into problems.

The maximum entropy method (MEM) is a powerful
data analysis technique, which has been justifiably used in
applications as diverse as image analysis, radio astronomy,
forensic science, crystallography, medical imaging, etc.
(for a review see Gull and Skilling, 1984a, b). In early
work on applying MEM to the Laplace transform, Sibisi
(1983a) was, however, pessimistic about its ability to
handle such data, primarily because he considered a
mathematical example with a rather unrealistically small
set of data points. Nevertheless, by including the Laplace
transform as a second dimension in the analysis of nuclear
magnetic resonance (NMR) data, he was able to improve
radically the resolution along the frequency axis (Sibisi,
1983b).

We demonstrate here that MEM can successfully han-
dle Laplace transforms such as those found in pulse-
fluorometry, without restricting the validity of the solution
or suffering from any instabilities.

For clarity of presentation, we will consider the particu-
lar experimental conditions relevant to fluorescent decay
measurements that use a polarized light source whose
temporal structure is independent of the wavelength. Such
conditions are met by synchrotron light sources. The
relevant modifications to the equations when this condition
is relaxed are set out in Appendix I. Furthermore, although
the methods presented in this paper are quite general, they
can, in principle, be applied to phase-modulation fluorome-
try, polarized pulse-fluorometry, and energy transfer pulse
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fluorescence. In the present work we restrict ourselves to
analysis data from unpolarized pulse fluorescence experi-
ments.

In the following section we discuss the problem of
analyzing pulse fluorometric data. We introduce the
MEM in Section 3, indicating why MEM is a method that
does not introduce extra structure into the spectrum of
decay times not warranted by the data. The following
section reports the special computational details of apply-
ing MEM unpolarized pulse fluorometric data. These two
(rather technical) sections can be omitted on a first reading
by those whose main interest lies in practical fluorometry.
We then apply our technique to both computer simulated
and experimental data of fluorescence in Sections 6 and 7.

2. INTERPRETATION OF
PULSE-FLUOROMETRIC DATA

In polarized pulse-fluorometry, with an exciting light
vertically polarized, the experimenter can measure the
parallel and perpendicular polarized components of the
fluorescence. The signal results from the spectrum of
fluorescent decay times and the depolarization of the
emitted light (resulting from the Brownian rotational
motion of the molecules), all of which convolved with the
shape of the excitation flash. If we assume that there is no
energy transfer between fluorophores and no contribution
of the excited state to the orientational dynamics, then the
parallel and perpendicular components (/; and I, ) of the
fluorescent intensity as a function of time after the start of
the flash E (1) are given by

10 =3 B0 [ L L2 a0, e

« (1 + 24e™) drdOdA} (1)

1()~= %E.\ (£)» l:—/o-a _/‘;m _/::: v(r, 8, A)e """

. (1 — Ae™'?) ddedA]. )

Here E(?) is the temporal shape of the excitation pulse, 7
are the decay times of the fluorophores (as modified by
their local chemical or physical environments), 8 are the
characteristic time constants of their rotational Brownian
motions (assuming the fluorophores are rigidly attached to
the macromolecules), 4 is the initial value of the aniso-
tropy at time zero which is in turn related to the angle
between the excitation and emission transition moments in
the fluorophore (Wahl, 1983), and (7, 6, 4) is propor-
tional to the number of fluorophores with decay time 7 and
rotational motion characterized by 6, which start with a
polarization ratio 4. A more general theory of fluorescence
decay is given by Szabo (1984).
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The symbol # represents a convolution defined by

Evsf= ['EG-0)-f@)r, (3)

where fis an arbitrary function and E,(¢) is the temporal
shape of the exciting flash at the exciting wavelength after
convolution with the instrument response function. Since
the temporal shape of a synchrotron radiation pulse is
strictly independent of wavelength (Benard and Rousseau,
1974) we can measure E,(¢) at the emission wavelength
and thus eliminate problems arising from a non-uniform
spectral response of the photomultiplier. We can thus omit
the subscript A from the following formulae. However if
this is not the case, then we can use the signal measured
under identical spectroscopic conditions from a sample
with a known spectrum of decays (usually mono-exponen-
tial) to calculate either the instrumental response or the
required convolution (Wahl, 1979).

We can analyze the spectrum of decay times indepen-
dently of the rotational Brownian motion by considering
the sum’

T(t) = I + 281, =

fo i fo ) f (7.0, A)e " drdodA) (4)

0.2

E =

where 8 corrects for the different responses of the instru-
mentation to vertical and horizontal polarized light.

The functional form of Eq. 4 is now independent of  and
A. Thus, integrating over 6 and A first and setting

afr) = ,£ i f :: ¥(r, 6, A) dbdA (5)

we get
T(0) = E* [ a(r)e™/" dr. (6)

The same function can be measured directly for an
unpolarized emission or with a polarizer orientated at 55°
is used on the emission path, but since the error analysis is
different, we refer to this direct measurement as Ir(7). In
this paper we only consider the simpler task of recovering
the distribution of total fluorescent decay times a(r). In a
subsequent paper we will treat the full problem of recover-
ing 7, 0, and A4 simultaneously.

Our problem is to determine the spectrum of decay
constants () having measured inevitably sampled, noisy,
and incomplete representations of the emitted light and
flash profile. Formally, «(7) is the inverse Laplace trans-
form of the measured light deconvolved by the flash E(r).
However, although deconvolution is well conditioned and
relatively stable, inverting the Laplace transform is very
ill-conditioned (McWhirter and Pike, 1978). As a result
small errors in the measurement of the fluorescence curve

'We use the symbol T'(2) for the total fluorescent light instead of S(z) to
avoid confusion with the symbol, S, which is used for entropy.
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or the flash profile can lead to very large errors in the
reconstruction of a(7).

We can view this ill-conditioning, which leads to a
multiplicity of allowable solutions, in a different way.
Consider the set 4 of all possible shapes of the curves a(7)
displayed as a rectangle in Fig. 1. We can calculate
“mock” data sets from each a(7) in turn (using Eq. 6) and
test whether it agrees with the noisy data set. All those a(7)
that agree with the data within the experimental precision
are bounded by a dot-dashed line. Some of these spectra,
however, contain unphysical features (corresponding to
negative concentrations for example). We reject the
unphysical a(r) by drawing a dashed line. The remaining
subset of spectra (shown shaded) we call the feasible set
(Gull and Skilling, 1984a). Every member of this set
agrees with the data and is physically allowable.

A full specification of the feasible set is the complete
answer to the problem. However, it is, for any nontrivial
data analysis problem, much too large (strictly infinitely
large) to display, comprehend, or use.

3. MAXIMUM ENTROPY

Since we are forced to choose one member of the feasible
set, we do so directly by maximizing some function F[a(7)]
of the spectrum. The function F should be chosen to
introduce the fewest artifacts into our chosen distribution.

To better understand the principles of MEM we con-
sider a specific and simple example given in its original
guise by Gull and Skilling (1984b). This was deliberately
chosen for clarity of exposition rather than practical
realism.

We are given a solution of two spherical molecules with
rotational time constants 6, and 8,. The two species are
present in the ratio of Y4:25. Two fluorophores with decay
time constants 7, = 1 ns and 7, = 4 ns have been reacted
with the mixture and are known to have rigidly attached
themselves to the spheres. (Thus we assume these reactions
only negligibly change the time constants 8,, 6,, 7, and 7,.)
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FIGURE 1 Diagram showing the set 4 of all a(r) spectra. (-.-.-)
Boundary of the set of a(r) which agree with data T'(¢) within experimen-
tal accuracy; (---) boundary of the set of physically allowable a(r). The
intersection of these two sets is the feasible set (hatched). Inside the
feasible set, MEM will choose a “preferred” solution.
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We measure the total unpolarized light emitted at time

= 0.5ns and 7, = 2 ns to be N, = 790,508 and N, =
449,465 counts precisely (without noise) using a light
source with an infinitely sharp temporal response at time
t = 0. Our problem is to determine the number of fluoresc-
ing centers having fluorescence parameters 7, 8, 73, 0,.
That is, we wish to determine the numbers of fluorescent
sites a, (7, 8,), ay(73, 8,), as(1,, 0,), ay(7,, 0,). These two
(exact) measurements only give us information about the
total amounts of material fluorescing with time constants
7, and 7,. Using Egs. 1 and 2, some quick algebra reveals
that we had a total of 10° fluorescent sites and the two
fluorophores are present in the ratio 14:%.

The feasible set in this example is sufficiently small to
display it as a 2 x 2 contingency table (Table I). Note that
for simplicity of presentation we have normalized the total
number of fluorescent sites in Table I (and in Figs. 2 ¢, 4 g,
5¢, and 6 ¢) to equal one so that our a’s now represent
proportions. Thus one-third of the 10° fluorescent sites
decay with time 7, and two-thirds with time 7,. Further-
more we also know that one-third of the sites rotate with
time constant #, and two-thirds rotate with time constant
0,.

We also display three specific choices from this set,
namely those with maximal positive and negative correla-
tions and the uncorrelated result. We believe the only
rational choice of a single result from such a problem is to
choose the uncorrelated result and we should like to choose
the function F[a(r, 8)], which gives this result.

It is, of course, very likely that the two fluorophores have
different affinities for the two spheres. However, we have
no knowledge of whether this will give rise to a positive or
negative correlation in our results. We certainly do not

TABLE I
SOLUTIONS TO THE THEORETICAL PROBLEM POSED
IN SECTION 3

T 72
1 1-x 1 1
0, oG =—X ) = 3 '3- 0 3
1-x 1+x 2 1 1
I e T e 3 3
1 2
3 3
. (b) Maximum negative
(@) General solutionfor0 s x = 1. correlation.
1 2 1 0
9 9 3
2 4 0 2
9 9 3

(¢) Uncorrelated result. (d) Maximum positive correlation.
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wish our mathematical optimization function to introduce
such correlations arbitrarily and hence predict results
about the chemistry of the reaction when the data con-
tained no information about these correlations. All other
maximization (or regularization) functions introduce cor-
relations into our solution not demanded by the data. Using
such an example, it has been proven by Livesey and
Skilling (1985) that only the Shannon—Jaynes entropy S
(Jaynes, 1983) will give the uncorrelated solution. This
function is defined as

S =~ [Jatr, 0) 10g

where o'(7, 8) is the number of the fluorophores with decay
constant » and Brownian rotation parameter 6, and 7' (r, 6)
is the model that encodes our prior knowledge about the
system before the experiment (see below). A more com-
plete proof has been given by Shore and Johnson (1980).
Any other “regularizing function” (Tikhonov and Arsenin,
1977) will impose extra structure in our spectrum without
justification. Thus Table II shows the results for some
“popularly” used regularization functions. As we have
stated, all the functions give either positive or negative
correlations with the exception of Shannon-Jaynes entro-
py. We invite skeptical readers to try maximizing any other
function to find their *“‘chosen” solution to this simple
problem.

At present, however, we are only concerned with obtain-
ing the shape of the marginal distribution a(7), and the
entropy reduces to the one-dimensional integral

od(r,0)
. 0) drde, (8a)

a(r)
m(7)

S = — [ a(r) log —— dr, (8b)
where a(r) is the number of fluorophores that decay with
time constant 7.

Although we cannot measure data sets in which dif-
ferent parts of the spectrum decouple completely from the
data, we contend that the Shannon-Jaynes entropy will
still introduce the least correlations and hence the least
spurious structure into our reconstructed distribution of
decay times.

Indeed one of the tenets of the axiomatic derivation
introduced by Shore and Johnson (1980) and generalized
by Livesey and Skilling (1985) is that the coordinate
system and order of data analysis should have no effect on
the shape of the reconstruction. Whether we marginalize
our equations first and compute the one-dimensional distri-

TABLE 11

Regularization function
Shannon entropy —Zp, log pi
Least squares —Zp?

Burg entropy = log p;

p(r,,8,) Correlations

% = 0.111 Uncorrelated

Y2 = 0.0833 Negative

(V17 — 1)/24 = 0.13013
Positive

Intermediate form Zp)/? 0.12176 Positive
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bution of a(7) or whether we reconstruct the full three-
dimensional distribution of (7, 8, 4) and then marginalize
this solution to obtain a(7) will have no effect on the
reconstruction. Since we are forced to use the Shannon—
Jaynes entropy in the two-dimensional reconstruction, we
must use the Shannon—Jaynes entropy in the one-dimen-
sional reconstruction whether or not the data were mea-
sured as separate independent polarized components or at
a magic angle, using an unpolarized or a polarized source.
Theoretically, at least, the identical data set could be
provided as the separate independent polarized compo-
nents and our conclusions about the distribution of a(7)
should not depend on the accident of how the data were
measured. This will only be true, in general, if we use the
same regularization function in the one-dimensional analy-
sis as the two-dimensional analysis above.

However, practical measurements are noisy. It would be
wrong to fit the data exactly because the noise would then
be interpreted as if it were true signal. We chose to bound
the feasible set by a chi-squared statistic.

1 M (lf‘k _ 1‘;&-)2
C=A—{§a—‘2§1.o, ©9)

where M is the number of (independent) observations of
the fluorescent intensity at times ¢. The variance o7 should
take proper account of the inaccuracy of the computation
of the calculated intensity arising from uncertainties in the
shape of the exciting flash E. At values of C > M the
calculated and observed data are not in agreement and for
C < M we start to fit the noise in I°*. Note that we do not
reduce M by the number of parameters in our spectrum.
Indeed these could be greater in number than our observa-
tions. We are not using Eq. 9 to find the optimal set of
parameters in « space, but instead, we are using it in data
space to test whether or not computed data is in satisfac-
tory agreement with our measured data. Other statistical
tests could be used to delimit the feasible set, but we found
that the above is easy to encode, has powerful statistical
arguments justifing its use (Jaynes, 1983) and is suffi-
ciently discriminating for both pulse fluorescence and
quasi-elastic light-scattering experiments (Livesey et al.,
1986).

The model m(r) gives our best a priori guess for the
structure of a(7). In the above problem we were given (and
hence a priori knew) the decay times and the appropriate
model (implicitly assumed in the proof) is uniform over 7
space. However, Jaynes (1968, 1983 [p. 114]) showed that
if one has no knowledge of the values of the decay constants
expected then one must choose

1
my=—. (10)

T

A brief resume of his proof is given in Appendix II,
which further shows that by transforming variables and
working with equally spaced points in log 7 space the model
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m; becomes constant. In the addition the log space 7 is
equivalent to a log space »(v = 1/7), which is also conve-
nient for spectroscopy kinetics interpretation. If the user
has knowledge of correlation in a(7) then these can (and
should) be introduced by setting up an approximately
different model m,. Maximum entropy will then return
that reconstruction, which provides no more correlations
than those present in the data and model.

We note the MEM solution also displays many second-
ary, generally useful properties. (a) Because of the log
termin S = 2 — a log a/m, the spectrum «(r) is automati-
cally positive.? (b) The spectrum a(7) is smooth. (¢) It only
shows features (in particular the resolution of close peaks)
if demanded by the data. (d) Provided the digitization is
sufficiently fine to show all the relevant detail, the shape of
the spectrum is independent of the number of points used
to display it. (e) It is robust to noise, the sense that analyses
of the same data that have different random samples of
noise added to them are very similar (Livesey et al., 1986)
particularly in comparison to a two, three, four, etc.,
exponential fit. However, if the data change significantly
with respect to their estimated accuracy then the recon-
struction will be different. (f) For data that are linear
functions of the spectrum (this includes the Laplace trans-
form and convolutions), the MEM solution is unique. This
is important algorithmically as we can then provide a
simple local test (namely that the entropy gradient 4S/d«;
and chi-squared gradient dC/d«; are strictly antiparallel)
that our computer program has indeed found that recon-
struction that maximizes S subject to the constraint that
C = 1. Similarly, but unlike nonlinear least squares, the
final solution is independent of the initial guess of the
reconstruction, which we always set to be flat.

Finally we note that, in general, the MEM solution does
not have a statistical interpretation. It is no more likely
than any other member of the feasible set, but remains the
best choice we can make for any given data set. For further
discussion see Livesey and Skilling (1985).

4. PRACTICAL COMPUTATION

We used the Cambridge maximum entropy suite of sub-
routines to find that reconstruction of a(7), which has the
maximal entropy, S (Eq. 8b) subject to the constraint that
its calculated data gave a chi-squared value C (Eq. 9) less
than or equal to one. A full description of the Cambridge
algorithm has been given by Skilling and Bryan (1984).
This algorithm provides a single subroutine call
(MEMPRM), which will advance an initial spectrum
towards the reconstruction which has maximal Shannon—
Jaynes entropy subject to chi-square equalling one. The

Difference spectra should be treated by solving for each distribution and
then subtracting these results, otherwise the constraint of positivity will be
lost in the analysis; see Laue et al. (1986) for an example for NMR of
difference spectra reconstructed by MEM, and sce Appendix III for a
more complete discussion of this property.
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TABLE III
EFFECT OF THE FLASH SHIFT ON MEM ANALYSIS

MEM
Shift
4 T A®* C
ps ns ns

—60 1.48 4.11 0.597 492
—40 1.39 4.08 0.598 2.69
-20 1.30 4.04 0.599 1.40
-8 1.24 4.03 0.599 1.10

0 1.20 4.00 0.600 1.00
+8 1.22 3.99 0.599 1.01
+20 1.23 4.02 0.596 1.03
+40 1.26 4.02 0.590 1.10
+60 1.28 4.03 0.583 1.22

*The parameter A, corresponds to the relative ratio of the integrated
areas under the two peaks centered at 7, and r,. It does not take into
account the amplitudes of the structure at the short decay times (see Fig.
4c).

user must supply a subroutine to calculate synthetic data
from a trial reconstruction of the spectrum. We used
recursive algorithm of Wahl (1979), modified for long
decay constants to allow for the continuing fluorescence
arising from earlier excitations (see Appendix I). These
coefficients were calculated once and for all and stored in a
J x k matrix where j is the number of image points
(typically 150 or more) and k is the number of data
(typically no more than 510). The user must also supply a
subroutine to calculate the transpose of this operation.

After setting up the data, accuracies (2/¢7) and initial
starting map (always flat in log r space) into the appropri-
ate areas used by the suite of subroutine, typically 50-100
calls to MEMPRM were needed to reach the final MEM
solution.

MEMPRM is an optimization algorithm specifically
designed to maximize the Shannon—Jaynes entropy subject
to chi-square constraints on the data. It uses multiple
search directions, local quadratic models for both S and C,
and predictions of the search directions with which to
increment a;.

Under some experimental conditions, measurements can
be ‘“‘contaminated” by a small amount of the excitation
flash being scattered by the solution under study or by a
temporal jitter during the flash measurement. To allow for
this, we can add an extra point a, to the spectrum to
calculate the contribution of a species with a decay
constant 7 = 0. This allows us to remove any contribution
to the signal, which has exactly the same shape as the flash.
MEM then adjusts the proportion of spectrum at this point
to take account of this experimental artifact.

If the decay constants in the sample are considerably
shorter than the repeat period between the flashes (73 or
36.5 ns for the Anneau de Collision d’Orsay synchrotron
machine in single or double bunch mode) we can obtain a
good estimate of the background and its variance by
averaging over sufficient measurement channels before the

697



flash occurred. However, when the decays are large or
these estimates are poor, we must calculate the back-
ground more accurately. Once again, an extra point e, is
added to the distribution. The synthetic data from this
point are set to be constant for all ¢ and is not, therefore,
strictly a decay with 1 = «o. MEM forces this point to be
positive, so we start with a (slight) underestimate of the
background and upwards adjust it until the proportion of
the distribution in this channel is acceptably low (typically
< 107%). If the background is set too high, then this value
becomes very small (<107'%) in an attempt to go negative,
the target value of chi-squared cannot be reached and the
residuals are all positive at long measurement times.

The use, by MEM, of the chi-square statistic C = 1 (Eq.
9) as a hard constraint requires us to provide good
estimates of the variances o7. We assumed the counting
statistics for each independent measurement were Poisson
and used the total number of counts (including back-
ground) at each point as our estimate of its variance. The
total fluorescence calculated by summing the parallel and
perpendicular components (Eq. 4) is not, however, Poisson
and its variance is given by

Var (T*) = Var (I{*) + 48 Var (I ™), (1)

where Var (T°%) is the variance of T, etc.

The synthetic data contain errors resulting from the
inaccuracies in the measurement of the flash. Once again,
assuming the measurements of the points making up the
flash E, to be Poisson, then their variance is given by the
number of counts measured. Differentiating Eq. 3 and
using standard error propagation analysis we find the
variance in the synthetic data is given by

[ 2

var (I7%) = 3_ [—E"‘“ (eE.-k+.Z>] . (12)
k=1 Eloi

where E,, is the integral of E(#), Z is the calculated decay

law, and € = %5 for k = 1 and k = ¢, otherwise € = 1. The

errors in the synthetic and observed data curves are

uncorrelated so the variance o? is

o2 = var (') + var (I°®). (13)

5. COMPUTER SIMULATIONS

The computer programs were extensively tested by cre-
ating artificial data from a known spectrum of decay times
and attempting to recover the spectrum. In all cases the
reconstructed spectrum was a very good representation of
the original and generally showed more interpretable infor-
mation than an analysis using constrained nonlinear least
squares. We present here a typical test.

The trial spectrum consisted of two delta functions of
heights 0.6 and 0.4 units at decay times of 1.2 and 4.0 ns,
respectively.

The resulting exponential decay was convolved with an
experimental flash profile measured at the pulse-fluores-
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cence station at LURE (FWHM = 1.6 ns). The “data”
were produced at 430 points each separated by 0.080 ns.
Synthetic noise drawn from a Gaussian probability distri-
bution of zero mean and variance equal to the “fluores-
cence” counts was added to each point.

The experimental flash profile and the synthesized data
are shown in Fig. 2 a. The spectrum was reconstructed on
100 points equally spaced in log 7 between 0.1 and 10 ns
and is displayed in Fig. 2 ¢. Two major, tolerably symmet-
rical, peaks are visible corresponding to the original two
delta functions with their “centroids” at 1.2 and 3.99 ns.
The proportional integrated areas under the two peaks are
0.599 and 0.401 in close agreement with the originals.
There are no significant evidence for any asymmetry in the
peaks not for any other structure. Other tests have shown
that if the allowed range of decays is too small than a peak
is seen to pile-up at one end of the range needing extended.
There is no evidence for this in this reconstruction, showing
that the reconstruction range was adequate.

Chi-square reached 1.00 (indeed this is necessary for the
maximum entropy technique), showing we were truly
inside the feasible set. As expected from this chi-square
value and as shown in Fig. 2 a the data calculated from the
reconstructed spectrum fit the simulated data very well
and the residuals (Eq. 9) appear random (Fig. 2 5).

We analyzed the same data set using constrained nonlin-
ear least squares method. Not surprisingly, least-squares
find strong evidence for two delta functions close to the
originals, and can fit the data with a chi-squared equal to
1.00.

MEM can resolve close pair of exponentials with a ratio
of lifetimes of 1.4 as illustrated in Fig. 3. The trial consisted
of two delta functions of height 0.6 and 0.4 units with
lifetimes of 5.0 and 7.0 ns, respectively. The “data™ were
produced at 440 points each separated by 0.10 ns. Syn-
thetic noise was added as above. The resolution power is
obviously dependent on the data points, the sharpness of
the excitation, and the number of data points (Brochon,
J. C.,and A. K. Livesey, manuscript in preparation).

However MEM can also analyze broad input distribu-
tions (or mixtures of broad and sharp features), which are
poorly reproduced by constrained least squares analysis by
a few exponentials. Examples of such reconstructions from
Laplace transform data can be found in Livesey et al.
(1986 and 1987).

6. SCATTERED LIGHT AND LAMP PROFILE
SHIFT

To balance the scattered light or the color effect occurring
in the fast photomultiplier tubes (Wahl et al., 1974; Heisel
et al., 1979a), some experimenters introduce an inaccu-
rately determined shift to the lamp profile measured at the
excitation wavelength (Imhoff and Birch, 1982). Although
the very nonlinear behavior of maximum entropy allows
many unmeasured experimental parameters to be deter-
mined automatically and hence corrected (Sibisi, 1983b;
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Scott, 1981), we were unable to use the same autocalibra-
tion technique to determine the shift of the lamp profile,
which is a major source of error in practical pulse-
fluorescence analysis. However, we can use the above
exampile to test the effect of varying this parameter on the
maximurm entropy reconstructions.

We thus attempted to reconstruct the data set depicted
in Fig. 2 a with the lamp profile shifted from its true

LIVESEY AND BROCHON Decay Constants in Pulse-Fluorimetry

position. A simple three points interpolation was used to
determine the values at intermediate points. We call the
shift negative if the lamp profile used for the recovery is
early with respect to the lamp profile, which produced the
fluorescent decay data. If the shift is negative the “data”
can only be fitted with a spectrum contraining negative
peaks. Since we postulated a positive spectrum of exponen-
tial terms, entropy forbids such negative regions and, as a
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FIGURE 3 MEM reconstructed spectrum of a(r) on 30 points equally
spaced in log 7 between 3.5 and 9.0 ns. The two peaks are centered at 4.94
and 7.09 ns. The total “counts” of noisy data were ~ 58 - 10° and the
value of the top channel was 8 - 10°.

result, chi-squared cannot fall to 1.0. We found that the
spectrum could not be fitted with a shift of —0.02 ns
{—0.25 channel). At —0.008 ns (—0.1 channel) a chi-
squared of 1.1 can be reached, but the reconstruction is
impressively similar (Fig. 4 a) to the reconstruction found
with zero shift.

Close inspection of the residuals (Fig. 4 b), however,
shows that even this small shift, which has little effect on
the reconstruction, can be detected as causing a small
nonrandom asymmetrical peak in the distribution of the
residuals spanning the maximum of the lamp-pulse.

Positive shifts can be partially compensated for by
creating pulse structure at short decay times. However we
found that a shift of +0.04 ns (0.5 channel) prevented
chi-squared reaching 1.0 and the spectrum shows a small
structure at low decay time (Fig. 4 ¢). This structure
always piles up at the low decay time boundary; however,
the boundary is set low and can thus be partially distin-
guished from true structure with decay times shorter than
the allowed range. Once again positive shift can be recog-
nized in the pattern of residuals (Fig. 4 ¢) as giving the
opposite asymmetric peak to that observed with a negative
shift. A positive shift of 0.008 ns (0.1 channel) could not be
distinguished by its effect on the residuals but produced
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FIGURE 4 Synthesized noisy data analysis: (a) MEM reconstructed
spectrum of a(r) on 100 points equally spaced in log  between 0.1 and 10
ns for a flash profile shift of —8 ps. In the upper left window the structure
in a(7) spectra at short decay times is displayed for positive shifts: (*)
8 ps +; 20 ps; (.) 40 ps. (b) Plot of the weighted residuals corresponding
to the analysis with a negative 8-ps shifted flash. (¢) Plot of the first third
of the weights residuals obtained with positive shifted flash of 8, 20, and

40 ps, respectively.

correspondingly smaller artificial structure at low decay
times without affecting the structure of the decay spectrum
at longer time scales.

Experimentally we always measure the excitation pulse-
shape before and after a fluorescence experiment and if
any significant shifts are observed, the experiment is
rejected. Chi-squared and a visual inspection of residuals
then provide powerful tests for further eliminating data
with any remaining small shifts. Qur experience suggests
the remaining small range of allowable shifts will have
little or no effect on the reconstructions at time constants
greater than about five times the experimental channel
width. If the user is interested in decay structure at shorter
times then a series of spectra (say three or five) should be
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FIGURE 5 (a) Fluorescence decay curves of
L-trytophan at two emission wavelengths
(AN = 4 nm): (1) 390 nm; (2) 320 nm. + + +,
experimental curves; —, calculated curves. (3)
The experimental flash profile. The excitation
wavelength was 280 nm (A\ = 4 nm) and tem-
perature 10°C. (b) Plot of the weighted residu-
als corresponding to two curves (/ and 2). (¢)
MEM reconstructed spectra of a(r) on 100
points equally spaced in log 7 between 0.08 and
8 ns for the two emission wavelengths 390 nm
(—) and 320 nm (+). The spectrum of a(r)
for 390-nm emission is plotted in arbitrary units
to normalize peak maxima for longer decay
times.
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calculated with shifts spanning the allowable range, and all
those spectra that are significantly different should be
displayed as the results of the experiment.

FLUORESCENCE DECAY MEASUREMENTS

Synchrotron radiation emitted by the electron storage ring
ACO was used as the excitation light pulse. The repetition
rate was 13.6 MHz. Fluorescence decays were measured
by the time correlated single photon counting technique
(Ware, 1971; Yguerabide, 1972; Wahl, 1975) and the
experimental set-up has been previously described (Jame-
son and Alpert, 1979; Brochon, 1980; Privat et al., 1985).

MATERIALS

All solvents were freshly distilled at least twice and were spectroscopically
pure.

L-Trytophan, from Sigma Chemical Co. (St. Louis, MO), was recrys-
tallized from ethanol/water 80:20 (vol/vol). The compound appeared to
be homogeneous by thin layer chromatography on silica-gel plate (Merck,
Darmstadt, FRG) in n-butanol/acetic acid/water 60:20:20 when it was
revealed either by ninhydrin or by fluorescence. This sample was
dissolved in 0.01 M acetate buffer adjusted to pH 5.4.

Trans-stilbene from Sigma Chemical Co. was used without any further
purification in cyclohexane.

RESULTS

L-Tryptophan

The measured data points from L-tryptophan together with
the (wavelength independent) excitation pulse are shown
in Fig. S5 a with a logarithmic ordinate. On this plot the
decay at 390 nm appears to be a straight line, suggesting
that the decay could be fitted by a straight line whose slope
would give the appropriate decay constant. The decay at
320 nm is, however, more complicated involving at least
two significant time constants. The corresponding MEM
reconstructions of the distributions of decay constants are
presented in Fig. 5 ¢, and the dotted lines on Fig. S a show
the fit to the data by these spectra. At 390 nm there is only
evidence for one strong peak centered at 4.46 ns with
half-width of ~0.1 ns. At 320 nm the spectrum of decay
constants has two peaks centered at 0.82 and 4.35 ns. The
relative integrated areas under these peaks are 0.623 and
0.377, respectively. These results are in good agreement
with several previously published results (Szabo and Rayn-
er, 1980; Robbins et al., 1980; Privat et al., 1985). It is
worth emphasizing the excellence of the fit to the data.
Provided a large enough range of decay values is fitted with
sufficiently closely spaced points, chi-squared must come
down to 1.0. Any attempt to fit a chi-squared below this
value leads to the danger of reproducing noise in the data
as unwarranted false structure in the reconstruction. Simi-
larly, if we cannot attain a chi-squared of 1.0 there is
probably a mistake in the experiment or its analysis. Any
“piling up” of the spectrum against the edges of the
allowed time domain suggests the time domain is too

702

restricted. Re-running the analysis with a larger time
domain will bring down the value of chi-squared. Other-
wise a display of the residuals will often reveal either an
individual abberant point or a systematic trend such as the
pickup of a radiofrequency field. The relevant data can be
discarded or the experimental procedure modified accord-
ingly. In this case, however, the residuals appeared suffi-
ciently random (Fig. 5 b) to have confidence in our result.
Note further though that the peak of the shorter time
decay is considerably wider than the longer decay. Simula-
tions using delta peaks at 0.82 and 4.35 ns, and similar
signal-to-noise ratios, give equally narrow reconstructions
to the two peaks, suggesting there is very little evidence for
the shorter decay component being a single delta function.
Nevertheless fitting these data with two delta functions
gives a chi-squared of 1.48, which is only just rejected by
the experiment so that the intrinsic width of this shorter
decay peak could well be narrow. Better data will be
needed to fully resolve these models.

Trans-Stilbene

The measured total fluorescent decay and flash profile for
trans-stilbene is presented in Fig. 6 a. The MEM recon-
struction of the decay constants, calculated with 150 points
equally spaced in log 7 intervals between 0.005 and 4.0 ns,
is shown on Fig. 6 c¢. Once again the spectrum can be
described by two peaks, centered at 0.075 and 1.5 ns. The
first peak strongly dominates the fluorescence. It is inter-
esting to note that such a short decay time can be
accurately determined with an excitation pulse of ~1.6 ns
full width half maximum (FWHM). Indeed the convolu-
tion spreads the information about the lifetime over many
more measurement channels, and since deconvolution is a
much better conditioned problem than inverting the
Laplace transform, there is a resultant increase in the
accuracy of the determination of this short-lived compo-
nent. Naturally there is a limit to this process. At very
short lifetimes (~0.005 ns) the signal would have died
away before the first measurement and the signal will be
indistinguishable from scattered flash light. These recon-
struction points start to disconnect from the data and
MEM will set them equal to the value set in the model.

We found the shape of the spectrum remained
unchanged whether or not we included a flash channel
(i.e., 7, = 0). This demonstrated that our experiment was
free from any shift or jitter of the flash position, which is
critically important to measure such a short decay time.

The peak at 1.5 ns is very weak, containing only ~0.5%
of the total contents of the spectrum and can be attributed
to a residual impurity (Heisel et al., 19795). Although the
temporal resolution with the Laplace transform is poor, the
dynamic range of the reconstruction can be very large and
any proposed algorithm must be capable of handling such a
large range.
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FIGURE 6 (a) Fluorescence decay of irans-
stilbene. The excitation and emission wave-
lengths were, respectively, 270 nm (AA = 4 nm)
and 370 nm (AN = 4 nm) and the spectrum was
measured at 20°C. (/) + ++, experimental
curve; —, calculated curve. (2) The experi-
mental flash profile normalized to the top of
fluorescence curve to display the good separa-
tion of the two curves, both in the leading and
trailing edge. (b) Plot of the weighted residuals.
(¢) MEM reconstructed spectrum of a(r) on
150 points equally spaced in log 7 between
0.005 and 4.0 ns. There is no structure at very
short decay times, indicating the absence of any

flash shift during measurements.
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Computation Time

The analysis of a typical decay curve containing 440 data
points and displaying it using 150 r values takes ~15 min
on a VAX 780. However, a new version of the MEMSYS
code reduces this figure by approximately a factor of four
(Skilling, J., personal communication). Although we often
use two or exceptionally three runs to determine the
appropriate range of = values or to determine the back-
ground levels, the analysis needs no further user interven-
tion, so that all the analysis can run in batch mode
overnight. Similarly, since the MEM solution is unique,
the results are independent of the starting guess. Indeed we
always start from a flat solution to avoid any charge of
bias. For comparison, it takes on average ~30 min to
measure both the flashes and fluorescences at the ACO
storage ring at LURE.

8. DISCUSSION

From the definition of the feasible set, the MEM solution is
always an excellent fit to the data. At the given noise level,
it neither overfits nor underfits the data. We chose to
bound the feasible set by the chi-squared function. This is
easy to use, has considerable theoretical justification
(Jaynes, 1983), and we have found it sufficiently powerful
to analyze Laplace transform data in both pulse fluores-
cence and quasi-elastic light scattering (Livesey et al.,
1986). However, other more sophisticated tests could be
used if desired or needed (Bryan and Skilling, 1980).
Within this delimited feasible set, MEM chooses that
unique solution that has the minimum cross-correlation
artifacts.

No model of the parameter distribution is needed
beyond the expected uniform distribution in log 7, which
arises from simple consistency arguments (Appendix II).
However, if at any stage the user can reject the MEM
solution, then he is making use of some prior knowledge of
distributions expected. This knowledge should be encoded
into the model or measure m, (Eq. 10) which will, in turn,
improve the reconstruction.

We also find MEM a compelling choice experimentally.
It is robust to noise and can handle both sharp and broad
distributions of decay times without modification. If the
experimental conditions require it, MEM can determine
the background level and amount of parasitically scattered
radiation. However, we have also found that chi-squared
and a visual check of the randomness of the residuals is a
powerful test to remove unwanted, nonrandom errors in the
data. In particular the radiofrequency shielding of cables
and amplifiers at LURE have been considerable enhanced,
to ensure that the noise only arises from Poisson counting
statistics. The programs need only minimal user interven-
tion and could be run on microcomputers (e.g., PDP
11/60; Burch et al. [1983]), so it is feasible to analyze the
previous set of data while an experiment is running to test
the quality of data or to find the optimal conditions
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(temperature, pH, dilution, etc.) for measurement. Finally
we note that MEM is completely general and can be
applied to other experimental conditions where the fluores-
cence is described by, for example, the difference of
exponential decays or exp (—At—B +t) etc. Only the
algorithm for calculation the convolution (Eq. 6) has to be
modified.

APPENDIX 1

Convolution of an Experimental Decay over
a Limited Time Domain

We consider fluorescent species in solution without interactions, which
are characterized by several decay times. The fluorescence intensity per
second after an infinitely short excitation is (Wahl, 1975)

F(t) = Z[Ci_]e-'/", (Al.1)

To,i

where [C,,] is the initial concentration of excited molecule i at time zero
and o, is the fluorescence decay obtained without any nonradiative
process.

In dilute solution this relation becomes

(A1.2)

U

F(r)=3_ 6—‘[6:‘]@ e,

where ¢, is the molar absorbance, [C;] the molar concentration, and Q, the
quantum yield.
Then the general form of the fluorescence decay is

I
F(ty=)_ Zem,

(A1.3)
i T
with an excitation having a definite time profile £(t) we have
Iy(t) = E(t) » F(1). (Al.4)

With synchrotron radiation E(¢) is measured correctly at the fluores-
cence wavelength, otherwise the convolution is obtained from a reference
compound as previously described (Wahl, 1974, 1979; Zuker et al.,
1985).

The time interval between two excitation pulses is ~73.6 ns. The
measured fluorescence decay of a sample having longer decay times
corresponds to the superposition of the responses of several previous
pulses. With synchrotron radiation there is strictly no excitation between
pulses. So a simple extrapolation of the fluorescence decay contribution
from a previous flash is given by the following relation:

(AL.5)
)

L(t) = I(N) exp — [(k; I)J exp _T’ ,

where I(N) is the last calculated value of the convolution I«(¢) in Eq.
Al.4, T, corresponds to the time interval between flashes (73.6 or 36.8 ns
in single or double bunch mode at ACQO), and k is the order of the previous
flash taken in account. The computation is stopped when [,(¢) reached a
very low value, typically ~1075.

The convolution is the sum of the contribution of different excitation
pulses:

P
I(t) = I()) + 2 L) (A1.6)
k-1
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APPENDIX I1

Calculation of an A Priori Model for
Multiexponential Decays

Before we can use the Shannon-Jaynes entropy (Eq. 8b) we must define
our prior knowledge and encode it into the model m(7). We start from the
objective statement that “in two problems where we have the same prior
information, we should assign the same prior distribution.”

We observe data I(r)

1) = E* [ a(e dr, (A21)
where the r are positive scale parameters describing the rate of decay.

Although we know the 7 to be scale parameters, we do not, a priori,
know which values will describe the decay of our system. A change of
scale should not, therefore, change our conclusions. Two observers
measuring the data on two different scales, ¢ and ¢’ = gt, have their
constants related by

¢/ =tfr (A2.2)

7 = qr. (A2.3)
They assign prior distributions f(r)dr and e()dr’, respectively. But the

value of their functions at any point must be the same; f(7) dr = e(7)d7”

or f(r) = ge(7). However, if both observers were equally ignorant before

the experiment then they must have been in the same state of knowledge.

Thus, their functions f and e must be one and the same f(7) = e(7).
Combining these equations gives

f() =qf(gq), (A24)

or

f(7)d1 = m(v)ar'dr. (A2.5)
Transforming coordinates to log 7 coordinates gives a useful simplifica-
tion

r=logr (A2.6)

1
dr = . dr. (A2.7)

Thus the measure is constant in log 7 space and it is for this
mathematical convenience that we chose to work at equally spaced
intervals in log 7 space.

APPENDIX III

Application of the Positivity Constraint
in Pulse-Fluorescence

The constraint of positivity is not imposed as an axiom necessary to derive
the maximum entropy formalism. Confusion over this principle has arisen
in the past because the Shannon—Jaynes algorithm has been derived for
the very restricted case that the resulting spectrum is a distribution of
probabilities and hence must have a value lying between 0 and 1 such that
the total sum of probabilities is 1. However, this is unnecessarily
restrictive and inapplicable for pulse-fluorescence; instead we turn to the
more general variational (as opposed to probabilistic) derivation.

Four axioms are imposed: (a) The variational function F[a(7)] should
be independent of the type of data being analyzed. (b) The shape of the
spectrum should be independent of the units used to display (7).

(¢) The shape of the spectrum «,(7) to «a,(7) remains unchanged
whether data only pertaining to spectrum points a,, (1) 10 an(7) is

LIVESEY AND BROCHON Decay Constants in Pulse-Fluorimetry

included or not. (d) Given marginal data (such as the example in Table I)*
we wish to recover the uncorrelated solution.

Surprisingly, perhaps, these four rather general axions are sufficient to
uniquely define the variational function F{a(r)] and to impose the
constraint of positivity. This proof is given in Section 3 of Livesey and
Skilling (1985). Shore and Johnson (1980) originally developed this
argument but only consider probability distributions. In fact this is
unnecessarily restrictive as they do not need to use any of the special
properties of probability distributions. Furthermore, Livesey and Skilling
(1985) (Sections 4 and 5) show that the statistical model can be
misleading and can break down in practice.

Time-resolved fluorescence involves sometimes complicating effects
that cause a derivation from simple kinetics law (for an overview see
Ware, 1983). For example in the case of excited-state reactions or
excitation energy transfers, a fluorescence kinetics can be described as a
difference of exponentials leading to a “delayed” rise time of the emission.
The negative preexponential term reflects the build-up of corresponding
emitting centers from zero concentration at time zero. We can then ask,
what positive distribution of centers with a negative amplitude together
with what positive distribution of centers with a positive amplitude fit our
data such that we introduce the least correlation between these lifetimes.
This approach has been successfully applied to NMR where some peaks
scatter 180° out of phase with respect to the others (Laue et al., 1986).

For clarity these authors chose to display their result as a difference
spectrum rather than displaying the two separate distributions. A similar
problem arose in extended x-ray absorption fine structure (EXAFS)
where (isolated) atoms of different elements scatter with different phases
with respect to each other; in particular, nickel and zirconium scatter
almost exactly 180° differently. However, here it was felt to be more
appropriate to display the distribution of both nickel and zirconium
(Livesey, 1984). We are currently investigating the applicability of these
ideas to the “considerably” worse conditioned problem of pulse-fluores-
cence data.

We are indebted to the technical staff at LURE for running the machines
during beam-time sessions, to the informal maximum entropy group at
Cambridge for allowing us to use the Cambridge algorithm and to
Fabienne MEROLA for introducing us. J. P. Privat kindly supplied the
purified L-tryptophan.
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